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lactam-based p-conjugated
polymers for efficient nonfullerene organic solar
cells†

Narumi Sato,a Sunbin Hwang,b Yuichi Tsuchiia and Takuma Yasuda *ab

The development of high-performance wide-bandgap polymers has attracted significant attention in

recent non-fullerene organic solar cells (NF-OSCs) research, as the expansion of the options of polymer

donors that are appropriately matched with nonfullerene acceptors can lead to the further improvement

of photovoltaic properties. In this study, two wide-bandgap p-conjugated polymers, namely, P(TPTI-

BDT) and P(2DTP-BDT), based on fused pentacyclic bis-lactam and dimeric bis-lactam units, were

prepared and used as the donor materials for NF-OSCs with IT-4F as the acceptor. The NF-OSCs based

on the P(TPTI-BDT):IT-4F blends outperformed the corresponding P(2DTP-BDT):IT-4F-based devices,

achieving high power conversion efficiencies of up to 11.7% without processing additives or post-

treatments. Further investigation of the thin-film morphologies using X-ray diffraction and transmission

electron microscopy revealed that both P(TPTI-BDT) and P(2DTP-BDT) adopted preferential face-on

molecular orientations and formed finely nano-segregated bulk-heterojunction morphologies when

blended with IT-4F.
Introduction

Organic solar cells (OSCs) have gained continuous research
interest from both industry and academia due to their unique
advantages, e.g., lightweight, exibility, transparency, and large-
area manufacturing via solution processes.1 The last few years
have witnessed an abrupt increase in the power conversion
efficiency (PCE) of OSCs. State-of-the-art single-junction OSCs
have achieved PCEs exceeding 18%,2–5 thus demonstrating the
signicant potential for practical applications. Such PCE
improvements are mainly due to the emergence of advanced
photovoltaic materials, especially nonfullerene acceptors
(NFAs) based on p-extended fused-ring structures.6 NFAs
demonstrate inherent advantages such as (i) stronger absorp-
tions covering wider spectral ranges (including the near-
infrared region), (ii) tunability of energy levels, (iii) higher
charge generation efficiencies with small driving forces, and (iv)
improved lm-forming capacity when compared with tradi-
tional fullerene acceptors. As reported by Zou et al.7 in 2019, Y6
is currently a high-performing benchmark NFA, and the most
recent OSCs that achieve high PCEs (>18%) are dependent on
the use of Y-series NFAs.2–5 For bulk-heterojunction (BHJ) OSCs,
NFAs and donor materials play equally critical roles in
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tion (ESI) available. See DOI:
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determining the photovoltaic function. However, the options of
effective donor materials for nonfullerene OSCs (NF-OSCs) are
inadequate and limited to several polymers such as PM6 (PBDB-
TF),2,8 D18,3 PBQx-TF,4 and PTQ10.5,9 Thus, it is necessary to
further expand the material space and explore effective wide-
bandgap polymer donors that are compatible with NFAs.

Aromatic lactams are extensively employed as basic struc-
tures in functional dyes and pigments, typied by diketopyrro-
lopyrrole (DPP)10 and isoindigo (IID)11 (Fig. 1). Moreover, they
are utilized as electron-accepting (A) units in the design of
alternating donor–acceptor (D–A) p-conjugated copolymers. In
2013, Ding et al. developed thieno[2′,3′:5,6]pyrido[3,4-g]thieno
[3,2-c]isoquinoline-5,11(4H,10H)-dione (TPTI) featuring a fused
pentacyclic p-system with two electron-withdrawing lactam
(pyridone) moieties.12 The D–A copolymer consisting of alter-
nating thiophene and TPTI units demonstrated a PCE of 7.8%
when blended with a fullerene acceptor, PC71BM. Thereaer,
several TPTI-based polymers were reported to serve as donor
materials in OSCs.13 However, the photovoltaic performances of
TPTI-based polymers in NF-OSCs have not been extensively
investigated. The development of new TPTI-based systems that
Fig. 1 Representative lactam-containing p-systems.

This journal is © The Royal Society of Chemistry 2023
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are appropriately suited for NF-OSCs is required. Recently, PCEs
of nearly 10% were achieved for NF-OSCs using related dithieno
[3,2-b:2′,3′-d]pyridin-5(4H)-one (DTP)-based polymers.14,15 The
use of simple lactam-based building units can potentially lead
to the production of more efficient donor polymers and donor–
acceptor pairs, thus further facilitating the development of
efficient NF-OSCs.

In this study, we designed and synthesized TPTI- and DTP-
based p-conjugated polymers, namely, P(TPTI-BDT) and
P(2DTP-BDT) (Fig. 2a), coupled with a dialkylthienyl-substituted
benzodithiophene (BDT) unit. Incorporating these bis-lactams
into p-conjugated backbones is an attractive design strategy
to increase the rigidity and planarity, and lower the reorgani-
zation energy; thereby facilitating the charge transport of the
resulting polymers. The P(TPTI-BDT) and P(2DTP-BDT) back-
bones can retain high coplanarity (Fig. 2b), which is benecial
for the formation of crystalline molecular assemblies in the
solid state. Moreover, the strong electron-withdrawing bis-
lactam units can lower the HOMO and LUMO levels of the
polymers, contributing to the enhancement of the open-circuit
voltage (Voc) of the OSCs. In combination with IT-4F as
a common NFA,16 NF-OSCs based on P(TPTI-BDT) and P(2DTP-
BDT) achieved adequately high PCEs of 11.7% and 9.2%,
respectively, without processing additives or additional
treatments.

Results and discussion

P(TPTI-BDT) and P(2DTP-BDT) were synthesized via poly-
condensation using Migita–Kosugi–Stille cross-coupling reac-
tions between dibromo-TPTI or -2DTP and distannyl-BDT
monomers, wherein a Pd2(dba)3 catalyst and P(o-tol)3 ligand
were used (see ESI† for details). The resulting polymers were
puried by sequential Soxhlet extraction using methanol,
acetone, hexane, and chloroform, and then reprecipitation in
methanol. The number-average molecular weights (Mn) and
Fig. 2 (a) Chemical structures of P(TPTI-BDT) and P(2DTP-BDT), and
(b) optimized molecular geometries for the respective trimeric
segments calculated at the B3LYP/6-31G(d,p).

This journal is © The Royal Society of Chemistry 2023
polydispersity indices (PDIs) of P(TPTI-BDT) and P(2DTP-BDT)
were 125 kDa/4.4 and 42 kDa/4.4, respectively. Despite their
high Mn values and high backbone rigidity and coplanarity,
both polymers exhibited sufficiently high solubilities in chlo-
roform and chlorobenzene required for thin-lm fabrication
due to introduction of multiple branched alkyl chains.

As shown in Fig. 3a, the bandgap energies (Eg) of P(TPTI-
BDT) and P(2DTP-BDT) as thin lms were determined as 2.05
and 1.97 eV, respectively, by applying the Taucmethod: (ahn)nf
(hn − Eg).17 Here a is the absorption coefficient, hn is the photon
energy, and n = 2 for direct allowed transitions. The P(TPTI-
BDT) lm exhibited a slightly blue-shied absorption peak (lmax

= 572 nm) when compared with that of the P(2DTP-BDT) lm
(lmax = 591 nm), resulting in a slightly larger Eg. Moreover, both
polymer lms exhibited intense absorptions with large values of
a (>105 cm−1) in the range of 450–600 nm, which were
complementary to that of IT-4F (ESI†). Thus, blend lms with
IT-4F can cover the entire visible spectral range, which is
required for the realization of a high photocurrent in OSCs. To
determine the HOMO energy levels (EHOMO or ionization
potentials), photoelectron yield spectroscopy was conducted on
thin lms. As depicted in Fig. 3b, P(2DTP-BDT) containing
dimeric DTP units exhibited a slightly lower EHOMO (−5.35 eV)
than that of P(TPTI-BDT) with pentacyclic TPTI units (−5.30 eV).
Given the above Eg values, the LUMO energy level (ELUMO or
electron affinity) of P(2DTP-BDT) was expected to decrease by
∼0.1 eV relative to P(TPTI-BDT). The optical data for P(TPTI-
BDT) and P(2DTP-BDT) are listed in Table 1.
Fig. 3 (a) Tauc plots of (ahn)2 with respect to the photon energy (hn),
as obtained from the optical absorption spectra of P(TPTI-BDT) and
P(2DTP-BDT) in thin films (solid lines) and chloroform solutions
(dashed lines). (b) Photoelectron yield spectra measured for the thin
films of P(TPTI-BDT) and P(2DTP-BDT).

J. Mater. Chem. A, 2023, 11, 9840–9845 | 9841
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Table 1 Optical properties of the materials

Compound

lmax
a (nm)

EHOMO
d (eV) ELUMO

e (eV) Eg
f (eV)Solb Filmc

P(TPTI-BDT) 569 572 −5.30 −3.26 2.04
P(2DTP-BDT) 581 591 −5.35 −3.38 1.97
IT-4F 692 725 −5.87 −4.34 1.53

a Absorption peak wavelength. b Measured in chloroform solution (10−5

M) at 300 K. c Measured in a neat lm spin-coated from chloroform
solution onto a quartz substrate. d HOMO energy level determined by
the photoelectron yield spectroscopy of neat lm. e LUMO energy level
calculated using ELUMO = EHOMO + Eg.

f Optical bandgap derived from
the Tauc plots for the neat lm.
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To evaluate the photovoltaic properties of P(TPTI-BDT) and
P(2DTP-BDT), NF-OSCs were fabricated using an inverted
conguration of indium tin oxide (ITO, 100 nm)/ZnO (30 nm)/
active layer (80–110 nm)/MoOx (10 nm)/Ag (100 nm).18 For all
devices, each BHJ active layer, which consisted of a binary blend
of P(TPTI-BDT) or P(2DTP-BDT) as the donor and IT-4F as the
acceptor, was deposited by the spin-coating of their chloroform
or chlorobenzene solutions without solvent additives. The
weight ratios of the donor and acceptor in the blend lms varied
from 1 : 1 to 1 : 2.

The representative current density–voltage (J–V) curves and
external quantum efficiency (EQE) spectra are shown in Fig. 4,
and the relevant photovoltaic parameters are summarized in
Table 2. For the P(TPTI-BDT):IT-4F binary systems, a PCE as
high as 11.7% was achieved, along with a short-circuit current
density (Jsc) of 19.6 mA cm−2, Voc of 0.86, and ll factor (FF) of
Fig. 4 (a) J–V curvesmeasured under AM 1.5G 1-sun illumination (100
mW cm−2) and (b) external quantum efficiency (EQE) spectra for the
representative OSCs based on P(TPTI-BDT):IT-4F and P(2DTP-
BDT):IT-4F BHJ blends.

9842 | J. Mater. Chem. A, 2023, 11, 9840–9845
70%. It should be noted that high EQEs (photon-to-current
conversion efficiencies) exceeding 80% over a wavelength
range of 600–750 nm were achieved for the P(TPTI-BDT):IT-4F-
based devices. The integrated current density from the EQE
spectrum (J = 20.0 mA cm−2) was consistent with the Jsc value
obtained from the corresponding J–V curve. It is worth noting
here that the as-spun BHJ active layers afforded a high PCE
exceeding 11% without using any solvent additives or post-
treatments. This signicant feature allows for the develop-
ment of high-efficiency OSCs using simpler processes.

The P(2DTP-BDT):IT-4F-based devices exhibited signicantly
high Voc values (0.93–0.95 V), which can be attributed to the
enlarged energy gap between the donor HOMO and acceptor
LUMO levels. However, the P(2DTP-BDT):IT-4F-based devices
exhibited lower PCEs (9.0–9.2%) when compared with the
P(TPTI-BDT):IT-4F-based devices. This trend can be mainly
attributed to the corresponding decrease in Jsc. Consistently, the
EQEs of the P(2DTP-BDT):IT-4F-based devices decreased by
approximately 10–20% over the entire visible region in
comparison with the P(TPTI-BDT):IT-4F-based devices (Fig. 4b).
It should be noted that PCEs decreased to only ∼1% when
combined with PC71BM instead of IT-4F (ESI†). The inferior
performance for the fullerene-based devices can be attributed to
the macroscopically phase-separated active layer morphology,
which consists of large domains of the donor and acceptor
agglomerates.

To gain insight into the molecular packing and orientation
within the BHJ active layers, grazing-incidence X-ray diffraction
(GIXD) measurements were performed. As can be seen from the
two-dimensional (2D) GIXD patterns (Fig. 5a and b), for both
pristine P(TPTI-BDT) and P(2DTP-BDT) lms, a distinct
diffraction corresponding to p–p stacking with a d-spacing of
3.7–3.8 Å (i.e., (010) diffraction) was observed only along the out-
of-plane qz-axis direction, thus suggesting that P(TPTI-BDT) and
P(2DTP-BDT) preferentially adopted a face-on orientation in the
as-spun neat lms. The observation of the (100) lamellar
diffraction with a d-spacing of 22–23 Å in the in-plane qxy-axis
direction supports this trend. This dominant face-on orienta-
tion promoted efficient charge transport along the direction
perpendicular to the substrate. Importantly, both polymers
essentially retained their face-on orientations, even in blend
lms with IT-4F (Fig. 5c and d). However, the (100) lamellar
diffraction along the out-of-plane direction intensied, indi-
cating that face-on and edge-on polymer crystallites coexisted
upon blending with IT-4F. Fig. 5e presents the pole gure
analysis for the (010) p–p stacking diffractions in the two-
dimensional (2D) GIXD patterns measured for the doped
lms, where the integrated intensities with respect to the
azimuthal angle (c) ranges of 45–135° (Az) and 0–45° and 135–
180° (Axy) were dened as fractions of face-on and edge-on
crystallites, respectively.19 The Az/Axy ratios for the P(TPTI-
BDT):IT-4F and P(2DTP-BDT):IT-4F blend lms were calculated
as 1.55 and 1.54, respectively, suggesting no signicant differ-
ence in face-on molecular orientation.

Transmission electron microscopy (TEM) images of the
blend lms revealed distinct nanoscale phase segregation and
interpenetrating network formation (Fig. 5f and g). Based on 2D
This journal is © The Royal Society of Chemistry 2023
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Table 2 Photovoltaic parameters for NF-OSCs

Active layer
D : A
ratio (wt/wt) ta (nm) Jsc (mA cm−2) Jb (mA cm−2) Voc (V) FF (%) PCEc (%) Rs

d (U cm2) Rsh
e (U cm2)

P(TPTI-BDT):IT-4F 1 : 1f 106 17.2 19.1 0.91 69 10.8 2.2 807
1 : 2f 99 15.9 15.8 0.91 70 10.1 2.1 1050
1 : 1.2g 109 19.6 20.0 0.86 70 11.7 1.5 988

P(2DTP-BDT):IT-4F 1 : 1f 82 14.6 15.9 0.95 65 9.0 2.5 736
1 : 2f 85 14.5 15.8 0.93 68 9.2 2.5 886

a Active layer thickness determined using a prolometer. b Calculated by integrating the EQE spectra. c PCE = (Jsc × Voc × FF)/P0, where P0 is the
incident light intensity (100 mW cm−2). d Series resistance. e Shunt resistance. f Using chloroform solvent. g Using chlorobenzene solvent.

Fig. 5 Two-dimensional GIXD images for (a) P(TPTI-BDT) and (b)
P(2DTP-BDT) neat films and (c) P(TPTI-BDT):IT-4F (1 : 1, w/w) and (d)
P(2DTP-BDT):IT-4F (1 : 1, w/w) blend films. (e) Pole figures for the p–p
stacking diffractions (d = 4.25–2.88 Å) in the blend films. TEM images
of (f) P(TPTI-BDT):IT-4F (1 : 1, w/w) and (g) P(2DTP-BDT):IT-4F (1 : 1, w/
w) blend films. The D values represent the average domain sizes
calculated by 2D FFT analysis.
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fast Fourier transform (FFT) analysis,20 the average domain
sizes (D), which correspond to the periodicity of the phase-
segregated structures, were calculated as 11 and 10 nm for the
P(TPTI-BDT):IT-4F and P(2DTP-BDT):IT-4F blend lms,
This journal is © The Royal Society of Chemistry 2023
respectively. Appropriate domain sizes should be sufficiently
small for exciton diffusion/dissociation in accordance with
short exciton diffusion lengths (typically ∼10 nm), and suffi-
ciently large to secure charge transport channels. The interior
morphologies spontaneously formed in these blend lms meet
these criteria, thus demonstrating excellent photovoltaic
performances. The capacity to spontaneously form optimal
morphologies without additives is a signicant advantage of
these polymers with respect to prospective applications.
Conclusions

In this paper, we reported two analogous wide-bandgap p-
conjugated polymers, P(TPTI-BDT) and P(2DTP-BDT), with
different bis-lactam core structures. Although both polymers
exhibited comparable optical properties, P(TPTI-BDT) with
fused pentacyclic bis-lactam units was found to exhibit superior
photovoltaic properties. When combined with IT-4F to fabricate
NF-OSCs, the P(TPTI-BDT)-based devices achieved high PCEs of
up to 11.7%, outperforming the P(TPTI-BDT)-based devices.
The introduction of highly fused polycyclic frameworks can
facilitate the formation of ordered nanostructures with prefer-
ential face-on orientations, even in blend lms. Due to the lack
of photoresponsivity in the near-infrared region, existing
devices are less efficient than the state-of-the-art NF-OSCs
incorporating Y-series NFAs. However, with excellent photo-
responsive characteristics limited to the visible range with EQEs
over 80%, the present material system can be used for both
outdoor and indoor photovoltaic applications.21 Further
research will be conducted accordingly.
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