Journal of Materials Chemistry B ## CORRECTION View Article Online View Journal | View Issue Cite this: *J. Mater. Chem. B*, 2023, **11**, 5922 ## Correction: Tumor-targeting, enzyme-activated nanoparticles for simultaneous cancer diagnosis and photodynamic therapy Huaxia Shi,^a Wucheng Sun,^a Changbing Liu,^a Guiying Gu,^b Bo Ma,^b Weili Si,^c Nina Fu,^a Qi Zhang,^b Wei Huang^{ac} and Xiaochen Dong^c DOI: 10.1039/d3tb90090h rsc.li/materials-b Correction for 'Tumor-targeting, enzyme-activated nanoparticles for simultaneous cancer diagnosis and photodynamic therapy' by Huaxia Shi *et al.*, *J. Mater. Chem. B*, 2016, **4**, 113–120, https://doi.org/10.1039/C5TB02041G. The authors regret that due to a figure compilation error, the representative tumor image on day 7 for the DBHA-NPs without light group was incorrect in Fig. 6b. The corrected version of Fig. 6 is provided below. Fig. 6 (a) Comparison of cell viabilities by MTT assay ($\lambda > 600$ nm). (b) The relationship between tumor volume and treatment time for the DBHA-NPs in the HCT-116 mouse model tumor cells *via* tail vein injection. Twenty-four mice were randomly assigned into four groups (6 mice per group), including saline with light, HA with light, DBHA-NPs without light and DBHA-NPs with light. (c) Typical photographs of tumor-bearing mice treated at different times. Note, *p < 0.05, **p < 0.01. The Royal Society of Chemistry apologises for these errors and any consequent inconvenience to authors and readers. ^a Key Laboratory for Organic Electronics & Information Displays (KLOEID), Nanjing University of Posts and Telecommunications, Nanjing 210023, China ^b School of Pharmaceutical Science, Nanjing Tech University (NanjingTech), 30 South Puzhu Road, Nanjing 211816, China. E-mail: zhangqi@njtech.edu.cn ^c Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), NanjingTech University (NanjingTech), 30 South Puzhu Road, Nanjing 211816, China. E-mail: iamxcdong@njtech.edu.cn, iamwhuang@njtech.edu.cn