Journal of Materials Chemistry C

CORRECTION

View Article Online
View Journal | View Issue

Cite this: *J. Mater. Chem. C*, 2023, **11**, 14464

Correction: Ternary alloyed $MoS_{2-x}Se_x$ nanocomposites with a carrier mobility-dominated gas sensing mode: a superior room temperature gas sensing material for NO_2 sensors

Mingli Yin,*^a Kexin Wang,^a Liaochuan Zhang,^a Chunxiao Gao,^a Juan Ren^a and Lingmin Yu^b

DOI: 10.1039/d3tc90215c

rsc.li/materials-c

Correction for 'Ternary alloyed $MoS_{2-x}Se_x$ nanocomposites with a carrier mobility-dominated gas sensing mode: a superior room temperature gas sensing material for NO_2 sensors' by Mingli Yin et al., J. Mater. Chem. C, 2023, **11**, 9715–9726, https://doi.org/10.1039/D3TC01551C.

The authors regret an error in the published article, where the Fig. 8 image was inadvertently replaced with a copy of Fig. 7. The correct version of Fig. 8 is shown here (the caption remains unchanged).

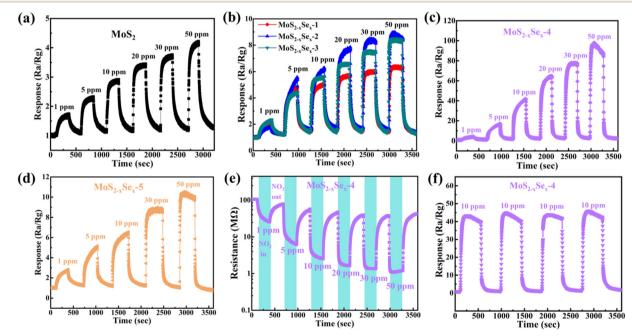


Fig. 8 (a)–(d) Transient response and recovery curves of the MoS_2 and $MoS_{2-x}Se_x$ sensors toward different concentrations of NO_2 . (e) The corresponding transient resistance curves of the $MoS_{2-x}Se_x$ -4 sensor toward different concentrations of NO_2 (a logarithmic scale is used in the ordinate). (f) Cycling response and recovery curves of the $MoS_{2-x}Se_x$ -4 sensor toward 10 ppm of NO_2 .

The Royal Society of Chemistry apologises for these errors and any consequent inconvenience to authors and readers.

a School of Science, Xi'an Technological University, Xi'an 710032, China. E-mail: xatuyml@whu.edu.cn; Tel: +86 029 8617 3025

^b School of Material and Chemical Engineering, Xi'an Technological University, Xi'an 710032, China