1. Introduction

Black phosphorus (BP) has emerged as a promising optoelectronic material against graphene and transition metal dichalcogenides (TMDs) because it simultaneously holds a direct layer-dependent bandgap,1,2 relatively high charge mobility,1,3 and large current on/off ratios.4,5 These advantages enable BP to exhibit great potential for the fabrication of advanced electronics and optoelectronics.6–7 Interfacing BP with other materials facilitates to drive exciton separation and delay charge recombination.8 The twist angle, firstly realized in graphene9 and TMDs,10 followed by BP,11 provides an additional degree of freedom to engineer the electrical properties and even the charge dynamics of the two-dimensional (2D) materials. The combination of twist and electronics spawned twistronics, which is an emerging discipline attracting a broad range of interests from chemists, physicists, and materials scientists.

Modulating the high-symmetry stacking orders of bilayer BP can spontaneously lead to the formation of different moiré patterns when the twist angles are sufficient small,12 which was theoretically predicted to be energetically favorable by about 4 meV relative to AB stacking when the twist angle is 70.53°.13 The previous studies show that the uneven distribution of interlayer distance produces localized valence band maximum (VBM) and conduction band minimum (CBM) states in twisted bilayer BP,12,14 particularly in small-enough twisted angles, which act as impurities to reduce carrier mobilities.12 Furthermore, the wavefunction overlap in the interlayer regions puzzle the relationship between interlayer coupling and distance, which are regarded as features of strengthening interactions between two layers.12,13 Experiments have demonstrated that slight blue shifts in the Raman vibrational peaks of the A1 and A2\textsubscript{g} modes are exhibited in bilayer BP due to the strong interlayer coupling,15 which results in the vanishing of electronic polarization along the vertical direction.16 This may modulate the electronic–vibrational interactions that affect the elastic and inelastic electron–phonon scattering and hence influence the charge carrier lifetime.16,17–19 The product of charge carrier lifetime and mobility equals carrier diffusion length, which plays a crucial role in determining the performance of photovoltaic devices. Higher carrier mobility and longer carrier lifetime produce larger carrier diffusion length and better device performance.
performance, such as photodetectors and photocatalysts.20,21 However, the influence of the twist angles, which affect the electronic structures and interlayer couplings, on the charge carrier lifetime and diffusion length has not been theoretically explored. This requires a combination of a time-domain simulation22,23 for the lifetimes and deformation potential theory24 for the latter. An understanding of the charge recombination and carrier diffusion length influenced by the twisted angles leads to useful and often critical insights into phonon-assisted electron dynamics and provides guidelines for material design and improvement.

To study the influence of twist angle on electron–hole recombination and transport in bilayer BP, we created AB stacking, 38.94°, and 11.54° configurations without introducing any additional strain. The twist angles significantly affect interlayer couplings and charge localizations, which manage the nonradiative electron–hole recombination. Interlayer coupling is almost linearly dependent on the interlayer distance, which is irrelevant to wavefunction overlap in the bilayer BP. The overlaps of CBM wavefunctions in the interfacial regions favor charge transport, and the overlap originates from the same sign wavefunctions of the top- and bottom-layer BP correlated with the faced P atom arrangements. Compared to AB stacking, interlayer couplings become weaker in twisted systems due to the increased interlayer distances and softened interlayer breathing modes, thereby decreasing the NACs by inhibiting the breathing motions of P atoms. In the 11.54° system, the mismatched potentials of electrons and holes in the high-symmetry stackings are responsible for charge separation on different moiré patterns, which serves to decrease NAC and nonradiative charge recombination further and favors directional charge transport. As a consequence, the charge carrier lifetimes are extended to 776 ps in the 38.94° system and 1223 ps in the 11.54° system from 160 ps in AB stacking. The electrons and holes diffusion lengths, which are associated with the modulated charge mobilities, increase by factors of 4.2 and 3.6 in the 11.54° system and 4.7 and 1.5 in the 38.94° system, compared to those in AB stacking. The prolonged charge carrier lifetime and diffusion lengths are beneficial for improving the performance of BP-based optoelectronics and photovoltaics. Our simulations establish the microscopic mechanisms for twist angle-dependent interlayer coupling, electronic structures, charge recombination dynamics, and carrier transport at the atomic level and in the time-domain.

2. Simulation details

The nonadiabatic molecular dynamics (NA-MD) simulation of the phonon-assisted nonradiative electron–hole recombination was performed using the decoherence-induced surface hopping (DISH) algorithm25 implemented within the PyXIAID code26,27 on top of time-dependent Kohn–Sham density functional theory (TD-DFT).22,23 The DISH algorithm incorporates decoherence correction in the current classical-quantum hybrid dynamics. In this approach, the electrons and nuclei are treated quantum mechanically and classically, respectively.22,23 The method has been proven robust to study photoinduced carrier dynamics for a variety of systems, including perovskites,28–30 metal oxides,31,32 and 2D materials.33–35 The detailed description of the theoretical approach can be found in previous works.26,27 The simulation details are provided in the ESL.†

3. Results and discussion

3.1 Geometric and electronic structures

Fig. 1 shows the optimized geometries of AB stacking, 38.94°, and 11.54° systems. To eliminate the size effect on the charge dynamics, the supercells of AB stacking and 38.94° were expanded to make the number of atoms same as that in the 11.54° system. The AB stacking is the most stable in energy, compared with other high-symmetry stackings.36 The twisted BPs are constructed using the coincidence-site lattice (CSL) method.35 The twist angle, θ, is defined as follows.

\[
cos \theta = \frac{(q^2 + p^2) \cos 2\varphi + q^2 - p^2}{q^2 + p^2 + (q^2 - p^2) \cos 2\varphi} (p, q \in \mathbb{Z}^*)
\]

Here, \(\varphi\) is related to lattice vectors of BP and is calculated based on \(\tan \phi = a_4/a_3 = 1.4142,\)13 where \(a_4\) and \(a_3\) are the lattice constants of primitive cell of BP. This method does not introduce additional strain, which notably affects the bandgaps of BP.37 Generally, larger \(p\) and \(q\) values generate smaller twist

![Fig. 1. Geometries of bilayer BP with (a) AB stacking, (b) 38.94°, and (c) 11.54° twist angles. The 11.54° twist angle system forms obvious moiré patterns, which are constituted by four high-symmetry patterns, as shown in (d) with a Moiré pattern indicator. The images were created by VESTA.40](image-url)
angles and larger superlattices (Fig. S1†). To limit the number of atoms, the twisted models are constructed by varying q with a fixed $p = 1.$ Both the AB stacking (Fig. 1a) and 38.94° (Fig. 1b) systems do not form moiré patterns, which is formed in the 11.54° system due to the high-symmetry patterns of AB, AA, AB′, and AA′ stacking (Fig. 1c). Playing key roles in nonradiative recombination, interlayer couplings and charge localizations were determined by the moiré patterns formed by the four high-symmetry stackings, while previous studies showed that interlayer coupling is dominated by the distance between the two layers rather than wavefunction overlap in TMDs, where a smaller interlayer distance favors larger coupling.38,39 Therefore, it necessitates exploring the accurate relationships between the interlayer coupling and the distance as well as the wavefunction overlaps in high-symmetry stackings and twisted bilayer BP.

Bearing this in mind, we manually modulated the interlayer distance and calculate the single point energy and bandgap for high-symmetry stackings (Fig. 2a and S2a†) and twisted systems (Fig. 2b and S2b†), respectively. With the interlayer distance increasing, the interactions between the two layers gradually disappear and the bandgaps increase correspondingly (Fig. S2 and S3a†). In high-symmetry stackings, AB stacking exhibits the strongest interaction energy, followed by AB′, AA, and AA′ stackings (Fig. 2a), and the interlayer distance follows this order (Table S1†). The findings suggest that the interlayer couplings in bilayer BP are almost linearly dependent on the interlayer distance.41,42 In twisted systems, the interaction energy of bilayer BP is converged to about 0.3 eV per unit cell regardless of the twist angle when it is approaching to 26.53° and therefore exhibits close interlayer distance (Fig. 2b and Table S2†). In general, a smaller twist angle leads to more explicit moiré patterns compared to a larger twist angle. Hence, we chose the 11.54° twist angle system for studying the charge dynamics.

To explore how wavefunction overlap affects interlayer coupling, we computed the VBM and CBM wavefunctions, which were split into contribution to imaginary (imag.) and real components (Fig. 2c), where they do not overlap between the top and bottom layers in the AA and AB stackings. This feature remains true for the imaginary and real components of the VBM in the AA′ and AB′ stackings. However, the imaginary and real components of the CBM wavefunctions mix between the two BP layers in the two stackings, leading to the tails of the wavefunctions delocalizing onto the interlayer regions (Fig. 2c and S4†). Thus, wavefunction overlap does not affect the interlayer coupling, which is dominated by the interlayer distance. The overlap originates from the features of the CBM wavefunctions and faced arrangements of P atoms. First, the same sign wavefunctions of the two BP layers are the prerequisites for overlap. This is true for the CBM (same color) and

![Graph](image_url)

Fig. 2 The interlayer distance-dependent total energy difference in (a) high-symmetry stackings (calculated by VASP) and (b) twisted systems (calculated by CP2K). The AB stacking shows the largest interaction energy and the shortest equilibrium distance (Table S1†) among four stackings, suggesting strongest interlayer coupling. In the twisted systems, the interlayer couplings are independent of the angles until it is lower than 38.94° (Table S2†). (c) Imaginary (imag.) and real components of the VBM and CBM wavefunctions in high-symmetry stackings.
does not hold for the counterpart VBM (different colors) for all the four high-symmetry stackings. Second, the faced arrangements of P atoms in the AA′ and AB′ stackings favor the interactions between lone-pair electrons and wavefunctions mixing, while the displaced P atoms between the top- and bottom-layer BP are against the interactions and overlap. The observations can also be applied to rationalize the overlap of the CBM wavefunctions of larger twisted angle systems, such as 70.53° and 55.88° (Fig. S5†).

Interlayer coupling has an influence on the out-of-plane vibrations of P atoms and further alters electron–phonon interaction. The average interlayer distances in the AB stacking, 38.94°, and 11.54° systems grows from 3.21 Å to 3.37 Å and 3.38 Å at 0 K, due to which the faced arrangements of P atoms strengthen the repulsive interactions between the lone pair of electrons in the twisted systems.46 Thermal fluctuations weaken the interlayer interaction, thereby increasing the distance to 3.25, 3.41, and 3.40 Å at 300 K. The smaller interlayer distance suggests stronger interaction, e.g., the AB stacking, also reflected by the much stronger interlayer distance fluctuations (Fig. S3a). The Fourier transforms (FTs) of the interlayer distance fluctuation give a peak at 50 cm⁻¹ (Fig. 3b), which agrees well with the accurate calculations of phonon dispersion in high-symmetry stackings of layered BP with unit cell44 and can be assigned to the layer breathing mode (LBM).42 This mode modulates the interlayer separation and interaction, thus regulating the NACs and charge carrier lifetime. The magnitude of the LBM in AB stacking is significantly larger than that in twist systems, thus reflecting the strongest electron–vibrational interactions. The canonically-averaged standard deviation can quantify the extent of thermal motions of P atoms,43 which is calculated to be 0.60 Å for AB stacking, 0.42 Å for 38.94°, and 0.46 Å for 11.54°, according to $\sigma_i = \sqrt{\langle (R_i - \bar{R}_i)^2 \rangle}$.29,31 Here, \bar{R}_i represents the location of atom i, and the angular bracket indicates ensemble averaging. Compared to twisted systems, the distinctly larger standard deviation of AB stacking explains the much stronger fluctuations of P atoms and electron–vibrational interaction, resulting in larger NACs and shorter decoherence time.

The calculation of phonon dispersion and electron–phonon coupling matrix is too expensive to be applied on systems of the current size, i.e., 792 atoms for the 11.54° system. To date, the literature shows that calculations of electron–phonon matrix have been performed only up to systems with 50 atoms.44 In the current method, the NACs and decoherence times are calculated, which correspond to the inelastic and elastic electron–phonon scatterings, respectively. The larger NACs and a shorter decoherence/pure-dephasing time characterize stronger electron–phonon scatterings, which lead to faster electron–hole recombination.

Fig. 4 shows the density of states (DOS) and the charge densities of the VBM and CBM. The DOS is splitting into contribution to the top- and bottom-layer BP. The 0.48 eV bandgap derived from the PBE functional for the AB stacking was scaled to 1.30 eV by adding a constant (Fig. 4a) according to the GW calculation46 and experimental values.47–49 The same constant was applied to the 38.94° and 11.54° systems, resulting in bandgaps of 1.39 eV (Fig. 4b) and 1.21 eV (Fig. 4c), respectively. The PBE functional is well known to contain the spurious self-interaction error inherently, which underestimates the bandgaps of materials, including BP. Hybrid functionals or a GW calculation46 can lead to the accurate bandgap of BP, which agrees well with the experimental value.46,47 However, hybrid functionals for periodic systems are too expensive to be used with NA-MD on systems with the current size. Therefore, we are limited by the available computing resources to the PBE level. The approach has previous studies on phonon-assisted electron–hole recombination in various systems, such as metal halide perovskites,51–54 metal oxides,55 and metal oxides.

The overlap of electron and hole wavefunctions, $\langle \Psi_{CBM}^{+} \mid \Psi_{R^*} \rangle$, determines the NA coupling. The charge densities of the VBM and CBM are almost uniformly distributed on the top- and bottom-layer BP in the AB stacking (Fig. 4d and g) and 38.94° (Fig. 4e and h) systems, which is associated with decreased overlap from the former to the latter, thus leading to the much stronger fluctuations of P atoms and electron–vibrational interactions.

Fig. 3 (a) Evolution of interlayer distance in bilayer BP with AB stacking, 38.94°, and 11.54° twist angles. (b) Spectral density obtained using Fourier transforms of the distance in (a). The peak located at about 50 cm⁻¹ associated with the low-frequency out-of-plane vibration corresponds to LBM in Raman spectroscopy.45 The stronger fluctuation of the interlayer distance leads to the higher intensity of the LBM in the AB stacking.
NA coupling of 9.36 and 8.12 meV. In the 11.54° system, the VBM (Fig. 4f) is localized on the AB and AA patterns, while the CBM (Fig. 4i) resides on the AB’ and AA’ patterns,12,14 which remains constant at room temperature (Fig. S6†) and decreases the NAC to 2.92 meV. The spontaneous charge separation and localization arises from the potential mismatch of CBM and VBM in the high-symmetry stackings instead of the uneven distribution of interlayer distance (Table S1†). The CBM potentials in AB’ and AA’ stackings are lower, and the VBM potentials in AB and AA stackings are higher (Fig. S7†).

The performance of photovoltaics and optoelectronics is significantly dependent on charge carrier mobility. Therefore, we calculated the stacking-dependent carrier mobility according to the deformation potential theory24 and summarized the data in Table 1. The detailed method is given in ESI,† where the mobilities are determined by the effective mass, deformation potentials, and elastic modulus.24,57 The calculated hole and electron mobilities of 502 cm² V⁻¹ s⁻¹ and 87 cm² V⁻¹ s⁻¹ in the AB stacking system are in the 100 to 3000 cm² V⁻¹ s⁻¹ range reported experimentally.1,3,36–59 In case of the 38.94° system, the electron mobility increases to 398 cm² V⁻¹ s⁻¹ while the hole mobility goes down to 221 cm² V⁻¹ s⁻¹. When the twist angle is reduced to 11.54°, the mobilities of negative and positive charges correspondingly change to 203 and 866 cm² V⁻¹ s⁻¹. It seems that the twist angles are always beneficial for enhancing the electron mobility, which does not hold for hole mobility. The fact can be rationalized by the mixing of electron wavefunctions (Fig. 4f and i) other than hole wavefunctions (Fig. 4e and h) in the twisted systems. The mixing along the moiré patterns favors electron directional transport, thereby increasing the mobility. The calculated twist angle-dependent effective mass (EM) of electrons and holes shows no regularity compared to the AB stacking. The finding suggests that a rational control of twist angle can improve charge mobilities and advances the established understanding of small enough twist angles tending to act as impurities for carrier transport.12

Table 1

<table>
<thead>
<tr>
<th>Systems</th>
<th>Hole EM</th>
<th>Hole mobility</th>
<th>Electron EM</th>
<th>Electron mobility</th>
</tr>
</thead>
<tbody>
<tr>
<td>AB stacking</td>
<td>0.12</td>
<td>502</td>
<td>0.13</td>
<td>87</td>
</tr>
<tr>
<td>38.94°</td>
<td>0.20</td>
<td>221</td>
<td>0.14</td>
<td>398</td>
</tr>
<tr>
<td>11.54°</td>
<td>0.12</td>
<td>866</td>
<td>0.22</td>
<td>203</td>
</tr>
</tbody>
</table>

3.2 Electron–vibrational interaction

Electron–vibrational interaction causes both elastic and inelastic electron–phonon scattering. The former destroys the
coherence formed between the initial and final electronic states, and the latter creates the phonon modes coupled to the electronic subsystem and generates NACs. Both types of scattering affect charge carrier lifetime.

The influence spectra (Fig. 5a), obtained from the Fourier transforms (FTs) of bandgap fluctuations (Fig. S8†), demonstrate that frequencies below 700 cm\(^{-1}\), including one low and three high frequency modes, are responsible for creating NACs and leading to electron–hole recombination. The major low-frequency peak at about 50 cm\(^{-1}\) in the AB stacking, belonging to LBM, \(^{43}\) is stronger than that in the twisted systems, agreeing with the amplitude of interlayer distance fluctuation (Fig. 3a). The dominant high-frequency peak at about 340 cm\(^{-1}\) can be attributed to the out-of-plane vibration of P–P bonds, \(A^1_g\) mode. \(^{45-48}\) Compared to the AB stacking, the peak intensities of twisted systems are lower, particularly for the 11.54° system, which indicates the suppressed out-of-plane vibration of P atoms. The peaks at about 408 and 460 cm\(^{-1}\) are assigned to in-plane P atoms motion, \(B_{2g}\) and \(A^{2g}\) modes, which have marginal contribution to NA coupling because they do not modulate the interlayer distance.

The decoherence time can be estimated as the pure-dephasing time of the optical response theory. \(^{49}\) Decoherence plays an important role in influencing the charge recombination dynamics. \(^{50}\) Generally, faster decoherence induces slower quantum dynamics, as exemplified by the quantum Zeno effect. \(^{51}\) Within second-order cumulant approximation, the pure-dephasing function, \(D_p(t) = \exp\left(\frac{-1}{\hbar^2} \int_0^t \int_0^{t'} \text{d}t' C \left(\delta E_{ij}(t)\delta E_{ij}(t'-t)\right)\right)\), is determined by the unnormalized autocorrelation functions (un-ACF) of the bandgap fluctuation (Fig. S8†). \(^{52}\) Fig. 5b displays the pure-dephasing functions and un-ACFs (inset) for the three systems. Fitting pure-dephasing functions to a Gaussian, \(\exp(-0.5 \times (t/\tau)^2)\), gives the pure-dephasing time, \(\tau\), which is listed in Table 2. The dephasing times of AB stacking, 38.94°, and 11.54° are 21, 50, and 40 fs, respectively. The separated electron and holes tend to decrease the dephasing time, \(^{64}\) but AB stacking shows the largest phonon-induced energy gap fluctuation (Fig. S8†). The coherence loss is accelerated when a stronger amplitude of phonons couple to the electrons, for larger energy gap fluctuation. \(^{64}\) The un-ACF, \(C_{ij}(t) = \langle \delta E_{ij}(t)\delta E_{ij}(t'-t)\rangle_{\tau_i}\), is the kernel of pure-dephasing function \(D_p(t)\). The term \(\delta E_{ij}(t)\) presented in the un-ACF corresponds to the phonon-induced fluctuation of the energy gap. The initial value \(\delta E_{ij}(0)\) equals to the energy gap fluctuation squared, with a larger initial value of the un-ACF and a shorter pure-dephasing time. As shown in the inset of Fig. 5b, the initial value of the un-ACF decreases in the sequence AB > 11.54° > 38.94°. Therefore, the pure-dephasing time decreases as AB < 11.54° < 38.94°. Furthermore, the calculated canonically averaged standard deviation, quantifying the extent of thermal motions of P atoms, is 0.6 Å for AB stacking, 0.42 Å for 38.94, and 0.46 Å for 11.54°, which also provides an additional source for the pure-dephasing times reported in the three systems. Therefore, the weaker motions of P atoms induced by twist angles lead to longer pure-dephasing times in the 38.94° and 11.54° systems.

3.3 Charge carrier lifetime and diffusion length
Fig. 6a presents the evolution of the first excited-state (CBM) populations in the three systems, representing nonradiative electron–hole recombination. Population decay is obtained using the method in the simulation details of ESI†. The recombination timescales summarized in Table 2 are obtained by fitting the data to \(P(t) = \exp(-t/\tau)\). The electron–hole

Table 2

<table>
<thead>
<tr>
<th>Systems</th>
<th>Bandgap (eV)</th>
<th>NAC (meV)</th>
<th>Dephasing Time (fs)</th>
<th>Recombination (ps)</th>
</tr>
</thead>
<tbody>
<tr>
<td>AB stacking</td>
<td>1.30</td>
<td>9.36</td>
<td>21</td>
<td>160</td>
</tr>
<tr>
<td>38.94°</td>
<td>1.39</td>
<td>8.12</td>
<td>50</td>
<td>776</td>
</tr>
<tr>
<td>11.54°</td>
<td>1.21</td>
<td>2.98</td>
<td>40</td>
<td>1223</td>
</tr>
</tbody>
</table>

Fig. 5
(a) Spectral densities obtained using Fourier transforms of the un-ACF of the bandgap fluctuations and (b) pure-dephasing functions. The inset of (b) shows the un-ACF, \(C_{\text{un}}(t)\), whose starting value equals the bandgap squared. The larger initial value generally leads to faster pure-dephasing.
recombination happens within 160 ps in the AB stacking, agreeing well with the experiments.36,39 Twist angles slow down the recombination, e.g., 776 ps for the 38.94° and 1223 ps for the 11.54° system. As shown in Table 2, the recombination timescales are dominated by the NAC, which successfully competes with the bandgap and pure-dephasing time. Compared with AB stacking, the decreased interlayer couplings (Fig. 3) and separated charge densities (Fig. 4f and i) lead to smaller NACs in the twisted systems. Slow nonradiative electron–hole recombination minimizes charge and energy losses and facilitates high-performance optoelectronics and photovoltaics.

The diffusion length of the carrier, \(L \propto \sqrt{\mu \tau} \), is crucial to the photoelectric devices.20,21 Higher carrier mobility, \(\mu \), and longer lifetime, \(\tau \), favor increasing diffusion length and device performance. The diffusion length increases as the twist angle grows (Fig. 6b). The \(L \) of the 38.94° and 11.54° systems is increased by factors of 4.7 and 4.2, relative to the AB stacking for electron, and 1.5 and 3.6 times for hole. Therefore, the smaller twist angle system, e.g., 11.54°, has better performance than the 38.94° and AB stacking systems, providing a rational strategy to design high performance BP or even TMDs-based optoelectronics and photovoltaics.

4. Conclusion

To sum up, we have investigated twist angle-dependent charge carrier lifetime and diffusion length in bilayer BP by simulating the nonradiative electron–hole recombination using a combination of TDDFT and NA-MD. The simulations indicate that interlayer coupling is dominated by the interlayer distance rather than the wavefunctions overlap. The same sign wavefunctions of the top- and bottom-layer BP, which are correlated with the faced P atom arrangements, delocalize charge into the interfacial regions and favor charge transport. The weakened interlayer couplings in the twisted systems soften the interlayer breathing modes and inhibit the motions of P atoms, which result in smaller NACs than that in AB stacking. In the 11.54° twisted system, the mismatched potentials between the electrons and holes in the high-symmetry stacking-induced moiré patterns separate positive and negative charges spontaneously, thereby reducing NAC and slowing down the nonradiative electron–hole recombination compared to the AB stacking and 38.94° systems. Driven by the layer breathing mode and the out-of-plane P–P bond vibration, \(A_2^g \) mode, the recombination is completed within 160 ps in the AB stacking and is prolonged to 776 and 1223 ps when the twist angles go down to 38.94° and 11.54°, respectively. Correspondingly, the electron and hole diffusion lengths increase significantly, up to factors of 4.2 and 3.6 in the 11.54° system and 4.7 and 1.5 in the 38.94° system. The obtained results provide valuable insights on extending the charge carrier lifetime and diffusion length of multiple BP by twist engineering, and the strategy can be applied to other layered materials, such as GeS and GeSe.

Conflicts of interest

The authors declare no competing financial interest.

Acknowledgements

This work was supported by the National Science Foundation of China (grant no. 21973006). R. L. acknowledges the Beijing Normal University Startup Package.

References

