Glassy and liquid Sb$_2$S$_3$: insight into the structure and dynamics of a promising functional material†

Mohammad Kassem, a Chris J. Benmore, b Andrey Tverjanovich, c,c Takeshi Usuki, d Maxim Khomenko, e Daniele Fontanari, a Anton Sokolov, b,d Koji Ohara, d,f Maria Bokova, b,a Shinji Kohara, d,g and Eugene Bychkov b,a*

Antimony sesquisulfide Sb$_2$S$_3$ has become an outstanding advanced functional material in a variety of rapidly growing application fields: smart integrated photonics from the visible to telecom window, cost-efficient photovoltaics, energy storage and transformation. Rational design and tailoring of the required components need a deep insight into the atomic structure and dynamics of liquid and amorphous Sb$_2$S$_3$, but detailed information is missing in contrast to crystalline counterparts. Using high-energy X-ray diffraction and Raman spectroscopy over an extended temperature range, supported by first-principles simulations as well as by electrical and thermal studies, we show that the high optical and electric contrast between the SET (crystalline) and RESET (amorphous) logic states is related to the different short and intermediate range order in orthorhombic and vitreous Sb$_2$S$_3$. It includes strong asymmetry of the Sb−S nearest neighbor distances and a different coordination of antimony sites in the crystal vs. a distorted trigonal environment of defect octahedral SbS$_3$ entities in glassy Sb$_2$S$_3$. As fast crystallization rate at elevated temperatures in liquid antimony sesquisulfide is related to the enhanced fragility, approaching that of telluride phase-change materials, and to a large fraction of ABAB squares (A: Sb; B: S), combined with a remarkable slowdown of the diffusion processes in the vicinity of the glass transition temperature, ensuring good retention of the amorphous state. Further improvements may be achieved using anionic (Se) or cationic (Bi) substitution that decreases the temperature of a semiconductor–metal transition and allows bandgap engineering, important for both photonics and photovoltaics.

1. Introduction

Antimony sesquisulfide Sb$_2$S$_3$ appears to be an emerging and promising advanced functional material for a variety of rapidly growing application fields:

1. Wide gap phase-change materials (PCM) for both electrically and light tunable visible photonics or ultralow loss photonics at telecommunication wavelengths. Sb$_2$S$_3$ can be used for smart reprogrammable photonic systems with a nanosecond switching time, holographic and nonvolatile ultrathin displays of extremely high resolution, integrated photonic circuits, switchable metasurfaces and varifocal metalenses, nanophotonic and on-chip devices, dielectric nanoantennas, etc.

2. High-performance composite anodes for sodium and lithium batteries. Antimony sesquisulfide nanorods, nanoparticles and powders, sometimes combined with other sulfides and encapsulated into a doped carbon matrix or activated carbon, provide superior rate capability, excellent cyclic stability and capacity retention, as well as fast-charging capacity and highly decreased interfacial resistance.

3. Alternative absorber materials for thin-film solar cells. Antimony sulfide thin films belong to emerging earth-abundant...
low-cost photovoltaic materials having a reasonable optical bandgap, tremendous low-light harvesting, and excellent moisture and air stability.11,12

(4) Thermoelectric materials. The high thermoelectric power of Sb2S3 seems to be promising for thermoelectric applications.13 However, nanostructured or amorphous antimony sesquisulfide is mostly used as a dopant decreasing the thermal conductivity and increasing the Seebeck coefficient of composite thermoelectrics (lead chalcogenides, (Bi,Sb)2Te3, etc.) yielding a significantly enhanced figure of merit \(z T \).14,15

Rational design and tailoring of optimized functional materials based on Sb2S3 need a deep insight into the atomic structure and dynamics of antimony sesquisulfide. The crystal structure of Sb2S3 has been extensively studied both under ambient conditions16–18 and under high pressure.19–26 Nevertheless, the atomic structure of vitreous and liquid antimony sesquisulfide is largely unknown except for classical X-ray diffraction studies of glassy Sb2S3 reported forty years ago and suffering from a limited accessible \(Q \)-range and insufficient \(r \)-space resolution.27–29 In the case of PCM applications,30–32 special attention should be paid to the origin of a high optical and electric contrast between the SET (crystalline) and RESET (amorphous) logic states since antimony sesquisulfide differs considerably from the benchmark telluride PCM (GeTe-Sb2Te3, GST, or doped Sb2Te) in both chemical bonding and local antimony environments. The metavalent bonding33 seems to be missing in Sb2S3 and the four-fold coordinated antimony sites, present in GST and a-Sb2Te3,34,35 were not observed in vitreous Sb2S3,27–29 even though there is a controversy in amorphous tellurides related to the antimony local order.36,37

Using high-energy X-ray diffraction and Raman spectroscopy supported by first-principles simulations, we will unravel a detailed structural organization of bulk glassy and liquid Sb2S3 over an extended temperature range, 298 \(\leq T \leq 1143 \) K. Thermal properties and electrical conductivity measurements will also be provided showing a remarkable contrast in electronic properties between amorphous, crystalline and liquid states. Finally, the diffusion coefficients and viscosity of liquid Sb2S3 will be computed and compared with known experimental data, which reveal a significant fragility of molten antimony sesquisulfide in comparison with canonical dielectric As2S3. All these results will explain the promising PCM performance of Sb2S3 and an overall trend in functional properties going down the periodic table.

2. Experimental and methods

2.1 Glassy and nanocrystalline Sb2S3 preparation

A two-step synthesis was applied for glassy Sb2S3. First, a crystalline sample was prepared from high-purity antimony (99.999%, Cerac) and sulfur (99.999%, Alfa Aesar) in an evacuated and sealed silica tube. Then, a small quantity of c-Sb2S3 was placed in a thin-walled silica capillary, evacuated to \(10^{-4} \) mbar and sealed. The capillary was slowly heated in a furnace to 1050 K and kept at this temperature for one hour with subsequent cooling to 900 K. After an additional equilibration step for at least 30 minutes, the sample was splat-quenched under an argon atmosphere onto a fused silica plate cooled down to \(\approx 80 \) K. Nanocrystalline nc-Sb2S3 was obtained by fast cooling in a silica capillary but without splat-quenching, that is, the estimated cooling rate was \(\leq 1000 \) K s\(^{-1}\).

2.2 Thermal and electrical measurements

A TA instruments Q200 thermal analyzer was used for differential scanning calorimetry (DSC). The synthesized samples of 3–5 mg were encapsulated in a sealed aluminum pan and heated at a rate of 10 K min\(^{-1}\) under a dry nitrogen atmosphere to determine the glass transition \(T_g \) and crystallization temperatures. The ac and dc conductivity measurements were done over the 330 \(\leq T \leq 450 \) K temperature range. A Hewlett Packard 4339B high resistance meter with applied voltage of 100 volts was used for the dc experiments. The ac conductivity over the 100 Hz to 15 MHz frequency range was measured using a Hewlett Packard 4194A impedance meter.

2.3 Raman spectroscopy measurements

A LabRam HR microRaman spectrometer (Jobin Yvon Horiba Group) was used for the measurements at room temperature. Raman scattering was excited by a 785 nm solid-state laser and recorded in the 50–850 cm\(^{-1}\) spectral range. The laser power was 0.75 mW. Two to three spectra were registered for each sample at different positions to verify the sample homogeneity and the absence of photoduced phenomena. Raman spectra over the temperature range 293 \(\leq T \leq 873 \) K were measured using a Senterra Raman spectrometer (Bruker) equipped with a microscope and a Linkam TS1000 hot stage. The spectral data were excited by a 785 nm laser diode with a power of 1 mW and recorded in the 75–1500 cm\(^{-1}\) spectral range (reliable data above 100 cm\(^{-1}\)). Glassy Sb2S3 was placed in a silica tube (2 mm ID/3 mm OD, length 25 mm) and sealed under vacuum.

2.4 High-energy X-ray diffraction

The 6-ID-D beamline at the Advanced Photon Source (Argonne National Laboratory, Chicago) was used for high-energy X-ray diffraction measurements under ambient conditions and as a function of temperature. The photon energy was 99.9593 keV, and the wavelength was 0.124035 Å. A two-dimensional (2D) setup was used for data collection with a Varex area detector, 2880 \times 2880\ pixels, and a pixel size of 150 \times 150\ \mu m^2. The sample-to-detector distance was 287.7 mm for a room-temperature setup, and 334.9 mm for furnace measurements over the 673 \(\leq T \leq 1143 \) K temperature range on cooling. Cerium dioxide was used as a calibrant. The exposure time was 0.2 s \times 1500 frames, using one dark-field image file followed by five light files. Glass samples were fixed on a Kapton tape for the room temperature measurements. A Sb2S3 sample in evacuated silica tube (2 mm ID/3 mm OD) was used for the furnace measurements. The 2D diffraction patterns were reduced using the Fit2D software.38 The measured background intensity (either the Kapton tape or the empty silica at various temperatures) was subtracted, and corrections were made for the...
different detector geometries and efficiencies, sample self-attenuation, and Compton scattering using standard procedures,39 providing the X-ray structure factor $S_Q(Q)$.48

$$S_Q(Q) = w_{\text{abs}}(Q)S_{\text{abs}}(Q) + w_{\text{str}}(Q)S_{\text{str}}(Q) + w_{\text{sl}}(Q)S_{\text{sl}}(Q),$$

where $w_j(Q)$ are Q-dependent X-ray weighting coefficients and $S_j(Q)$ the Faber–Ziman partial structure factors. Typical raw diffraction data for nanocrystalline and glassy Sb$_2$S$_3$ are shown in Fig. S1 (ESI).11

Canonical As$_2$S$_3$ glass and liquid were also additionally measured at the BL04B2 beamline of the SPring-8 facility (Hyogo Prefecture, Japan) using a dedicated two-axis diffractometer equipped with four CdTe detectors at low angles and three Ge diodes at high diffraction angles.40 The temperature measurements were carried out from 300 to 1223 K in a furnace. The 7-detector setup and incident X-ray energy of 112.6386 keV allows the diffraction pattern to be collected up to $Q = 30 \text{Å}^{-1}$ with a high signal-to-noise ratio and sufficient energy resolution to discriminate both fluorescence from the sample and higher harmonic reflections from the monochromator crystal. The empty silica tube at different temperatures was also measured and used for background intensity subtraction. Further data analysis included absorption, Compton scattering, and polarization corrections using standard procedures41 giving the total X-ray structure factor of $S_Q(Q)$.$42,43$

2.5 First-principles simulations

The DFT calculations of vibrational spectra were carried out using Gaussian 16 software.44 The structural optimization and harmonic vibrational frequency calculations were performed for size-limited clusters: Sb$_2$H$_3$, Sb$_3$H$_4$, Sb$_2$S$_4$H$_2$ (chair and boat conformations), Sb$_2$S$_4$H$_4$, Sb$_3$S$_4$H$_4$, Sb$_2$S$_4$H$_4$, Sb$_2$S$_4$H$_2$, and Sb$_2$S$_4$. The Becke three-parameter hybrid exchange functional45 and the Lee–Yang–Parr correlation functional (B3LYP)46 were used for these simulations. The small-core relativistic pseudopotential basis set (cc-pVTZ-PP)47 and the effective core potentials48 were applied for cluster geometry optimization and Raman intensity calculations. Most of the structures were optimized using the tight convergence option ensuring adequate convergence and reliability of computed wavenumbers. An extra quadratically convergent self-consistent field procedure49 was used for difficult convergence cases. Further details of the DFT simulations are reported elsewhere.$50–52$

Modeling of the diffraction data was carried out using Born–Oppenheimer molecular dynamics implemented within the CP2K package.53 The generalized gradient approximation (GGA) and the PBE0 hybrid exchange–correlation functional combining the exact Hartree–Fock and DFT approaches were used, providing better agreement with experiment.$54–59$ The Grimme dispersion corrections D3BJ60 were also employed, improving first-principles molecular dynamics (FPMD) results for chalcogenide systems.$61,62$ The applied FPMD technique was similar to previous reports.$14,63$ The initial atomic configurations for vitreous Sb$_2$S$_3$ were created and optimized using the RMC\textsubscript{POT++}44 code against the experimental $S_Q(Q)$. The size of the cubic simulation box, containing 200 atoms (80 Sb and 120 S), was chosen to match the experimental density. Further optimization was carried out using DFT, applying the molecularly optimized correlation consistent polarized triple-zeta valence basis set along with the norm-conserving relativistic Goedecker–Teter–Hutter-type pseudopotentials.65 FPMD simulations were performed using a canonical NVT ensemble with a Nosé–Hoover$66,67$ thermostat. The simulation boxes were heated from 300 K to 900 K using 100 K steps for 20–25 ps each. At 900 K (above melting), the systems were equilibrated for 70 ps and cooled down to 300 K using the same temperature steps but with a longer simulation time (25–45 ps). Final equilibration and data collection at 300 K were performed for 59 ps. Additional simulations were carried out between 850 and 1150 K (step 100 K for 40–50 ps each) consistent with the experimental data. The connectivity and ring statistics were analyzed using the R. I. N. G. S. package68 and a modified connectivity program.69 The pyMolDyn code70 applying the Dirichlet–Voronoi tessellation was used for the calculation of microscopic voids and cavities.

3. Results and discussion

3.1 Glass-forming, thermal and electric properties

Glassy antimony sesquisulfide was reported to be a difficult material to vitrify.27 Nevertheless, the applied splat-quenching technique56 in thin-walled silica capillaries allows fully vitreous small droplets of g-Sb$_2$S$_3$ to be obtained. Typical DSC traces for glassy Sb$_2$S$_3$ and canonical g-As$_2$S$_3$ are shown in Fig. 1. The two end-members are consistent with the reported thermal properties for (Sb$_2$S$_3$)$_{1-x}$(As$_2$S$_3$)$_{x}$ pseudo-binaries, $x \leq 0.9$.$71–73$ The glass transition temperature T_g monotonically increases with x from 472 K ($x = 0$) to 492 K ($x = 1$), the exothermic crystallization feature emerges above $x = 0.5$, grows and shifts toward lower T, emphasizing the increasing crystallization ability.

The conductivity temperature dependences $\sigma(T)$ for glassy and crystalline (this work), and molten74 Sb$_2$S$_3$ are shown in Fig. 2 using an Arrhenius plot:

$$\sigma(T) = \sigma_0 \exp(-E_a/k_BT),$$

where σ_0 is the pre-exponential factor, E_a is the conductivity activation energy, and k_B and T have their usual meaning. We note a significant electrical contrast between glassy and crystalline samples, ≈ 4.5 orders of magnitude at room temperature with the corresponding difference in activation energy, $E_a^{\text{glass}} = 0.733$ eV but $E_a^{\text{cryst}} = 1.009$ eV. The conductivity increases on melting by three orders of magnitude compared to the extrapolated glass value, while the activation energy drops nearly by a factor of 2. The pre-exponential factor appears to be very similar for all three Sb$_2$S$_3$ phases, $400 < \sigma_0 < 800 \text{ S cm}^{-1}$, and indicates a conductivity mechanism over extended (delocalized) electron states.75 The obtained results are consistent with the reported values of conductivity parameters and optical bandgap E_g for bulk crystalline samples and amorphous or crystalline thin films, $1.5 \leq E_g (\text{c-Sb}_2\text{S}_3) \leq 1.8$ eV and $2.0 \leq E_g$.
and liquid L-Sb_2S_3. The inserts show g-Sb_2S_3 and c-Sb_2S_3.

An insufficiently rapid quenching rate or wrong starting temperature for splat-cooling yields a nanocrystalline alloy, which

is slightly different from the stable orthorhombic polymorph, space group $Pnma$. The observed Bragg peaks mostly correspond to orthorhombic antimony sesquisulfide, but we should note slight deviations of the peak positions and their different amplitudes compared to the reference compound (Fig. 3(a)). Besides, a non-negligible amorphous fraction is also present and possibly some traces of monoclinic high-T Sb_2S_3 polymorph, which is metastable at room temperature.

The X-ray total correlation function $T_X(r)$ of nanocrystalline Sb_2S_3, Fig. 3(d), obtained by the usual Fourier transform of the structure factor $S_d(Q)$, Fig. 3(b),

$$T_X(r) = 4\pi \rho_0 r + \frac{2}{a J_0} \int Q[S_d(Q) - 1] \sin QrM(Q)dQ. \tag{3}$$

where $M(Q)$ is a modification function and ρ_0 is the experimental number density, confirms characteristic differences between nanocrystalline and orthorhombic antimony sesquisulfides. The latter is formed by infinite quasi one-dimensional (1D) $(Sb_4S_6)_{\infty}$ ribbons oriented parallel to the b axis, Fig. 3(c). The inner $Sb(n)$ atoms have 5 sulfur neighbors forming a distorted square pyramid with $Sb(n)$ species located 0.17 Å below the basal plan of the pyramid. The outer $Sb(j)$ counterparts reside at the apex of trigonal Sb_3 units connected by two-fold sulfur at the ribbon periphery and three-fold sulfur toward $Sb(a)$ and the ribbon interior. The average intra-ribbon antimony coordination appears to be $\langle N_{Sb-S}^{\text{intra}} \rangle = 4$ while their sulfur neighbors have $\langle N_{Sb-S}^{\text{sulf}} \rangle = 2.67$. The $Sb(n)$-S nearest neighbor (NN) distances reveal a strong Peierls distortion, $r_{Sb(n)-S}^{\text{FF}} = 2.70 \pm 0.16$ Å, while the intra-ribbon contacts for trigonal $Sb(j)$ are uniform, $r_{Sb(j)-S}^{\text{FF}} = 2.53 \pm 0.01$ Å. The 1D-$(Sb_4S_6)_{\infty}$ entities are held together by rather strong inter-ribbon forces forming puckered sheets within the (a,c) plane. The shortest Sb-S inter-ribbon distances, $3.167 \leq r_{Sb-S}^{\text{inter}} \leq 3.642$ Å, are smaller than the sum of the van der Waals radii, $r_{Sb}^{\text{vdW}} = 1.8$ Å and $r_{S}^{\text{vdW}} = 2.2$ Å, but larger than the Sb-S intra-ribbon NN contacts, $2.455 \leq r_{Sb-S}^{\text{intra}} \leq 2.854$ Å. The intra- and inter-ribbon separations are well distinguished using the $T_{\text{XSD}}(r)$ partials for both orthorhombic and nanocrystalline Sb_2S_3, Fig. 3(d and e). The main difference between the two forms resides in the inter-ribbon connectivity. On average, each antimony in orthorhombic Sb_2S_3 has three short Sb-S inter-ribbon contacts, $\langle N_{Sb-S}^{\text{inter}} \rangle = 3$, while the connectivity in nc-Sb_2S_3 is reduced, $\langle N_{Sb-S}^{\text{inter}} \rangle \approx 1.5$. In other words, the 1D-$(Sb_4S_6)_{\infty}$ ribbons are becoming more isolated in the nanocrystalline lattice.

3.3 Raman spectroscopy and DFT modeling

Typical Raman spectra of glassy Sb_2S_3 as a function of temperature are shown in Fig. 4(b). The temperatures between $293 \leq T \leq 423$ K correspond to the solid glass, Fig. 4(a). Above $T_g = 492$ K, the supercooled liquid rapidly crystallizes at 523 K, Fig. 4(c), just in the vicinity of the DSC crystallization onset. Cooling down the crystallized sample, one obtains a typical spectrum of orthorhombic Sb_2S_3, characterized by multiple Raman-active modes $T = 10A_g + 5B_{1g} + 10B_{2g} + 5B_{3g}$, expected...
In liquid Sb$_2$S$_3$ can be a transient phenomenon. Previously, however, note that the appearance of intense S–S stretching contains both Sb–S bending and Sb–Sb stretching. We should be reminiscent of its glassy counterpart, Fig. 4(d), except a broad Sb–Sb stretching at roughly scaling with the molecular mass ratio, $\frac{\Delta M}{\Delta Sb}$, systematically reveal overestimated Sb–S stretching frequencies, centered at $320 \leq \langle \nu_{Sb-S} \rangle \leq 350 \text{ cm}^{-1}$, Fig. S4 (ESI†). Reasonable results yield complicated clusters Sb$_{12}$S$_{18}$H$_2$ and Sb$_{12}$S$_{16}$, originating from the modified ribbons in orthorhombic Sb$_2$S$_3$ but with exclusively trigonal antimony coordination, Fig. 5. Both symmetric and asymmetric stretching frequencies, as well as low-frequency bending and deformation modes below 190 cm^{-1} are well reproduced by these clusters. As expected, the Sb–S stretching in Sb$_{12}$S$_{16}$ is overlapping with the Sb–S bending and deformation making it impossible to distinguish these vibrations experimentally. In contrast, the S–S stretching at 490 cm^{-1} is clearly visible in Raman scattering, Fig. 4(b and d), and confirmed by DFT simulations, Fig. S4 (ESI†, cluster Sb$_2$S$_6$H$_4$). The geometry of DFT-optimized size-limited clusters is consistent with crystalline references and glassy Sb$_2$S$_3$, Fig. S5 and S6 (ESI†), specifically that of Sb$_{12}$S$_{18}$H$_2$ and Sb$_{12}$S$_{16}$.

Raman spectroscopy measurements show that the glass structure hardly evolves at $T \leq T_g$; a negligible red shift of the Sb–S stretching envelope can only be observed, Fig. 4(b). The rapid crystallization above T_g seems to be related to the presence of modified structural motifs originating from the (Sb$_n$S$_x$)$_{\infty}$ entities, although the Sb(n) species lose their 5-fold coordination in the glass. Further insight into the atomic glass

Fig. 3 Nanocrystalline (nc) and orthorhombic Sb$_2$S$_3$. (a) Bragg peaks of the nanocrystalline sample in comparison with the orthorhombic polymorph, space group Pnma; (b) X-ray structure factor $S(Q)$ over the entire Q-range; (c) (Sb$_4$S$_6$)$_{\infty}$ ribbons in orthorhombic Sb$_2$S$_3$; left, atomic arrangements using projection on the (a,c) plane, right, a single ribbon oriented parallel to the b axis; (d) X-ray total correlation function $T_r(r)$ of nc-Sb$_2$S$_3$; (e) Sb–S (magenta), Sb–Sb (light brown) and S–S (yellow) $T_r(r)$ partials for orthorhombic Sb$_2$S$_3$. The dashed red lines in (c), left panel, show the shortest inter-ribbon Sb–S distances (3.167–3.642 Å). The black dashed lines in (d and e) separate intra- (2.455–2.854 Å) and inter-ribbon Sb–S nearest contacts.
structure yields high-energy X-ray diffraction supported by first-principles molecular dynamics (FPMD).

3.4 High-energy X-ray diffraction over the extended temperature range

Typical X-ray structure factors $S_X(Q)$ for glassy and normal ($T \geq 843$ K) liquids are shown in Fig. 6(a and b). The $S_X(Q)$s exhibit well-defined oscillations up to 30 Å^{-1}, ensuring high-resolution in the r-space. The oscillations amplitude decreases with increasing temperature but more significant changes are observed at low $Q < 5 \text{ Å}^{-1}$.

Except for the distinct first sharp diffraction peak (FSDP) at $Q_0 = 1.22 \text{ Å}^{-1}$, which is typical for a large majority of chalcogenide glasses (see, for example, Fig. S7 (ESI†) for glassy and liquid As$_2$S$_3$), vitreous Sb$_2$S$_3$ reveals an additional low-Q feature at $Q_{Sb} = 1.75 \text{ Å}^{-1}$, specific for antimony, which emerges and increases in glassy (Sb$_2$S$_3$)$_x$(As$_2$S$_3$)$_{1-x}$ pseudo-binaries with increasing x. Later, we will see that the 1.75 Å$^{-1}$ feature corresponds to the principle peak PPSb in the Sb-Sb partial structure factor $S_{\text{SbSb}}(Q)$, diverging from that in the $S_{\text{SS}}(Q)$ partial at $Q_S = 2.24 \text{ Å}^{-1}$ because of a large difference in atomic size of antimony and sulfur, whose covalent radii are $r_{\text{Sb}} = 1.45 \text{ Å}$ and $r_S = 1.03 \text{ Å}$. The FSDP and PPSb are more visible after removing the background underneath the low-Q features using the subtraction procedure. The FSDP amplitude $A_0(Q_0)$ slightly decreases in intensity with increasing T and shifts to lower Q, Fig. 6(c). In contrast,
changes in the PP$_{Sb}$ amplitude are more significant (especially between the solid glass and liquids) and similar to other peaks and distant oscillations, Fig. 6(a and b). In addition, these temperature changes are characteristic for chalcogenide glasses and liquids, while the FSDP behaves differently. In particular, the FSDP position $Q_{0}(T)$ for Sb$_2$S$_3$ follows the thermal expansion, $Q_{0}(T) \propto \rho(T)^{1/3}$, where $\rho(T)$ is the macroscopic number density.

The X-ray total correlation functions $T_{S}(r)$ for glassy and liquid Sb$_2$S$_3$, obtained by the usual Fourier transform of $S_{X}(Q)$, are shown in Fig. 7. The first peak at 2.484 ± 0.004 Å corresponds to Sb–S nearest neighbors followed by a strongly asymmetric second neighbor (2nd N) peak at 3.83 ± 0.02 Å with additional unresolved correlations between 2.8 and 3.4 Å. The third distinct feature at 5.7 Å seems to be related to a center-center distance between the Sb–S entities. All peaks become less intense and broader with increasing temperature, also leading to a stronger overlapping between NN and second neighbor correlations. More distant broad peaks at 7.3 and 9 Å appear to be hardly visible in L-Sb$_2$S$_3$. Gaussian fitting of the NN and 2nd N correlations is inappropriate because of the peak asymmetry. Typical fitting with asymmetric functions is shown in Fig. 7(a) and yields reasonable results. The average antimony coordination $N_{\text{Sb-X}}$, where X = S and/or Sb, was found to be trigonal and consisting of two contributions, $N_{\text{Sb-S}} = N_{\text{Sb-S}} + N_{\text{Sb-Sb}} = 2.90(5) + 0.10(5)$ (Fig. 7(c), and see also Table 1). The Sb–S and Sb–Sb NN distances slightly increase with temperature; both interatomic separations, $r_{\text{Sb-S}} = 2.484 \pm 0.004$ Å and $r_{\text{Sb-Sb}} = 2.92 \pm 0.02$ Å, are consistent with crystalline and amorphous references for trigonal antimony sulfides and elemental Sb.$^{16-18,93,98}$ Typical broadening of the Sb–S NN feature as a function of temperature is shown in Fig. 7(f). Both supercooled and normal liquids Sb$_2$S$_3$ exhibit a monotonic increase of $w_{\text{Sb-S}}(T)$.

3.5 First-principles molecular dynamics modeling of glassy and liquid Sb$_2$S$_3$

The derived FPMD interference functions $Q[S_{X}(Q) - 1]$ and pair-distribution functions $g_{ij}(r)$ for the two extremes in experimental series at 300 and 1150 K are shown in Fig. 8. As reported earlier,$^{56-59}$ the FPMD with hybrid functional PBE0 yields good agreement with experimental data for chalcogenide systems. The FPMD replicas in Q-space reproduce well both the positions and amplitudes of oscillations for $Q[S_{X}(Q) - 1]$, Fig. 8(a,b). As a result, the derived interatomic distances in r-space are also consistent with the diffraction results, Fig. 8(c,d). In contrast, FPMD modeling with the standard functional PBE suffers from over- or underestimated correlations in Q- and r-space as shown in Fig. S8 (ESI†).

The partial structure factors $S_{ij}(Q)$ and pair-distribution functions $g_{ij}(r)$ are revealed in Fig. 9(a and b). We note divergent positions of PP$_{Sb}$ and PP$_{S}$ for the $S_{\text{SbSb}}(Q)$ and $S_{\text{SS}}(Q)$ partials, as well as a negative amplitude of $S_{\text{SbSb}}(Q)$ in this range, explaining the appearance of an additional low-Q feature at $Q_{\text{Sb}} = 1.75$ Å$^{-1}$.
in the X-ray structure factor discussed above, Fig. 6(a–c). Astonishingly, the FSDP origin appears to be related to Sb–S correlations instead of the expected Sb–Sb counterparts. We note, however, that in glassy As2S3, the FSDP origin changes from As–As (major contribution) and As–S (minor component) at ambient pressure to mostly As–S correlations above 4 GPa, Fig. S9 (ESI†).

The partial pair-distributions \(g_{ij}(r) \) are consistent with experimental findings. The Sb–S NN peak at 2.477 ± 0.004 Å exhibits an asymmetric shape, increasing with temperature, Fig. S10 (ESI†). The fitting with asymmetric functions yields very similar results to the experimental data, \(N_{\text{Sb-S}} = 2.91 ± 0.03 \), and the antimony local trigonal coordination is completed by the Sb–Sb nearest neighbors at 2.903 Å, \(N_{\text{Sb-Sb}} = 0.12 ± 0.01 \), Table 1. The Sb–S second neighbors are located rather close to the Sb–S NN correlations and overlap significantly with increasing temperature despite the shift of \(r_{\text{2nd-Sb-S}} \) to higher distances from 3.36 Å (300 K) to 3.51 Å (1150 K), mostly because of a strong broadening of the NN and 2nd N correlations, Fig. S10 (ESI†).

The S–S correlation functions are consistent with experimental findings. The S–S NN peak at 2.07 Å exhibits a homopolar bond, Fig. 9(b), \(N_{\text{S-S}} = 0.08 ± 0.01 \), Table 1. The Raman spectroscopy confirms this result, Fig. 4(b). Nevertheless, their concentration is too low to be observed by high-energy X-ray diffraction. In particular, Fig. 8(c and d) reveals that the S–S FPMD diffraction features are less intense compared to the experimental noise of \(g_X(r) \).

Fig. 7 High-energy X-ray diffraction data in \(r \)-space for glassy and liquid Sb2S3: (a) typical \(T_X(r) \) fitting with asymmetric functions; Sb–S and Sb–Sb nearest neighbor (NN) correlations are highlighted in cyan and light red, respectively; (b) total correlation functions \(T_X(r) \) over the temperature range 298 ≤ \(T \) ≤ 1143 K; (c) antimony local coordination number as a function of temperature; (purple squares) \(N_{\text{Sb-S}} + N_{\text{Sb-Sb}} \) (dark blue circles) \(N_{\text{Sb-S}} \); interatomic NN distances (d) Sb–Sb and (e) Sb–S as a function of \(T \); (f) temperature dependence of asymmetric peak width for Sb–S NN correlations \(w_{\text{Sb-S}} \); the solid glass and supercooled or normal liquid temperature domains are highlighted in blue and red, respectively. The dashed line in (f) is a guide to the eye. The other solid lines are a least-square fit of the experimental data.

Table 1

<table>
<thead>
<tr>
<th>Temperature (K)</th>
<th>(r_{\text{S-S}}) (Å)</th>
<th>(N_{\text{S-S}})</th>
<th>(r_{\text{Sb-S}}) (Å)</th>
<th>(N_{\text{Sb-S}})</th>
<th>(r_{\text{Sb-Sb}}) (Å)</th>
<th>(N_{\text{Sb-Sb}})</th>
</tr>
</thead>
<tbody>
<tr>
<td>298</td>
<td>2.480(6)</td>
<td>2.95(4)</td>
<td>2.93(2)</td>
<td>0.10(5)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>673</td>
<td>2.486(6)</td>
<td>2.85(4)</td>
<td>2.91(2)</td>
<td>0.13(5)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>773</td>
<td>2.486(6)</td>
<td>2.85(4)</td>
<td>2.90(2)</td>
<td>0.13(5)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>843</td>
<td>2.485(6)</td>
<td>2.93(4)</td>
<td>2.92(2)</td>
<td>0.08(5)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>943</td>
<td>2.486(6)</td>
<td>2.94(4)</td>
<td>2.93(2)</td>
<td>0.08(5)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1043</td>
<td>2.488(6)</td>
<td>2.90(4)</td>
<td>2.93(2)</td>
<td>0.10(5)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1143</td>
<td>2.487(6)</td>
<td>2.87(4)</td>
<td>2.93(2)</td>
<td>0.12(5)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>300</td>
<td>2.07</td>
<td>0.07</td>
<td>2.471</td>
<td>2.93</td>
<td>2.90</td>
<td>0.10</td>
</tr>
<tr>
<td>700</td>
<td>2.07</td>
<td>0.07</td>
<td>2.474</td>
<td>2.88</td>
<td>2.90</td>
<td>0.12</td>
</tr>
<tr>
<td>800</td>
<td>2.07</td>
<td>0.08</td>
<td>2.478</td>
<td>2.89</td>
<td>2.90</td>
<td>0.12</td>
</tr>
<tr>
<td>850</td>
<td>2.07</td>
<td>0.08</td>
<td>2.478</td>
<td>2.92</td>
<td>2.91</td>
<td>0.12</td>
</tr>
<tr>
<td>950</td>
<td>2.07</td>
<td>0.08</td>
<td>2.482</td>
<td>2.91</td>
<td>2.91</td>
<td>0.13</td>
</tr>
<tr>
<td>1050</td>
<td>2.08</td>
<td>0.08</td>
<td>2.480</td>
<td>2.95</td>
<td>2.90</td>
<td>0.13</td>
</tr>
<tr>
<td>1150</td>
<td>2.07</td>
<td>0.08</td>
<td>2.478</td>
<td>2.94</td>
<td>2.90</td>
<td>0.13</td>
</tr>
</tbody>
</table>

in glassy and liquid Sb2S3

Paper Journal of Materials Chemistry C

This article is licensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence.

View Article Online
species grow, Fig. S11 (ESI†). The number of sulfur or antimony local configurations with homopolar bonds, that is, $S(Sb_1S_1)$ instead of $S(Sb_2)$ or $Sb(S_2Sb_1)$ vs. $Sb(S_3)$ remains low at all temperatures.
The bond angle distributions $B(\theta)$ for S–Sb–S and Sb–S–Sb triplets in glassy Sb$_2$S$_3$ are plotted in Fig. 10 in comparison with two crystalline counterparts: orthorhombic and monoclinic Sb$_2$S$_3$. The geometry of Sb$_2$S$_3$ trigonal pyramids is different from that in canonical g-As$_2$S$_3$: the maximum of a broad asymmetric distribution $B_{SSbS}(\theta)$ is located at 87° opposite to 98° in arsenic sesquisulfide, ensuring a more compact local structure of g-Sb$_2$S$_3$. Roughly speaking, Sb$_2$S$_3$ pyramids can be considered as distorted defect octahedral entities, whose three missing Sb–S bonds became excessively long, and the corresponding sulfur species were transformed into the second neighbors. The above-mentioned fitting of $T_{SbS}(r)$ partials, Fig. S10 (ESI†), is consistent with this hypothesis, revealing three 2nd N correlations at \approx 3.4 Å. The remnants of octahedral geometry are also evidenced by a weak contribution at $\theta \approx 160^\circ$. The $B_{SSbS}(\theta)$ distributions in orthorhombic and monoclinic polyhedrons are rather similar to that in the glass, especially in the high-temperature $C2/c$ form, including a low-intensity component at $168 \pm 4^\circ$ of four-fold coordinated Sb(5)/Sb(6) species. The 5-fold coordinated Sb(4) atoms in orthorhombic Sb$_2$S$_3$ yield an intense contribution at $\theta \approx 171^\circ$.

The connectivity of trigonal pyramids, reflected by $B_{SSbS}(\theta)$ peaked at 97°, also appeared to be in favor of a more compact structure of glassy Sb$_2$S$_3$ compared to canonical g-As$_2$S$_3$. The $B_{ASbS}(\theta)$ distribution in the latter has a maximum at 105°. Crystalline Sb$_2$S$_3$ counterparts exhibit similar connectivities to glassy antimony sesquisulfide, slightly less evident for the orthorhombic polymorph.

As expected, the supercooled and normal Sb$_2$S$_3$ liquids are characterized by even more distorted Sb–S polyhedra and polyhedral connectivities. Both $B_{SSbS}(\theta)$ and $B_{SSbS}(\theta)$ distributions become broader and less symmetric with increasing temperature, Fig. S12 (ESI†).

The connectivity analysis shows that 96% of Sb and S are forming a single connected fragment. The homopolar bonds in the glass network are mostly related to few Sb–Sb and S–S dimers. Typical structural fragments in g-Sb$_2$S$_3$ are shown in Fig. 11(a). We note a certain similarity in the intermediate range order and ring statistics with orthorhombic and monoclinic polymorphs, Fig. 11, expected from the bond angle distributions. The orthorhombic crystal has ABAB squares (A: Sb; B: S) and six-membered rings Sb$_3$S$_3$; the monoclinic form, in addition to 6-fold entities, exhibits also big Sb$_{11}$S$_{11}$ rings, Fig. 11(g). Glassy and liquid Sb$_2$S$_3$ reveal a large variety of even- and odd-membered rings Sb$_p$S$_q$, $3 \leq p + q \leq 30$, related to chemical and topological disorder. Nevertheless, the most populated entities have size $p + q = 4$ and 6. The big rings, showing a broad distribution peaked at $p + q = 22$, become progressively unstable with increasing temperature. Their derived population $K(p + q)$ appears to be comparable with temporal fluctuations, reflected by the $K(p + q)$ uncertainty. At the highest temperature (1150 K), the population of ABAB squares exceeds any other $K(p + q)$, at least by a factor of 4, Fig. 11(b).

The ring statistics in g-As$_2$S$_3$ is rather similar to that in glassy antimony sesquisulfide. As it was reported previously, the 12-membered rings As$_6$S$_6$, the only rings in monoclinic orpiment and triclinic anorpiment As$_3$S$_3$ are absent in glassy arsenic sulfide, Fig. 11(h).

More dense packing of glassy antimony sesquisulfide, evidenced by bond angle distributions $B_{SSbS}(\theta)$ and $B_{SSbS}(\theta)$, ...
suggests less microscopic voids and cavities in the glass network compared to \(g-\text{As}_2\text{S}_3 \). The Dirichlet–Voronoi tessellation allows the cavity fraction \(V_c \), normalized to the volume of the FPMD simulation box, \(0 \leq V_c \leq 1 \), to be computed. The results are given in Fig. 12 for the two sesquisulfides. As expected, the \(V_c \) in \(g-\text{Sb}_2\text{S}_3 \) is by a factor of two smaller than that of its arsenic counterpart, 21 ± 1% vs. 44 ± 4%, respectively. The average size distribution of microscopic voids is rather similar in the two cases, 0.5 ≤ \(r_c \) ≤ 4 Å, where \(r_c \) is the cavity radius, Fig. 12(a,b), although the average \(\langle r_c \rangle \) is slightly smaller in glassy \(\text{As}_2\text{S}_3 \).

The partial pair-distribution functions \(g_{\text{AsS}}(r) \) and \(g_{\text{SbS}}(r) \) for \(g-\text{As}_2\text{S}_3/g-\text{Sb}_2\text{S}_3 \) yield additional evidence for a more compact or densified network in vitreous sulfides with increasing atomic number. Plotted on the normalized \(r/r_0 \) scale, where \(r_0 \) is the As–S or Sb–S NN distance, the \(g_{\text{AsS}}(r) \) shows a remarkable shift of the Sb–S second neighbors to shorter distances, approaching the NN shell, Fig. S13(a) in the ESL† A similar more compact network compared to \(g-\text{As}_2\text{S}_3 \) under ambient conditions can be reproduced for glassy \(\text{As}_2\text{S}_3 \) under high pressure, e.g. in a diamond anvil cell at 6.3 GPa, Fig. S13(b), ESL†.

In summary, glassy and liquid antimony sesquisulfide has distinctly different structural features compared to orthorhombic \(\text{Sb}_2\text{S}_3 \). First, the antimony short range order in the crystal has a bimodal site distribution: 5-fold coordinated Sb(Ⅱ) species with a strong Peierls distortion and regular trigonal Sb(Ⅰ) entities. The Sb–S bonding asymmetry is absent in glassy and liquid polymorphs, characterized by a distorted antimony trigonal environment and shorter average \(\langle r_{\text{NN}}^{\text{Sb–S}} \rangle \) distances,
2.64 ± 0.15 Å (c-Sb₂S₃, Pnma) vs. 2.48 ± 0.01 Å (g- and L-Sb₂S₃). This difference is clearly seen by ¹²¹Sb-Mössbauer spectroscopy,¹⁰²,¹⁰³ which is very sensitive to the local antimony environment.

Second, the intermediate range order in orthorhombic and glassy Sb₂S₃ is also different. The crystal structure is composed of infinite 1D-(Sb₄S₆)N ribbons with rather strong inter-ribbon interactions, while the glass network has a 2D layered structure, roughly reminiscent of that in canonical As₂S₃ but with remarkable differences. We should note comparable glass transition temperatures for the two vitreous alloys, Fig. 1, similar shape of the Raman spectra, Fig. 4, identical pnictide and sulfur local coordination and resembling ring statistics. However, the topology of antimony defect octahedral sites SbS₃, evidenced by bond angle distributions, is closer to crystalline Sb₂S₃ forms than to vitreous As₂S₃.

3.6 Electronic structure and atomic dynamics in glassy and liquid Sb₂S₃

The total electronic density of states (eDOS), calculated from the Kohn–Sham eigenvalue spectra, is shown in Fig. 13. The valence band (VB) consists of three sub-bands between the Fermi energy E_F and -20 eV, as in a large majority of crystalline and glassy chalcogenides. The upper asymmetric part, mostly involving sulfur and antimony p-electron populations, shows a predominant contribution at -2.8 eV (g-Sb₂S₃ at 300 K) or -2.3 eV (L-Sb₂S₃ at 1050 K), related to S 3p lone pairs. The bonding states at lower energies consist of Sb 5p, 5d and 5s together with S 3p orbitals. The middle sub-band centered at -10.7 eV (g-Sb₂S₃) or -10.0 eV (L-Sb₂S₃) has predominantly the s-character as well as the low-energy part at approximately -15 eV. The bandgap for glassy ($E_g = 2.28$ eV) and liquid ($E_g = 1.06$ eV) antimony sesquisulfide are consistent with the reported optical data¹⁷⁶–⁷⁹ and electrical measurements (Fig. 2).

The derived eDOS is in good agreement with experimental data¹⁰⁷ and previously reported simulation results.²²,¹⁰⁶,¹⁰⁸–¹¹⁰ We should however note that simulations with the standard functionals yield a strongly underestimated bandgap (roughly by a factor of 2) in addition to insufficient agreement with the nearest and second neighbor correlations (see also Fig. S8, ESI†).

The inverse participation ratio (IPR),¹³⁵,¹¹¹ Fig. 13(a and d), characterizes the degree of localization of a single-particle Kohn–Sham eigenfunction $\psi(r)$

$$\text{IPR} = \frac{\int |\psi(\mathbf{r})|^4 ~d\mathbf{r}}{\left(\int |\psi(\mathbf{r})|^2 ~d\mathbf{r}\right)^2} \quad (4)$$

A small IPR value ($\ll N^{-1}$, where N is the number of atoms in the simulation box) corresponds to an extended (delocalized)

![Fig. 12 Void statistics: characteristic cavity radii in glassy (a) As₂S₃ and (b) Sb₂S₃; microscopic voids in (c) g-As₂S₃ and (d) g-Sb₂S₃.](image-url)
wave function, while a large IPR (limIPR → 1) indicates a strong localization around a specific covalent bond. Similar to previously reported results and theoretical predictions, the electron states in glassy and liquid Sb$_2$S$_3$ are mostly localized at the band tails (that is, the top of the valence and the bottom of the conduction bands) and in lower-lying bonding states. The remaining electron states in the vicinity of the bandgap are delocalized.

Benchmark telluride PCMs are characterized by low viscosity and high fragility of the melt ensuring fast atomic mobility at elevated temperature, which enables rapid crystallization within the nanosecond range, and a good retention of the amorphous phase in the vicinity of T_g and at lower T. The simulated dynamics in Sb$_2$S$_3$ reveals fast diffusion at high temperatures and a sudden decrease of diffusivity approaching the glass transition.

Typical Sb and S mean square displacements $\langle r^2(t) \rangle$ are shown in Fig. 14(a and b)

$$\langle r^2(t) \rangle = \left\langle \frac{1}{N_i} \sum_{i=1}^{N_i} [r_i(t) - r_i(0)]^2 \right\rangle,$$

where $r_i(0)$ and $r_i(t)$ are the positions of particle i for the initial time and time t, respectively, N_i is the total number of particles i in the simulation box, and the angle brackets represent the average over the initial times. Below 30 fs, a ballistic regime is observed, mostly depending on temperature T and atomic mass m_i^{117}

$$\langle r^2(t) \rangle \propto (k_B T/m_i)^2,$$

where k_B is the Boltzmann constant. On a log–log scale, the slope $s = 2$ is indicative of this regime, Fig. 14(b).

Above 5 ps, a diffusive motion is visible

$$\langle r^2(t) \rangle \propto D_i t,$$

where D_i is the average diffusion coefficient of particles i_i approaching the slope $s = 1$. The diffusion coefficients D_{Sb} and D_S were calculated using the Einstein equation

$$D_i = \frac{1}{6t} \lim_{t \to \infty} \frac{\partial \langle r_i^2(t) \rangle}{\partial t}.$$

The derived $D_{Sb}(T)$ and $D_S(T)$ are shown in Fig. S14 (ESI†), plotted on the Arrhenius scale and following thermally activated motion with temperature-dependent activation energy, 0.37 $\leq E_a \leq$ 1.02 eV in the vicinity of 1150 and 850 K, respectively.

Fig. 13 Electronic properties of glassy and liquid Sb$_2$S$_3$: solid glass at 300 K: (a) the electronic density of states (eDOS) and the inverse participation ratio (IPR, red spikes), the projected eDOS (pDOS) on (b) antimony s (blue), p (violet), and d (magenta), and (c) sulfur s (green) and p (yellow) pseudo-wave functions; normal liquid at 1050 K: (d) eDOS and IPR, (e) antimony pDOS, and (f) sulfur pDOS. The valence band (VB) is highlighted in dark blue, the conduction band (CB) in light blue. See the text for further details.
The Stokes–Einstein relationship was used to calculate the FPMD viscosity

$$\eta_{\text{FPMD}}(T) = \frac{k_B T}{6\pi D_{\text{eff}}(T)r_1}$$ \hspace{1cm} (9)$$

where the effective atomic diffusion coefficient is $D_{\text{eff}}(T) = 0.4D_0 + 0.6D_0$, and the effective temperature-dependent hydrodynamic radius r_1 was determined using a Wigner–Seitz approach.

The derived viscosity is shown using an Angell plot, log η vs. $T^* = T/T_g$, Fig. 14(c), together with experimental viscosity data of different research groups for canonical As_2S_3 and Sb_2S_3. 116–123

The antimony sesquisulfide viscosity was obtained by extrapolation of the (GeS_2)$_2$(Sb_2S_3)$_{1-x}$ data, 0.1 $\leq x \leq 0.9$. At low $x \leq 0.5$, the log $\eta(T,x)$ composition dependence is changing smoothly, enabling a reliable extrapolation of log $\eta(T,x)$ to $x = 0$.

Both viscosities, $\eta(\text{As}_2\text{S}_3)$ and $\eta(\text{Sb}_2\text{S}_3)$, follow the Mauro–Yue–Ellison–Gupta–Allan (MYEGA) relationship 124 but with different fragilities

$$\log \eta(T) = \log \eta_0 + \left[\log \eta(T^*_g) - \log \eta_0 \right] \frac{T_g}{T}$$

$$\times \exp \left[\frac{m}{\log \eta(T^*_g) - \log \eta_0} \left(\frac{T_g}{T} - 1 \right) \right],$$ \hspace{1cm} (10)$$

where the fragility index $m = \frac{\log \eta(T_g)}{\log \eta(T^*_g) - \log \eta_0}$ and $\eta(T)_g = 10^{13}$ Pa s are the viscosity values at $T = \infty$ and T_g, respectively. The $m(\text{As}_2\text{S}_3) = 26$ is typical for canonical chalcogenide glasses since both the experimental conductivity (Fig. 2) and FPMD simulations (Fig. 13) reveal a semi-conducting behavior over the studied temperature range.

Nevertheless, we estimate that a semiconductor–metal (SC–M) transition is taking place between 1250 and 1550 K in comparison with $T_{SC-M} = 1600 \pm 150$ K for L-As_2S_3. 144,128 (Fig. S15 and related details in the ESI†). We also note a lower SC–M transition temperature, 900 K $\leq T_{SC-M} \leq 1100$ K, for liquid antimony selenides. 114,129 In addition, anionic (Se) or cationic (Bi) substitution can be used for bandgap engineering, since $E_g(\text{Sb}_2\text{Se}_3) = 1.0–1.3$ eV 124,130 and $E_g(\text{Bi}_2\text{Se}_3) = 1.2–1.4$ eV 131,132,135 remaining within the wider gap materials compared to tellurides, $E_g(\text{Sb}_2\text{Te}_3) = 0.5$ eV. 133 Isomorphic mixed crystalline $\text{Sb}_2(\text{S,Se})_3$ thin films were already studied for solar photovoltaics and exhibit the highest power conversion efficiency between Sb_2X_3-based tandem solar cells. 134,135 The anionic substitution is expected to be equally beneficial in smart materials.
reprogrammable photonics for both SET and RESET logic states by tuning the bandgap within telecommunication wavelengths and improving the optical contrast, switching rate and energy efficiency. The cationic (Bi) doping is also started to be used in photovoltaics and seems to yield promising results.136

4. Concluding remarks

Summarizing the above observations, we can emphasize favorable features in the atomic structure and dynamics of vitreous and liquid Sb2S3 as a promising next-generation PCM for integrated smart photonics from the visible to telecom window. A high optical and electric contrast between the SET and RESET logic states in antimony sesquisulfide is based on a different short and intermediate range order in orthorhombic and amorphous Sb2S3. The orthorhombic polymorph is composed of quasi 1D-(Sb4S6)N ribbons with a strong asymmetry of the Sb–S nearest neighbor distances for three-fold and 5-fold antimony species (2.46 ≤ rNN(Sb–S) ≤ 2.85 Å) and significant inter-ribbon interactions. Glassy Sb2S3 reveals a 2D-disordered network built from defect octahedral entities Sb3 (rNN(Sb–S) = 2.48 ± 0.01 Å), whose three missing Sb–S bonds became excessively long, and the respective sulfur atoms were transformed into the second neighbors at ≈3.4 Å. A more compact network structure of g-Sb2S3 compared to canonical As2S3, evidenced by the bond angle distributions, shorter Sb–S second neighbor distances and a lower population of microscopic voids and cavities, appears to be a good compromise between the stability of the amorphous state and the ability of fast crystallization. An additional positive feature is related to the intermediate range structure of liquid Sb2S3, predominantly composed of ABAB squares, which are speeding up the crystallization phenomena. Another favorable aspect for the rapid SET-RESET transition is an enhanced fragility of liquid Sb2S3. The fragility index m = 59 is approaching those of the benchmark telluride PCMs and enables fast crystallization processes at elevated temperatures and simultaneously a remarkable slowdown in the vicinity of Tg, ensuring good retention of the amorphous phase. Furthermore, anionic (Se) and/or cationic (Bi) substitution may be used to decrease the temperature of a SC-M transition, thus improving the dynamics of the SET-RESET change, and allowing bandgap engineering equally important for photonics and photovoltaics.

Conflicts of interest

There are no conflicts to declare.

Acknowledgements

This work was supported by the Région Hauts de France and the Ministère de l’Enseignement Supérieur et de la Recherche (CPER Climibio), as well as by the European Fund for Regional Economic Development. Work at the Advanced Photon Source, Argonne National Laboratory, was supported in part by the Office of Basic Energy Sciences, US Department of Energy, under Contract No. DE-AC02-06CH1135. The experiments at SPring-8 were approved by the Japan Synchrotron Radiation Research Institute (proposal No. 2017B1771 and 2022B1471) and supported by the Centre for Advanced Science and Technology (Japan) as well as by JSPS KAKENHI, Japan (Grant Number 20H02430). MKh work at ILIT RAS was supported by state assignment FSRC “Crystallography and Photonics”, Russian Academy of Sciences. This work was granted access to the HPC resources of IDRIS (France) under the allocation 2022-A0130910639 made by Grand Equipement National de Calcul Intensif (GENCI) and to use the CALCULCO computing platform, supported by Service Commun du Système d’Information de l’Université du Littoral Côte d’Opale (SCoSI/ULCO). The FPMD simulations were also carried out using the equipment of the shared research facilities of HPC computing resources at Lomonosov Moscow State University.

References

7 L. Cao, X. Gao, B. Zhang, X. Ou, J. Zhang and W.-B. Luo, Bimetallic sulfide Sb2S3@FeS2 hollow nanorods as high-performance anode materials for sodium-ion batteries, ACS Nano, 2020, 14, 3610–3620.
9 R. Chen, X. Lu, Q. He, M. Yao, T. Yao, A. Gao, S. Ding, Y. Cheng and H. Wang, Sb2S3 nanorod hierarchies enabling homogeneous sodium deposition for dendrite-free

76 L. Guo, B. Zhang, S. Li, Q. Zhang, M. Buettner, L. Li, X. Qian and F. Yan, Scalable and efficient Sb₂S₃ thin-film solar cells fabricated by close space sublimation, *APL Mater.*, 2019, **7**, 041105.

