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Experimentally validated machine learning
predictions of ultralow thermal conductivity for
SnSe materials†

N. K. Barua, ‡a A. Golabek,‡a A. O. Oliynykb and H. Kleinke *a

Machine-learning (ML) models are used to predict optimal thermoelectric properties for efficient

thermoelectric devices. Often, ML models utilize available databases or published sources that might be

inconsistent. Herein, we report a boosting ML model – eXtreme gradient boosting (XGBoost) – built

from our own lab-generated data with weighted element-to-chemical property features, which predicts

the ultralow (o1 W m�1 K�1) total thermal conductivity (k) for p- and n-type doped bulk SnSe materials

prior to the synthesis. The metrics of the model included a coefficient of determination (R2) of 0.94, a root-

mean-square error (RMSE) of k = 0.05 W m�1 K�1 and a mean absolute error (MAE) of 0.04 W m�1 K�1 on

the validation set using the fivefold cross validation method. The model was able to accurately predict the

thermal conductivity values it was trained for, i.e., the Na–Ag–Sn–Se series. The k values for Na0.033Ag0.015–0.016-

Sn0.963–0.961Se were predicted to be 0.54 W m�1 K�1 on average and experimentally found to be

0.55 W m�1 K�1. The model also successfully discriminated at low temperatures within the series,

with Na0.033Ag0.015Sn0.961Se predicted to have k = 0.85 W m�1 K�1 and measured to have k = 0.80

(�0.04) W m�1 K�1, and similarly, Na0.033Ag0.016Sn0.963Se with a predicted k = 1.06 W m�1 K�1 and a

measured k = 0.98 (�0.05) W m�1 K�1. We pushed the model to the limits to predict the k values of

Cl-doped SnSe, although the training set did not include any k values with Cl. The predicted and mea-

sured values and trends were in good agreement with the RMSE and MAE values achieved by XGBoost’s

model for this new experimental test dataset and on average agreed with the experimentally determined

k values to be within 9%.

1. Introduction

Machine learning (ML) is a data-driven method and a branch
within artificial intelligence, which utilizes algorithms that can
predict, classify, and guide towards the desired outcomes based
on the training data. It has found applications in autonomous
vehicle technologies,1 structural biology,2 images and voice
recognition,3,4 and materials science.5,6 In materials science,
researchers are developing ML methods to analyse data and
target novel materials with specific properties. In particular,
recent successes include batteries, photovoltaics, and thermo-
electric applications.7–9 This is due to the advantages the ML

methodology offers in saving time, cost, and resources com-
pared to the usual Edisonian experiments or calculations.10,11

Although rare, ML has demonstrated the ability to support
experimental validations on predictions outside the expected
conditions. For example, Balachandran et al.12 used a two-step
ML approach to discover high ferroelectric Curie temperature
perovskites supported by experimental validation. Min et al.13

built an ML model and then validated its predictions experi-
mentally for the optimization of Ni-rich cathode battery mate-
rials. Zhuo et al.14 experimentally discovered a phosphor for
application in LED devices using ML studies.

In recent decades, the applications of ML in materials
science have garnered significant interest to help in improving
the efficiency of thermoelectric devices. Optimizing thermo-
electric properties such as electrical conductivity (s), Seebeck
coefficient (a), power factor (a2s), and thermal conductivity (k)
to enhance thermoelectric figure-of-merit (zT) through the
choice of the best materials in the right stoichiometric propor-
tion forms the crux of the research.15–20 In an ideal scenario,
high values of s, a, a2s and low k values, especially ultralow k
values below 1.0 W m�1 K�1 lead to efficient thermoelectric
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devices, governed by zT = Ta2sk�1. However, the complicated
inter-dependency between a, s, a2s and k presents a challenge
to achieve a higher zT value beyond unity, the traditional
benchmark for state-of-the-art thermoelectric materials. Few
studies have used ML to answer the problems of parallel
optimization of thermoelectric properties for higher perfor-
mance in known materials and search for unknown potential
thermoelectric materials by exploring their chemical space of
elements, and their respective elemental properties.21–24 These
reported studies use ML for data obtained from literature or
online databases using RESTful API (representational state
transfer application programming interface) services by pre-
senting potential thermoelectric properties or candidates using
the ML model accuracy. Although presenting an enhanced
model accuracy by displaying ML metrics is a prerequisite in
published studies, utilizing the model for new experiments is at
least equally important. For instance, several studies have
demonstrated the prediction of the total k or the lattice thermal
conductivity (kl) using a dataset built from the literature.
However, most models developed have not been used to
validate the results with new experimental data (Table 1).25–29

Moreover, these models do not implement the presence of
elemental proportions as feature vectors – an elemental vector
matrix within a dataset that contains the amount of constituent
elements derived from their respective chemical composition –
in the final training set. The significance of the vector matrix is
vital when using dopants in the training dataset, as high
performing thermoelectric materials almost always include
various dopants. In a recent report, the high significance of
this matrix was demonstrated by the prediction of properties by
just using the composition.21 However, the vector matrix also
has a limitation with the compositional chemical space
depending on the elemental prevalence in the training dataset,
making it harder to predict properties for compositions con-
taining elements outside the training set.21 Besides the length
of the training dataset, its diversification with multi-doped
materials gives an ML model more confidence in recognizing
the underlying complex relationship between the doping on the
composition and the target property. So far, only a few studies
have demonstrated the benefit of machine learning with the
support of experimental evidence for thermoelectric property
predictions. For instance, a very recent report by Lee et al.30

used the gradient boosted regression tree (GBRT) model to

predict zT with experimentally measured data using elemental
properties and electronic structure features followed by utilization
of the model’s accuracy with the experimentally generated test set.
Iwasaki et al.31 used classical models and a neural network (NN)
model32 – a subset of ML that mimics the behaviour of biological
neurons in the human brain, to predict the Seebeck coefficient a
based on atomic weight, quantum numbers, and lattice mismatch
features. Nonetheless, the electronic structure and lattice mis-
match features used in this study also require knowledge of the
crystal structure, not just the composition with the requirement of
an elemental vector matrix. Hou et al.33 used a Gaussian process
regression (GPR) model to optimize the power factor of Al2Fe3Si3.

Herein, we introduce our ML model developed using con-
sistent experimental data of SnSe-based materials generated in
our laboratory. The focus on SnSe instead of other highly efficient
thermoelectric materials stemmed from the non-toxic elements
and their ultralow thermal conductivity. For example, single
crystals of p-type SnSe34 and Br-doped n-type SnSe35 achieved
zT peak values of 2.6 at 923 K and 2.8 and 773 K, respectively.
Especially once it was realized that contamination of Sn was the
main reason for the less stellar performance of polycrystalline
samples,36 such samples attained outstanding zT values in excess
of 2 too after different purification processes.37–39

We concentrated on thermal conductivity, as this is the best
property of this material compared to other state-of-the-art thermo-
electric materials, and strongly depends on the impurity oxygen
concentration in contrast to the Seebeck coefficient. Moreover,
thermal conductivity is a combination of both phonon and electron
scattering, while electrical conductivity only depends on the latter.
The motivation behind the selection of XGBoost40 arose from its
built-in regularization to prevent over-fitting, availability of a wide
variety of hyperparameters to improve its performance, ability to
handle missing values in a dataset and tree-based algorithm that
can identify complex trends with faster and good predictions.
Moreover, XGBoost also aids in quantifying the significance of
features through feature importance to achieve high prediction
accuracy. Additionally, we implemented specific features such as
elemental vector matrix sensitivity for small doping quantities down
to 0.001 atoms per formula unit in our training dataset to describe
the elements in differently doped SnSe materials. Ultimately, we
experimentally validated the model’s prediction of the total thermal
conductivity of several hitherto not yet prepared SnSe materials with
their synthesis and property measurements.

Table 1 Comparison of the dataset size, model metrics and prediction property of various studies

Authora Model Dataset size Dataset source Test set R2 Predicted property Experimental validation

Chen et al.25 RF 100 Literature 0.93 log(kl) No
Bhattacharjee et al.26 GPR 110 Literature 0.97 log(kl) No
Loftis et al.27 SRb 347 Literature 0.92b kl No
Jaafreh et al.28 RF 2145 Computational 0.96 kl No
Wang et al.29 XGBoost 5486 AFLOW database 0.90 k No
Lee et al.30 GBRT 263 Generated in lab, computational 0.74 k Yes
Iwasaki et al.31 NN 112 Generated in lab — a Yes
Hou et al.33 GPR — Generated in lab, literature 0.99 PFc Yes
This work XGBoost 776 Generated in lab 0.84 j Yes

a Reference number. b Symbolic regression. c Power factor.
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2. End-to-end ML workflow
2.1 Data collection and feature generation

In general, an ML workflow begins with data processing as shown
in Fig. S1 (ESI†). The data construction for the experimental
dataset (EXPD) was initiated by gathering the experimentally
generated 799 data from 75 samples with different p- and
n-type dopants of SnSe materials synthesized in our laboratory
(Table S1, ESI†).41 EXPD includes two groups of features:

(1) Experimental data features (EDF) were composed with
the input of synthesis procedures arranged column-wise in the
form of features: type of dopant, methods of quenching, melting
and reduction processes, ball milling, hot press and annealing
conditions, density, and k values with their related measurement
temperatures. These differently doped SnSe materials had their k
values calculated from the thermal diffusivity (D), measured by
the TA Instruments LASERFLASH DLF-1 system under an ultra-
pure argon atmosphere, the specific heat (Cp) calculated using
the Dulong–Petit method, and the density (r) determined with
the Archimedes method via k = DCpr. The experimental error
of the thermal conductivity measurement was estimated to be
5% based on prior experience.42–44 The number of data points
collected for D depended on the sample stability with relation to
the appearance of bubbles on the surface after the high-
temperature diffusivity measurement, surface oxidation, and
decomposition of material in pellet form into powder; typically
we measured from room temperature to 926 K or less.41 The
selected elements Li, Na, Cu, Ag, Au, Ge, Bi, S, Cl, and Br for this
study as dopants for SnSe fell in the category of low environ-
mental impact and medium or high abundance on earth.45 The
elements Pb, As, Sb, As, and Te were not used in this study
because of their toxic nature. The prevalence of the elements in
the compositions used in the EXPD is illustrated in Fig. 1. The
tabular strategy (see details in Table S2, ESI†) gave us the insight
to implement the choice of elements for p- and n-type, undoped,
doped, or double-doped materials in EXPD. We did not intro-
duce any crystal structure parameters as features in our study as
we dealt exclusively with SnSe variants in the two well-
established modifications.

(2) Elemental stoichiometry features (ESFs) contain elemental
vector matrices as features representing the amounts of elements
that project their presence in the chemical composition of doped
SnSe materials. The values of the element feature under ESFs

were first derived from their corresponding stoichiometric quan-
tities in the theoretical material composition. The corrected
values obtained after weighing the elements replaced these
derived values to preserve the accuracy of the data. If a composi-
tion did not contain the elements present in the ESF, then the
value of these elements under the ESFs was set to zero. Besides
ESF and EDF, the construction of weighted element-to-chemical
property features was carried out using a separate dataset – the
Oliynyk elemental descriptors (OELDs).46 OELDs contain detailed
information on the chemical and physical properties of elements
in the periodic table. These weighted element-to-chemical prop-
erty features are composed of two groups:

(3) Weighted elemental stoichiometry features (WESFs) were
generated using two steps with ESFs and OELDs by NumPy,47 a
Python library. The first step involved the separation of the
composition in EXPD into its constituent elements and stoichio-
metric proportions. The second step mapped the separated
proportions to their related elemental properties – chemical
and physical, in OELDs (Table S3, ESI†).

(4) Weighted elemental descriptive statistics features (WEDSF)
are generated by applying statistics (average, maximum, mini-
mum, sum, difference, and variance) to WESF using NumPy
mathematical calculations (Table S4, ESI†).47

Overall, the EXPD and OELD datasets in Excel sheet format
were loaded as two separate Pandas data frames (Python library)
using the Jupyter Notebook development environment leveraged
by Anaconda open-source distribution for data-preprocessing.
The two data frames using NumPy generated WESF and WEDSF
data frames. Finally, EXPD combined with WESF and WEDSF led
to the creation of the raw training dataset (Table S3, ESI†).

2.2 Dataset curation and feature split

Data curation was carried out on the training dataset to ensure
that the values are not unrealistic, missing, duplicated, or
without a proper numerical format. The data curation process
modified the raw training dataset into 776 data and 164
features. The features contained 163 independent variables (as
x-vector data) and one dependent variable (as y-vector data) –
lowest total thermal conductivity.

2.3 Feature selection

Feature selection is a salient step of the ML workflow for
supervised learning (Fig. S1, ESI†).48 It improves the model
performance by suggesting the removal of non-essential
features. These non-essential features take additional computa-
tional time and create a negative impact on the model with
information that is either irrelevant, noisy, or redundant to the
dependent variable. Similarly, for our training dataset, not all
features can be used by an ML model. Screening of features for
relevancy in model selection and evaluation studies is required.
Moreover, a general rule of thumb in ML states that the number
of features used by an ML model should be approximately 10%
of the volume of the training set. Thus, to select important
features, we chose two embedded methods for feature selection –
L1-norm-regularized linear Regression (LASSO)49 and XGBoost
feature importance (FeaimpXG).40

Fig. 1 Heat map representation of the periodic table for the element
prevalence in the training data set. * Elements not considered due to their
toxic nature.
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LASSO is useful when the number of features exceeds the
number of training data. The hyperparameter alpha in LASSO is
associated with the regularization strength.49 The higher the
value of alpha, the more aggressive the penalization of the
features. Moreover, this regularization prevents the risk of over-
fitting by reducing the coefficients of the least-predictive
variables to zero. Thus, the features were weighted by coefficients
in a linear combination for correlation with the dependent
variable, k. The higher the value, positive or negative, the greater
the importance of the feature towards the dependent variable.
LASSO penalized the less important features – potentially to
zero – to reduce their impact on model performance. While the
features with a co-efficient of zero were removed, all features with
positive and negative correlation coefficients were considered
(Fig. 2). Consequently, the features with positive and negative
correlation coefficients were prioritized over zero coefficient
features.

In FeaimpXG, the model computes the significance of the
features through an importance score. The score is based on the
features’ participation in making key decisions with boosted
decision trees. FeaimpXG ranks the features by their relative
importance in predicting an outcome variable (Fig. 3 and Fig. S2,
ESI†). For FeaimpXG, the same hyperparameters were used for
both feature selection and model evaluation. This is to maintain
the influence of features on the dependent variable. The number
of boosting trees, max depth, sub-sample and reg_lambda were
set to 100, 3, 0.5 and 3 respectively (Table S5, ESI†). The
remaining parameters were set to default values.50

Even though not all the elements present in EXPD were
identified as significant features by the two feature selection
methods, we opted to include all the elements that are present
in the ESF matrix. This is because even a minor modification in
stoichiometry can have a substantial impact on target properties.
Additionally, ESF is also useful for differentiating compositions
that have the same weighted features or target property values.
The two feature selection methods trimmed the training dataset

down to 64 features – 63 independent variables and one depen-
dent variable. Furthermore, the FeaimpXG also provided insights
for the hyperparameter schema selection in the XGBoost model
during the model selection.

2.4 Model selection and evaluation

In the model selection, we determined the optimal model and its
hyperparameters before using it in the test set. We employed four
ML algorithms for the k-fold cross-validation – XGboost,40 random
forest (RF),51 support vector regressor (SVR),52 and k-nearest neigh-
bour (k-NN).53 In XGBoost, it combines the predictions of multiple
weak learners to create a more accurate model. In RF, an ensemble
of decision trees provides the prediction of the target property
through the average of the predictions of all the decision trees. In
SVR, a kernel-based method, the extent of error acceptable in the
model is defined to find the optimal hyperplane to fit the data for
predictions. The SVR algorithm requires a dataset without missing
values or noise, whereas ensemble methods such as XGBoost and
RF work well with missing values. In the k-NN algorithm, the values
are predicted by identifying k nearest neighbors (actual data points)
and their corresponding target values. The value of k, an integer, is
determined by a Euclidean distance metric that measures the
similarity between the new predicted value and the k nearest
neighbors. In this method, the algorithm is sensitive to irrelevant
features and noisy data, as it assumes equal importance to all
features. However, it is easy to implement because only a few
parameters are required. To find the optimal model among the
four ML algorithms, an evaluation method is essential.

There are a few methods to evaluate the models. However,
the k-fold cross-validation method is one of the most robust
and preferred methods for evaluating the prediction accuracy
of an ML model.54 The k-fold library randomly splits the whole
training data set into k training and validation sets using a fixed
random seed. After the split, the k-fold method trains multiple
train-validation sets (Fig. S3, ESI†). In our study, the value of k
was set to five due to the dataset length. The fivefold cross-validation
method picked a unique set of values from the validation sets while

Fig. 2 Important features based on co-efficient score, as suggested by
the LASSO feature selection method, along with their correlation with k.

Fig. 3 Blue bars: features ranking based on importance score as
suggested by XGBoost. Black curve: cumulative sum of the features. The
expanded version of the plot is illustrated in Fig. S2 (ESI†).

Paper Journal of Materials Chemistry C

Pu
bl

is
he

d 
on

 1
5 

A
ug

us
t 2

02
3.

 D
ow

nl
oa

de
d 

by
 F

ai
l O

pe
n 

on
 7

/2
3/

20
25

 8
:5

5:
37

 A
M

. 
View Article Online

https://doi.org/10.1039/d3tc01450a


This journal is © The Royal Society of Chemistry 2023 J. Mater. Chem. C, 2023, 11, 11643–11652 |  11647

being trained and validated five times. This prevented the validation
of data in the training set more than once. Out of the whole dataset,
we used only 80% of the training set and 20% of the validation set,
using 63 features that were obtained from the feature selection
methods.55 The hyperparameters used in the algorithms were
chosen by following the model documentation page instruction
and by the hyperparameter optimization method. These decided
hyperparameters consisted of values conservative towards over-
fitting (Table S6, ESI†). The models from the k-fold cross-
validation method were evaluated using three metrics: coefficient
of determination (R2), root mean squared error (RMSE) and mean
absolute error (MAE) (Table S7, ESI†).56

The four ML algorithms demonstrated stable trends of R2,
RMSE, and MAE across all the folds of the validation sets. This
suggests that the models are not over-fitting. Thus, the fivefold
approach mitigates over-fitting, and provides insight into
model performance and the limitation of one-sided validation
results, namely insufficient training of data.

2.5 Model validation

XGBoost was found to be the optimal model for the test data
analysis through the fivefold cross-validation process. Although
XGBoost outperformed RF, SVR and k-NN in validation sets, the
underperformed models were still considered for test data. The
test dataset contained seven dopants with multiple measurement
temperatures, bringing the count of the dataset to 57 samples, as
illustrated in Table 2. The tuning of the hyperparameters was not
performed beyond the model selection process to avoid p-hacking,
which is an unethical human operation where the evaluation of
the model is performed on held-out test data to pick ideal model
hyperparameters to achieve the desired statistical results. The
models’ hyperparameters remained fixed during the model valida-
tion. Furthermore, the test set was kept separately and used after
each model had the optimal hyperparameter tuning achieved in
the model selection step.57 The performance metrics of all models
used for the test set are captured in Table S8, ESI.†

3. Results and discussion

Based on the knowledge of properties that influence k, we chose
electronegativity, ionization energy, total valence electrons,
atomic weight, and covalent radius as elemental properties.

These values of the elemental properties were referred from
OELDs. The elemental properties chosen were limited to six
because having more properties will lead to more features and
could be detrimental to model performance or could result in
over-fitting.

Among the various electronegativity scales available, Pauling
and Ghosh were chosen. We avoided the inclusion of electro-
negativity scales derived from elemental properties already pre-
sent as features in our dataset. For instance, the Mulliken scale is
calculated from ionization energies, Allred–Rochow from cova-
lent radii, and Allen from valence electrons. Moreover, the
features of electronegativity, valence electrons, covalent bonding,
and ionization energy influence the phonon transport which then
impacts k. The atomic weight of the elements or the average
molar mass of the composition has a strong impact as well. After
the consolidation of the features in the benchmark dataset,
feature selection methods were applied.

Applying the two feature selection methods to the bench-
mark training dataset allowed us to pick important features
relevant to this study. In the LASSO method, experimental
features such as density, reduction temperature, an atomic
weight of Na and Au, maximum and a sum of atomic weight,
and sieved before hot press (Fig. 2) were selected. The
FeaimpXG method along with the cumulative sum method
applied to importance scores of features ranked Ag, ball milling
time, measurement temperature, the difference of maximum
and minimum covalent radius and average ionization potential
as significant features (Fig. 3). Prior to the application of the
feature selection methods, based on the scientific intuition, we
expected that atomic weight difference, density, cation/anion
atomic-% ratio, and calculated heat capacity based on Dulong–
Petit would support the importance of mass in influencing k.
To our surprise, except for the calculated heat capacity the rest
of the expected features were not considered as important
features by the feature selection methods to predict k. This
demonstrates how we can learn from ML besides the domain
knowledge of chemistry to understand the factors affecting the
prediction of target properties. Thus, the combined results of the
two feature selection methods narrowed our selection of features
to air and water quench, ball milling speed and time, number of
reductions, annealing time and temperature, melting tempera-
ture and time, hot press temperature, pressure and ramp time,
cation/anion atomic-% ratio, p-type/n-type, weighted minimum,
average, difference, variance and sum of Pauling electronegativ-
ity, weighted average, difference and minimum of Ghosh electro-
negativity, weighted sum, minimum and average of ionization
energy, weighted minimum, average, difference and variance of
molar mass, weighted sum and minimum of total valence
electrons and weighted sum, average, minimum, difference and
variance of covalent radius (Table S3, ESI†). The selected features
depend on the experimental parameters and elemental proper-
ties that affect k values.

With the selected features in place, we moved on to the
model selection method. For this method, XGBoost, RF, k-NN, and
SVR were the chosen candidates, as each of them functions with
a unique algorithmic complexity to perform predictions.40,51–53

Table 2 Materials used for experimental validation, along with the pre-
dicted and measured k values around 300 K

ID SnSe material
Predicted
k (W m�1 K�1)

Measuredc

k (W m�1 K�1)

C1 Na0.032Au0.015Sn0.963Sea 0.99 0.98 � 0.05
C2 Na0.033Ag0.015Sn0.961Sea 0.80 0.85 � 0.04
C3 Na0.033Ag0.016Sn0.963Sea 0.87 0.94 � 0.04
C4 Na0.034Au0.015Sn0.959Sea 0.93 0.96 � 0.05
C5 SnSe0.940Cl0.060

b 0.93 1.01 � 0.05
C6 Sn0.999Se0.940Br0.060

b 0.89 0.78 � 0.04
C7 Sn1.002Se0.900Br0.100

b 0.97 0.91 � 0.04

a p-Type dopant. b n-Type dopant. c Measured k values with an esti-
mated experimental error of 5%.
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We did not choose linear regression due to poor metrics (e.g., R2 =
0.32 for the test set, Fig. S4, ESI†) during the preliminary stage of
the ML workflow development and did not choose neural net-
works due to the quantity of the dataset being below the order of
thousands. We noticed that XGBoost yielded the best results
within the training set (Fig. 4 and Fig. S5, ESI†).

Most of the data were found along the ideal fit line, with a
couple of the data points slightly deviating. The most under-
estimated values occurred at the lowest end of the measured values
for the Cu0.022Sn0.980Se and Na0.012Cu0.008Ge0.025Sn0.994S0.05Se0.95

samples. The underestimation (highest positive relative error) was
from 16 to 20%; however, considering that these data were some of
the lowest thermal conductivity values, we found the discrepancies
acceptable. The most overestimated sample was Cu0.022Sn0.980Se,
measured at the highest temperature of 926 K. The error of 70%
for this sample with the predicted k = 0.19 W m�1 K�1 vs.
0.11 W m�1 K�1 is at least in part understandable based on
the ultralow absolute values, as the difference was only
0.08 W m�1 K�1. Furthermore, the highlighted Cu0.011Sn0.9991Se
at 521 K had a 38% overestimation error, while Na0.012Cu0.008-
Sn0.979Se and Cu0.062Sn0.941Se were underestimated with a 32%
and a 20% error at 680 K and 875 K, respectively. These
deviations could be attributed to the presence of Cu in the
composition, which was underrepresented in our dataset.

Thereafter, we moved to fivefold cross-validation. After this,
the models were tested for signs of over-fitting. A major point to
note was that there were studies that report only the average
metrics using k-fold cross-validation. However, it is essential to
show and verify how each fold independently performed. In our
k-fold study not only did we report the average metrics of R2,

MAE, and RMSE of each model in the fivefold cross-validation,
but also included the metrics for each fold. Thus, our k-fold had
five training and validation sets with randomized data for each
model. It also gave us confidence that our model mitigated
over-fitting as all the five sets chosen gave consistent output in
the metrics (Table S7, ESI†).

All datapoints from the fivefold validation sets were grouped
and plotted into a parity plot. The fivefold study showed that
the XGBoost performed higher than the rest of the models. We
believe that the over- or underestimated predictions of some
doped SnSe materials data points with the linear fit in Fig. 5 are
likely due to factors beyond our control such as the stability of
the samples during the measurements.41 For instance, the
most overestimated sample was Na0.010Ag0.011Sn0.974Se at
324 K and 774 K with a 24% and 28% error, respectively,
followed by Cu0.022Sn0.980Se, Cu0.08Sn0.919Se and Sn1.002Se at
room temperatures of 775 K, and 873 K and 825 K at relative
errors between 23% and 30%. The next group of underesti-
mated samples belonged again to the Cu-doped SnSe materials
such as Cu0.005Sn0.998Se, Cu0.022Sn0.980Se, Cu0.011Sn0.991Se, and
Na0.012Cu0.008Sn0.979Se. Interestingly, we observed that
Cu0.022Sn0.980Se and Cu0.011Sn0.991Se formed a bubble after
the measurement explaining the over- and underestimation
by the model. We have additionally presented the residual plots
in Fig. S6 (ESI†) to identify these problematic samples.

The selected models were evaluated using the metrics R2,
RMSE, and MAE. In the validation set, the models – in the order
of XGBoost, RF, k-NN, and SVR – demonstrated fivefold cross-
validation average R2 values of 0.94, 0.84, 0.85, and 0.79, RMSE

Fig. 4 XGBoost model predicted vs. measured k values of the training set
with R2 score. Histogram plot on the top: distribution of the datapoints for
measured k. Histogram plot on the right: population of the datapoints for
predicted k. Solid blue line: linear fit; dashed black line: ideal fit. Experi-
mental error bars: estimated 5% error.

Fig. 5 XGBoost model predicted vs. measured k values of the combined
five validation sets with R2 score, using a fivefold cross validation method.
Histogram plot on the top: distribution of the datapoints for measured k.
Histogram plot on the right: population of the datapoints for predicted k.
Solid blue line: linear fit; dashed black line: ideal fit. Experimental error
bars: estimated 5% error.
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values of 0.05, 0.09, 0.09, and 0.10 W m�1 K�1 and MAE values
of 0.04, 0.06, 0.07, and 0.07 W m�1 K�1, respectively (Table S7,
ESI†).56 The overall metrics indicated XGBoost to be the best
model to be used in the experimental test set (Fig. 5 and Fig. S7,
ESI†). Furthermore, the consistent metrics for XGBoost across
all the folds negated the possibility of one-sided biased model
performance.

3.1 Model prediction on the new test set with experimental
validation

In the experimental model validation, we tested the model
performance by comparing the k prediction results of the test
data with the experimental k data. To test our model with new
experimental results, we prepared seven new p- and n-type SnSe
materials illustrated in Table 2 (C1–C7) and determined k at
about eight different temperatures. For the n-type, we used Br
as before, plus Cl to challenge the model to predict k data
without having first encountered k values from that dopant, as
Cl was not included in the training set. The Br-doped composi-
tion of C6 was used with different synthesis conditions than in
the training set, to investigate whether the model can predict k
for such a change too.

After the synthesis of C1–C7 was carried out and their
respective k data experimentally determined, the latter were
compared to the predicted values from the test set of all the
models. As expected from the model selection, the performance
metrics (Table S8, ESI†) showed that XGBoost performed signifi-
cantly better than the other models. Moreover, Fig. 6 illustrated
that the XGBoost model not only performed well on the valida-
tion data but also showed a similar dominant performance

when applied to the new experimental test data (Fig. S8, ESI†).
In Fig. 6, the overestimation of data points mainly belonged to
Br-doped SnSe (C6) at 372 K and 472 K, which was due to the
difference in synthetic route in the test set compared to the
same composition present in the training dataset. We also
found that the k value of (Na, Ag)-double-doped SnSe (C2) at
medium temperature was overestimated with a 27% percent
error. The data points with high k values fit better in the blue
model line of fit. However, the samples with k values of 0.4–
0.9 W m�1 K�1 fit better with the dashed line (ideal fit). From
Fig. 7, 8 and Fig. S9, S10 (ESI†), it can be observed how the
models understood the trend of k changes with temperature.
However, with Cl-doped SnSe (C5), the model slightly departs
with the trend of k with temperature as observed in other
compositions in the test set because the model has not seen
any Cl-containing samples in the training dataset. Even then,
the model made accurate predictions for C5 throughout the
temperature series – with exceptions of overestimation at 872 K
and an underestimation at 921 K (Fig. 6). The latter is likely
caused by potential instabilities beyond the phase transition
from the orthorhombic Pnma space group to the orthorhombic
Cmcm space group occurring around 810 K.58

Fig. 7 illustrates the superiority of XGBoost compared to RF,
SVR and k-NN using the example Na0.033Ag0.016Sn0.963Se (C3).
XGBoost made outstanding predictions of k values even beyond
800 K, after the phase transition of SnSe,58 including the
downward trend. The factors that affect the phase transition
such as pressure, temperature, and chemical composition were
already present as features (Table S5, ESI†). Using this observa-
tion, we can suggest that ML can be used in the areas where we
lack scientific methods of understanding the properties in the
phase transition region. Studying the properties with small

Fig. 6 XGBoost model predicted vs. measured k values of the experi-
mental test set with R2 score. Histogram plot on the top: distribution of the
datapoints for measured k. Histogram plot on the right: population of the
datapoints for predicted k. Solid blue line: linear fit; dashed black line: ideal
fit. Experimental error bars: estimated 5% error.

Fig. 7 Temperature-dependent comparison between predicted and
experimentally measured k of Na0.033Ag0.016Sn0.963Se (C3) using XGBoost,
RF, SVR, and k-NN models. Experimental error bars: estimated 5% error.
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doping amounts at the transition temperature with the use of
density functional theory is expensive and nearly impossible.11

Moreover, molecular dynamics might not be ideal to study
properties around the transition temperature.59 Thus, this is
an area where ML methods have the potential to shine over
these traditional computational methods.

Similarly, the predicted and measured k values of Na0.034-
Au0.015Sn0.959Se (C4) are compared in Fig. 8, again demonstrat-
ing the outstanding predictions by XGBoost, including the
region above 800 K. Moreover, XGBoost correctly predicted
higher values for Na, Au doping than for Na, Ag doping,
something that may be counterintuitive based on the general
trend of heavier elements causing lower thermal conductivity.

3.2 Comparison of ML prediction with experimental studies
on Sn0.999Se0.94Br0.06 and SnSe0.94Cl0.06

The n-doped SnSe materials C5 and C6 with the same amount
of 6% of two different group 17 elements were chosen for a
comparative study of measured and predicted k values. With-
out ML, it would be difficult to predict whether the Cl-doped C5
will exhibit higher or lower thermal conductivity because of (at
least) two opposing trends: the lower mass of Cl compared to Br
might cause higher k, while in turn its larger mass difference to
the Se atom it replaced caused larger mass fluctuation and thus
potentially lower k. The different electronegativity and hence
character of the Sn–Cl bonds as well as different sizes further
complicated matters. As these parameters were all part of the
data given to the XGboost model, we anticipated it could
correctly predict changes without having encountered k data
for any Cl-doped case. Indeed, as shown in Fig. 9, XGBoost
made the correct prediction of higher k values for the Cl-doped

C5. This confirms that XGBoost correctly utilized the differ-
ences in the elemental features of Cl and Br in its predictions
(Fig. S10, ESI†).

3.3 Final validation by enlarging the size of the test data

To alleviate potential concerns that the test size was too small60

with 57 data, amounting to 7% of the sum of the training and
validation data (621 + 155 = 776), we randomly picked eleven
samples from the training and validation data and moved them
to the test set. This brought the new test size up to 154 data
(T2), i.e. 23% of the sum of the training and validation data
(543 + 136 = 679).

This procedure did not change XGBoost’s performance in
the training set with still R2 = 0.99 and caused a small increase
in R2 of the test set from 0.84 to 0.86 (Fig. S11, ESI†).

4. Conclusions

In conclusion, we developed an ML model trained to predict
ultralow thermal conductivity from our dataset of doped SnSe
materials all synthesised in our lab. The feature selection
methods aided in choosing the right features that enhanced
the performance of the ML models. The model performance
metrics through fivefold cross-validation guided us to select
XGBoost as the superior model for the experimental validation
study. Not only did XGBoost predict the data overall correctly,
but it was also able to handle the hitherto unencountered use
of Cl as a dopant, including predicting the difference between
Cl- and Br-doping.

Furthermore, we presented here two important observa-
tions: first, we noticed the feature selection methods provided
a precise selection of significant features from a wide variety of

Fig. 8 Temperature-dependent comparison between predicted and
experimentally measured k of Na0.034Au0.015Sn0.959Se (C4) using XGBoost,
RF, SVR, and k-NN models. Experimental error bars: estimated 5% error.

Fig. 9 Temperature-dependent comparison of SnSe0.940Cl0.060 (C5) and
Sn0.999Se0.940Br0.060 (C6) for measured and predicted k. Experimental
error bars: estimated 5% error.
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features to explain the prediction of k through chemistry.
Second, the model even made accurate predictions beyond the
phase transition temperature. Thus, our study showed how we
can learn from ML to expand on the domain knowledge, besides
presenting the model performance.

In addition, we believe that our work provides a promising
strategy and has a broader impact on developing ML models
using quality experimental data with the introduction of the
elemental vector matrix features to assist in the prediction of
optimal properties of thermoelectric materials.

Ultimately, ML models using more comprehensive data bases
are envisioned to streamline the exploratory work in the thermo-
electric community, leading to the discovery of advanced materials.
Of course, one will have to pay attention to not include erroneous
data, which in turn could create false predictions.
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A. Potapenko, A. Bridgland, C. Meyer, S. A. A. Kohl, A. J.
Ballard, A. Cowie, B. Romera-Paredes, S. Nikolov, R. Jain,
J. Adler, T. Back, S. Petersen, D. Reiman, E. Clancy,
M. Zielinski, M. Steinegger, M. Pacholska, T. Berghammer,
S. Bodenstein, D. Silver, O. Vinyals, A. W. Senior,
K. Kavukcuoglu, P. Kohli and D. Hassabis, Nature, 2021,
596, 583–589.

3 Y. Yu, J. Li, S. A. Solomon, J. Min, J. Tu, W. Guo, C. Xu,
Y. Song and W. Gao, Sci. Robot., 2022, 7, eabn0495.

4 Z. Zhou, K. Chen, X. Li, S. Zhang, Y. Wu, Y. Zhou, K. Meng,
C. Sun, Q. He, W. Fan, E. Fan, Z. Lin, X. Tan, W. Deng,
J. Yang and J. Chen, Nat. Electron., 2020, 3, 571–578.

5 C. Gao, X. Min, M. Fang, T. Tao, X. Zheng, Y. Liu, X. Wu and
Z. Huang, Adv. Funct. Mater., 2022, 32, 2108044.

6 K. Choudhary, B. DeCost, C. Chen, A. Jain, F. Tavazza, R. Cohn,
C. W. Park, A. Choudhary, A. Agrawal, S. J. L. Billinge, E. Holm,
S. P. Ong and C. Wolverton, npj Comput. Mater., 2022, 8, 59.

7 C. Lv, X. Zhou, L. Zhong, C. Yan, M. Srinivasan, Z. W. Seh,
C. Liu, H. Pan, S. Li, Y. Wen and Q. Yan, Adv. Mater., 2022,
34, 2101474.

8 M. Srivastava, J. M. Howard, T. Gong, M. Rebello Sousa Dias
and M. S. Leite, J. Phys. Chem. Lett., 2021, 12, 7866–7877.

9 T. Wang, C. Zhang, H. Snoussi and G. Zhang, Adv. Funct.
Mater., 2020, 30, 1906041.

10 K. Pels, P. Dickson, H. An and T. Kodadek, ACS Comb. Sci.,
2018, 20, 61–69.

11 J. Peng, D. Schwalbe-Koda, K. Akkiraju, T. Xie, L. Giordano,
Y. Yu, C. J. Eom, J. R. Lunger, D. J. Zheng, R. R. Rao, S. Muy,
J. C. Grossman, K. Reuter, R. Gómez-Bombarelli and Y. Shao-
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