

Highlighting a study on intermediate-temperature proton conductivity of $\operatorname{Li}^+/\operatorname{H}^+$ ion-exchanged material $(\operatorname{Li},H)_{3.5}\operatorname{Zn}_{0.25}\operatorname{GeO}_4$ by a group of researchers led by Dr. Toshiaki Matsui from Kyoto University.

Intermediate-temperature proton conductivity of Li⁺/H⁺ ion-exchanged material (Li,H) $_{3.5}$ Zn $_{0.25}$ GeO $_{4}$

In this study, we demonstrate the development of novel proton conductors that are operative at intermediate temperatures, especially 300-400 °C, through the simple ion-exchange method. The Li⁺/H⁺ ion-exchange was conducted for Li₁₄Zn(GeO₄)₄ in non-aqueous solutions, and the chemical formula of the resultant sample was determined as Li_{3.13}H_{0.37}Zn_{0.25}GeO₄. This material exhibited relatively high electrical conductivity of 39.0 mS cm⁻¹ and 5.5 mS cm⁻¹ at 300 °C and 200 °C, respectively, in 10% H₂O-90% N₂. Furthermore, the main charge carrier in this electrolyte was identified as a proton from the H/D isotopic exchange study.

