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The rising energy crisis and environmental problems are urging the development of more sustainable
organic synthetic methods. Photoelectrocatalytic organic synthesis (PECOS) is emerging as an attractive
strategy because it utilizes solar power to drive the organic synthesis and can greatly reduce the
dependency on fossil fuels. Recently, a variety of organic reactions have been successfully realized using
this strategy by rationally designing the photoelectrode and carefully tuning the reaction conditions. In
this review, we introduce and categorize the recent advances in PECOS based on their specific reaction
types, ranging from photoanode-mediated alcohol oxidation, C—H functionalization, furan oxidation, and
sulfide oxidation, to (photo) cathode-mediated in situ H,O, generation, cofactor regeneration, and the
functionalization of aryl halides. The material of the photoelectrode, the reaction conditions of PECOS,
and the proposed mechanism will be highlighted during the introduction of each example. Finally, we
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1. Introduction

As a sustainable, cost-free, environment-friendly energy, solar
power has been continuously gaining the scientific commun-
ity's attention.™* Fixing solar energy in value-added compounds,
like fuels and building-block chemicals, is a promising way to
realize the storage of solar energy and has received considerable
attention from the chemical community.**® Developing green
and efficient methods of converting solar energy into chemical
energy is becoming the future trend of energy and synthetic
chemistry.

Inheriting the advantages of photocatalysis and electro-
catalysis, photoelectrocatalysis is a potential candidate for the
green and efficient conversion of solar power. A typical setup for
photoelectrocatalysis consists of a semiconductor photo-
electrode and a counter electrode. Upon light irradiation, an
electron and hole are separated at the photoelectrode. One of
them migrates to the surface of the photoelectrode and moti-
vates the redox reactions; with the help of an external circuit,
another would transfer to the counter electrode (in the case of
he photoanode) or be neutralized by the electron transported
from the counter electrode (in the case of the photocathode).”
Compared with photocatalysis, the separation efficiency of
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conclude by providing some perspectives on the future direction of PECOS.

photogenerated carriers could be tuned by the external poten-
tial in photoelectrocatalysis, enabling the careful control of
reaction selectivity.®® Besides, the existence of an external
circuit allows the reduction and oxidation half reactions to take
place in different electrodes, making it possible to conduct the
reductive and oxidative synthesis in a spatially separated
manner.' The spatial separation of reduction and oxidation
half reactions can prevent the undesired side reactions of the
products and overcome the product separation problems in
photo-redox organic synthesis."»** In the meantime, the intro-
duction of light energy reduces the applied bias so that photo-
electrocatalysis could be carried out in a more energy-saving
manner than electrocatalysis. It should be noticed that there
is another kind of organic synthesis which is conducted using
the combination of inert electrodes and photocatalyst: upon
light irradiation, the photocatalyst were first transformed into
their excited state, which then participate in the redox reaction
of the organic substrates; with the help of inert electrodes, the
photocatalysts are finally regenerated. In fact, this kind of
catalysis could be classified as “electrophotocatalysis” and
Konig, Wu, and Lambert et al. have already presented some
excellent studies on this topic.’*™**

Since Fujishima and Honda reported the feasibility of pho-
toelectrocatalytic water splitting,'® for the first time, much effort
has been put into the development of photoelectrocatalysis.
Nowadays, the application of photoelectrochemical cells (PECs)
is no longer limited to the decomposition of water. The capa-
bility of PECs in fuel production,”” carbon dioxide
reduction,”? and biomass conversion®*® has been widely
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investigated. However, the research on photoelectrocatalytic
organic synthesis (PECOS) is still in an early stage.

In the past decade, many attempts on promoting the devel-
opment of PECOS have been made. The photoelectrode mate-
rial, the reaction type, and the substrate scope of PECOS have
been greatly diversified. Now, PECs equipped with a classical
metal oxide photoanode can do much more than oxidizing
simple alcohols.?” More complex oxidations such as the func-
tionalization of a C-H bond and the selective oxidation of pol-
yhydric alcohol, furan, and sulfide can also be realized. Besides,
by properly introducing enzymes or heterogenous catalysts, the
place where redox reactions take place is no longer limited to
the photoanode, which makes the cathode-mediated PECOS
possible. Moreover, the successful application of photocath-
odes in PECs further broadens the reaction types of PECOS.
This progress shows the compatibility of PECs with organic
synthesis.

In this article, we provide a concise review of the recent
development of PECOS. Based on the exact electrode which
mediates the organic synthesis, we classify the literature into
two main categories: photoanode-mediated organic synthesis
and (photo) cathode-mediated organic synthesis. Each category
is further divided into subcategories according to the specific
reaction types. Finally, we offer some perspectives on the future
direction of PECOS.

2. Photoanode-mediated organic
synthesis

The most common type of PECOS is carried out in a photo-
anode-mediated manner, in which photogenerated holes
directly or indirectly oxidize the organic substrates. In direct
oxidation, the organic substrates are oxidized on the surface of
a photoanode (Fig. 1A). Generally speaking, the careful control
of the reaction selectivity is relatively difficult to obtain in direct
oxidation because of the high reactivity of photogenerated
holes.***° In indirect oxidation, however, the photogenerated
holes first oxidize the redox mediator to form a reactive inter-
mediate, which then oxidizes the organic substrates and return
to its original state (Fig. 1B). With these two kinds of reaction
pathways, the photoanode-mediated organic synthesis reported
thus far exhibits diverse reaction types, which are roughly

A. Direct oxidation B. Indirect oxidation
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Fig.1 Schematics for direct and indirect oxidation on a photoanode.
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classified into alcohol oxidation, C-H functionalization, and the
oxidation of other organic compounds.

2.1 Alcohol oxidation

According to the structural complexity of alcohol molecules, we
divide the alcohol oxidation that happens in PECs into the
oxidation of simple alcohols and the oxidation of polyhydric
alcohols. Since simple alcohols have only one hydroxyl group,
their oxidation has no regioselectivity problem. In contrast, the
regioselectivity must be taken into account if one wants to
achieve the selective oxidation of polyhydric alcohols with
hydroxyl groups within different environments.

2.1.1 Oxidation of simple alcohols. The history of PEC-
mediated simple alcohol oxidation dates back to 1999, when
Meyer's group reported the dehydrogenation of 2-propanol into
acetone on a dye-sensitized TiO, photoanode,*" which prelimi-
narily exhibited the feasibility of PECOS. After that, many dye-
sensitized photoelectrochemical cells (DSPECs) have been
developed for the oxidation of simple alcohols.****

In 2020, Meyer and co-workers introduced organic photo-
sensitizers to the surface of a SnO,/TiO, photoanode.** The
phosphonate-derivatized carbazole and boron dipyrromethene
(BODIPY(CBZ),PO3H,) chromophore (3) has a high molar
extinction coefficient and good visible light response. Together
with a ruthenium-based catalyst (4), the photoanode could
sustain the oxidation of benzyl alcohol (1a) in a pH 4.5 acetic
buffer under visible light irradiation. At an applied bias of 0.2 V
vs. Ag/AgCl, the density of photocurrent was maintained at
around 35 pA cm ™. The low current level may be caused by the
back electron transfer after electron injection.*

Even though being frequently used,****° ruthenium-based
dye molecules are not the only choice for the photosensitizer
used in a DSPEC. The noble metal ruthenium could be replaced
by earth-abundant elements as well.>** For example, Nikolou-
dakis et al. presented efficient and selective conversion from
para-substituted phenyl alcohols (1a-1c) into the corresponding
aldehydes (2a-2c¢) with a zinc porphyrin (ZnP) sensitizer (5).*
The photosensitizer was anchored on the surface of a TiO,
photoanode by a robust hydroxamic group and hence was able
to work both in aqueous solutions and organic solvents. ZnP
was also covalently linked with 2,2,6,6-tetramethyl-1-piperidine
N-oxyl (TEMPO), which served as the catalyst for alcohol
oxidation. Upon light illumination, the holes generated by ZnP
efficiently transferred to TEMPO, thus realizing the selective
production of para-methoxy benzaldehyde with an average
photocurrent density of 200 pA cm™> at 0 V vs. SCE in a pH 8.0
borate buffer.

Recently, Reisner's group established a DSPEC where both
the dye molecule and alcohol oxidation catalyst were metal-
free.”® The photoanode was prepared by co-immobilizing
silatrane-functionalized =~ TEMPO  (STEMPO, 6) and
diketopyrrolopyrrole-based dye (DPP-CA, 7) on mesoporous
TiO, (mTiO,). Under the irradiation of ultraviolet-filtered
simulated solar light, 4-methylbenzylalcohol (1d) can be selec-
tively oxidized to its aldehyde form on this photoanode with
a photocurrent density of around 90 uA cm™> at +0.4 V vs. RHE

This journal is © The Royal Society of Chemistry 2023


https://doi.org/10.1039/d2ta09430d

Published on 13 January 2023. Downloaded on 1/25/2026 3:51:51 PM.

Review

in pH 8.0 sodium borate buffer. The author also coupled the
photoanode with a CO,-reducing cathode. The as-constructed
PEC could achieve a bias-free, simultaneous alcohol oxidation
and CO, reduction with a photocurrent density up to 30 pA
em™>.

The oxidation of simple alcohol can also be realized in PECs
without dye molecules. Earlier in 2017, the oxidation of 1-phe-
nylethanol derivatives on a BiVO,/WO; photoanode was re-
ported by Sayama's group.* 1-phenylethanol derivatives (1e-1i)
were directly oxidized by the photogenerated holes at the
surface of the photoanode. The applied potential required for
oxidation in this system (approximately +0.7 V vs. SHE) was
much lower than that in an electrocatalytic system taking Pt as
the anode (>1.9 V vs. SHE). Meanwhile, the para-substituent
effect observed in an electrocatalytic system was negligible in

Table 1 Photoanode-mediated benzyl alcohol oxidation
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this system, suggesting that the external bias did not influence
the oxidation ability of photogenerated holes. Under visible
light irradiation (>420 nm), 1-phenylethanol can be oxidized
with excellent yield (97%) and faradaic efficiency (>99%).

In the same year, Duan and co-workers developed a TiO,/C
composite photoanode and tested its catalytic performance on
the oxidation of benzyl alcohol derivatives (1a, 1d, 1j, & 1k).**
The photoanode was prepared through a three-step method:
first, TiO, nanowire arrays, with an average diameter of around
200 nm, were hydrothermally grown on a fluorine-doped tin
oxide (FTO) substrate; then, polypyrrole was coated on the
surface of TiO, via a photo-assisted deposition method; finally,
calcination in a N, atmosphere finally led to the formation of
a graphite coating layer. The existence of a graphite layer
maximized the separation efficiency of photogenerated carriers

1h: R*=Cl, R*=Me
1i: R'=Br, R’=Me
1j: RI=F, R%=H

1g: R'=F, R%=Me

Substrate ~ Photoanode Conditions Ox/red Performance Ref.

1a SnO,|Ti0,|-3,4 0.2 V vs. Ag/AgCl, 100 mW cm 2 visible light, H'/H, J = 35pAcm™? 46
0.4 M LiClO, pH 4.5 acetic buffer

1a TiO,|5 0 V vs. SCE, 100 mW cm™> visible light, H'/H, J~019mAcm > 47

1b 0.1 M NaClO, pH 8.0 borate buffer J = 0.20 mA cm?

1c J = 0.50 mA em™?

1d mTiO,|6,7 Bias-free, 100 mW cm™? visible light, pH 8.0 borate buffer CO,/formate  J = 30 pA cm > 48

1e BiVO,/WO, 0.2 mA cm 2, 100 mW cm 2 visible light, 0.1 M Bu,NBF,, MeCN  NA Yield 97% 53

1f Yield 63%

1g Yield 89%

1h Yield 92%

1i Yield 91%

1a TiO,/C 0.6 V vs. SCE, 120 mW cm > Xe lamp, 0.5 M Na,SO, H'/H, 144 umol h™! 54

1d 180 umol h™*

1j 161 pmol h™*

1k 45 pmol h™*

1a G@U-LDH@BVO 1.2 V vs. RHE, 100 mW cm 2 visible light, H'/H, 150 pumol h™* 55

1d 8 mL pH 7.0 PBS solution, 2 mL MeCN 188 umol h™!

1j 144 pmol h™*

11 125 umol h™*

1m 151 pmol h™*

4 s
HOy N o ;2
{ ZN. N. I~
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/_ N\
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and accelerated the oxidation of H,O to generate OZ", which
plays an important role in alcohol oxidation. With the help of
light and external bias, the TiO,/C photoanode was capable of
oxidizing benzyl alcohol and its derivatives to their corre-
sponding aldehydes at a selectivity of 100%.

In 2020, Ye, Yan, and Xiang et al. conceived a radical relay
strategy and successfully coupled water oxidation with the
selective oxidation of benzyl alcohol derivatives (1a, 1d, 1j, 11, &
1m) in a PEC.”® The photoanode they adopted was a ternary
composite consisting of an ultrathin Co-based layered double
hydroxide, graphene, and a layer of BiVO, particles (G@U-
LDH@BVO). In the preparation of the photoanode, BiVO,
particles were first deposited on an FTO through electrodepo-
sition; after a hydrothermal process, the as-prepared BiVO,
photoanode was finally modified by graphene and U-LDH. The
conducting characteristics of graphene facilitate the transfer of
photoexcited electrons from U-LDH to BiVO,. Meanwhile, U-
LDH can accept the photogenerated holes and catalyze water
oxidation. The relayed "OH adsorbed on the surface of U-LDH
was key to the selective oxidation of benzyl alcohol deriva-
tives. This radical relay strategy enables the efficient coupling
between water splitting and the selective oxidation of organic
molecules under mild conditions.*® Under a neutral condition
(8 mL phosphate-buffered saline (PBS) solution + 2 mL MeCN),
G@U-LDG@BVO could realize the photoelectrocatalytic oxida-
tion of substituted benzyl alcohols into the corresponding
aldehyde products with excellent selectivity (>96%) and
production rate (125-188 pumol h™'). For comparison, the
results of the photoanode-mediated benzyl alcohol oxidation
are summarized in Table 1.

Another example of simple alcohol oxidation was provided
by Cha, Goodwin, and Yehezkeli et al. using BiVO, as the pho-
toanode.”” The oxidation of n-butanol (8) was catalyzed by
alcohol oxidase (AOx), which reduced O, to H,0, at the same
time. BiVO, not only afforded the regeneration of oxidant O, but
also maintained the stability of AOx by timely scavenging the
H,O0, in the solution. It is worth mentioning that n-butyralde-
hyde (9) produced from alcohol oxidation can then undergo an
aldol condensation catalyzed by p-alanine and finally be
upgraded to 2-ethylhexenal (10) within a PEC (Fig. 2), which
vividly demonstrated that PECs can be compatible with an
enzymatic and homogenous catalyst.

2.1.2 Oxidation of polyhydric alcohols. Having the regio-
selectivity problem, the selective oxidation of polyhydric alco-
hols is more complex than simple alcohol oxidation. To the best
of our knowledge, no PEC was applied to the oxidation of pol-
yhydric alcohols until 2019, when Liu, Huang, and Xiong et al.
achieved the selective oxidation of glycerol (11) to dihydroxy-
acetone with a nanoporous BiVO, photoanode.*® The prepara-
tion of a BiVO, photoanode included the electrochemical
deposition of BiOI nanoflake arrays on a FTO glass and the
reaction between BiOI and vanadyl acetylacetone. This prepa-
ration yielded porous and interconnected nanoflake BiVO,
arrays which had a monoclinic scheelite structure and mainly
exposed (112) facets. The as-prepared BiVO, photoanode
exhibited an excellent performance in the selective oxidation of
glycerol. In an acidic medium (pH = 2.0), the value-added
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A. Butanol oxidation, Cha, Goodwin and Yehezkeli (2017)

AOx, B-alanine 0
BiVO,(+)|Pt(-)
/\/\OH
0V vs. Ag/AgCl
LED (465 nm, 9W)

/\/j)\H
pH 7.5 phosphate buffer

8 10
B. Proposed mechanism

T " 1

e
CB — 10 o
/\/j)kH
light
B-alanine
—_—
> o, H
/\)LH
9
h* e
VB LK
H,0, ANNOH H,
L 8 L
Photoanode Cathode

Fig. 2 Photoanode-mediated simple alcohol oxidation coupled with
aldol condensation.

product 1,3-dihydroxyacetone (DHA, 12) can be produced at
a rate of 200 mmol m~> h™" under light illumination and
external bias (1.2 V vs. RHE). Based on the electron spin reso-
nance measurement, the author proposed a direct oxidation
mechanism where glycerol is oxidized by photogenerated holes
first and then reacts with H,O to form unstable gem-diol
intermediates. But this PEC system suffered from low selec-
tivity (51%), which limits its further application.

Subsequently, many attempts have been made to investigate
the performance of a PEC in glycerol conversion.*** For
instance, in early 2022, Duan, Li, and co-workers reported the
same reaction with a higher selectivity towards DHA (75.4%) by
modifying Bi,O3; on TiO, (Bi,03/Ti0,).** The cocatalyst Bi,Os3,
prepared by an electrodeposition-electrooxidation process,
could not only improve the light absorption ability of TiO, but
also facilitate the charge transfer by forming a p-n junction with
TiO,, which greatly enhances the photocurrent density. Unlike
the BiVO, system, the glycerol oxidation on Bi,O3/TiO, was
considered as an *OH radical-mediated process. It was
demonstrated by in situ Fourier transform infrared spectros-
copy and density functional theory (DFT) calculations that
glycerol prefers to adsorb over Bi,O; with its middle hydroxyl
group and DHA can poorly adsorb on Bi,03, which explained
the relatively high selectivity of DHA production. At an external
bias of 1.0 V vs. RHE, the Bi,0;/TiO, photoanode sustained
glycerol conversion at a rate of 228 mmol m~> h™" when being
exposed to light irradiation in an acidic environment (pH = 2.0).

Only two months later, Xiang and Yan et al. successfully
conducted glycerol oxidation in a neutral medium.*®* They
established a ternary photoanode by depositing silver nano-
particles on layered double hydroxide nanosheets grown on
TiO, arrays (denoted as AG@LDH@TiO,). In this ternary pho-
toanode, TiO, played the role of harvesting light energy, the
LDH nanosheets selectively adsorbed and activated the middle
hydroxyl group in glycerol, and the loaded Ag nanoparticles

This journal is © The Royal Society of Chemistry 2023
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Table 2 Photoanode-mediated glycerol oxidation
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OH

Ho__ oH

D —————

[o]

o _J_ o

AM 1.5G, 100 mW cm™

11

12

Photoanode Conditions Performance Ref.
BivO, 1.2 Vvs. RHE, 0.5 M Na,SO,, pH 2.0 H,SO, solution Photocurrent density: 3.7 mA cm 2 58
DHA selectivity: 51%
DHA production: 200 mmol™* m~?
FE for DHA production: = 30%
BivVO, 0.7 Vvs. RHE, 0.1 M Na,B,O; (pH = 2) DHA selectivity: 15% 59
{010}-BivO, 1.1 Vvs. RHE, 0.1 M Na,B,0, pH 2.0 H,SO, solution Photocurrent density: =1.4 mA cm 2 60

NiO,(OH),/W:BiVO, 1.2 V vs. RHE, pH 9.3 borate buffer

Bi,03/TiO, 1.0 Vvs. RHE, 0.5 M Na,SO,, pH 2.0 H,SO, solution
Ag@LDH@TIO, 1.2 V vs. RHE, 0.5 M Na,SO0,

Ta:BivO, 1.0 V vs. RHE, 100 mM H,SO, acetone/H,O

facilitated glycerol oxidation by transferring electrons with LDH
nanosheets. Using isotopic labelling experiments, the author
proposed a mechanism where glycerol first undergoes a dehy-
dration and dehydrogenation process on LDH and then reacts
with an *OH radical to form DHA, which was different from the
gem-diol mechanism reported in a previous PEC glycerol
oxidation system.*®*> Under neutral conditions (0.5 M Na,SOy,,
pH = 7), glycerol can be converted at a considerable rate
(315 mmol m > h™") with a DHA selectivity of 72.1%.

More recently, a tantalum-doped BivVO, (Ta:BiVO,) photo-
anode was fabricated and applied in glycerol oxidation by
Sayama's group.* In the fabrication of the Ta:BiVO, photo-
anode, BiVO, was first deposited on a WO;-coated FTO
substrate via a spin-coating method and a following calcination;
then, a solution containing bismuth oxide, vanadium, and
tantalum oxides was spin-coated and calcinated on the as-
prepared BiVO,/WO;/FTO photoanode. Ta atoms were found
to be concentrated on the surface of the photoanode by EDS
mapping and they were considered to exist in the form of Ta>".
The existence of a Ta-rich overlayer improved the light-
harvesting efficiency of BiVO,, which resulted in an enhanced
glycerol oxidation photocurrent density compared with that of
the bare BiVO, photoanode. When Ta:BiVO, was placed under

This journal is © The Royal Society of Chemistry 2023

DHA selectivity: = 60%

Photocurrent density: 3.5 mA cm > 61
DHA selectivity: =35%

DHA production: 138 mmol " m™
FE for DHA production: 19%

2

Photocurrent density: 0.27 mA cm > 62
DHA selectivity: 75.4%

DHA production: =172 mmol ' m™?

FE for DHA production: 62.2%

Photocurrent density: 2.12 mA cm™> 63
DHA selectivity: 72.1%

DHA production: =227 mmol ' m™~
FE for DHA production: =55%

2

Photocurrent density: 2.5 mA cm 2 64
DHA selectivity: =100%
FE for DHA production: 96%

an acidic condition (100 mM H,SO, in acetone/H,0), the fara-
daic efficiency of the DHA reached 96% and the selectivity
towards DHA was impressively close to 100%, which was
significantly higher than those in previous studies (Table 2).

2.2 C-H functionalization

The direct functionalization of a C-H bond can achieve the
construction of a carbon-carbon or carbon-heteroatom bond
without the independent preparation of reactive functional
groups, which is of high atomic and redox efficiency.®**”
However, the ubiquity and stability of C-H bonds make it
challenging to achieve high catalytic activity while maintaining
high selectivity.®® PECOS, harvesting light energy to provide
Gibbs energy for C-H activation and using electricity to control
the reaction rate, is a promising method to resolve this
dilemma. We offer here an overview of the hitherto developed
PEC-mediated C-H functionalization methods, including
examples of C-H halogenation, oxygenation, amination, phos-
phorylation, and C-C coupling.

2.2.1 C-H halogenation. The conventional methods for
synthesizing organic halides wusually require external
oxidants®»”® and harsh reaction conditions,”>”> which do not
meet the goal of sustainable production. As an alternative

J. Mater. Chem. A, 2023, 11, 3281-3296 | 3285
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A. C-H halogenation, Duan (2021)

Ti0,-0,(+)|Pt(-)
R—H - R—X
1.6 Vvs. RHE
Xe lamp (AM 1.5 G, 100 mW cm™2)
NaX (X =Cl, Br, 1)

B. Proposed mechanism

T ' 1

cs =

light

—_—
RN -
/
O Dlmerllatlon H,
CI o
. h‘ overTiO,-0,
ve |0 a
Photoanode Cathode

C. Representative examples

O/Cl @I/Me @Me ®/Me

15, con. 88.9%, sel. 54.9% 16, con. 82.5%, sel. 77.9% 17 ,con. 85.4%, sel. 81.2% 18, con. 90.2%, sel. >99%

(p/o: 1:1.3) (p/o:1.1:1) (p/0: 1:10)
0 Cl a
cl H
Bu COOEt
HO 0 N
H
OMe ca

19, con. 95.0%, sel. >99% 20, con. >99%, sel. 93.3% 21, con. 94.7%, sel. >99%

Fig. 3 Photoanode-mediated cyclohexane halogenation.

solution, photoelectro-catalytic C-H halogenation was achieved
over an oxygen-vacancy-rich TiO, (TiO,-O,) photoanode by
Duan's group in 2021.” Oxygen vacancies were introduced to
the pristine TiO, photoanode vig an annealing treatment in a H,
atmosphere. The introduction of oxygen vacancies narrowed
the band gap of TiO,, thereby improving the charge separation
efficiency, reducing the electron-hole recombination possi-
bility, and expanding the light absorption range. Moreover, the
oxygen vacancies on the surface of TiO, played a crucial role in
the adsorption of halide anions, which could increase the local
halide concentration around the surface of TiO, and hence
improve its catalytic performance towards C-H halogenation.
Taking sea water as the chloride ion source and electrolyte,
cyclohexane (13) could be converted into chlorocyclohexane (15)
with a productivity of 412 pmol h™" in a self-powered PEC
system. Based on the experimental results, a free-radical
mechanism was proposed (Fig. 3). On the surface of TiO,-O,,
halogen ions adsorbed by the oxygen vacancies are oxidized by
photogenerated holes to form halogen radicals, which then
activate the cyclohexane (13) into a cyclohexyl radical (14) and
participate in the generation of the final product. The scope of
such photoanode-mediated C-H halogenation is not limited to
chlorocyclohexane production, TiO,-O, can also achieve effi-
cient C-H chlorination, bromination, and iodination of
a variety of aromatic and heterocyclic aromatic hydrocarbons
(16-21).

2.2.2 C-H oxygenation. C-H oxygenation is an attractive
strategy for synthesizing value-added oxygenated products

3286 | J Mater. Chem. A, 2023, 11, 3281-3296
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A. C-H oxygenation, Berlinguette and Sammis (2017)

LA NHS, pyridine, ‘BuOOH o
:-:f’ S BiVO,(+)|glassy carbon(-) Ir:" 5
' 1
'k:\ - 0.8V vs. Ag/AgCl 'L:\ L
~ Xe lamp (AM 1.5 G, 100 mW cm™) he

Liclo,
MeCN

B. Proposed mechanism

[
B @é cd

light “BuOOH

. 7«@ Y
O 0

Photoanode Cathode
C. Products

VB

o

C i io
26, 75% yield (24 h) 27, 38% yield (8h)

Fig. 4 Photoanode-mediated C—H oxygenation at the a-position of
the alkane and arene.

(alcohols, aldehydes, and ketones) from cheap alkanes.”*” To
date, a few PECs adopting this strategy have been successfully
established.”®*”®

In 2017, Berlinguette and Sammis et al. carried out C-H
oxygenation at the a-position of the alkene and arene in a PEC
taking BiVO, as the photoanode.” The oxygenation of
substrates takes place in an indirect oxidation pathway: pho-
togenerated holes first oxidize an N-hydroxysuccinimide anion
(NHS™) into NHS', which then abstracts the o-H from the
substrate (22); the as-formed carbon-centered active species (23

A. Cyclohexane oxygenation, Sayama (2018)
WO, (+)|Pt(-), 0.5V
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‘BUOH, HNO,
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Fig. 5 Photoanode-mediated cyclohexane oxygenation.
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& 24) subsequently react with tert-butyl hydroperoxide
(‘BuOOH) and finally yield oxygenated products (Fig. 4).
Notably, the introduction of light energy enabled the reduction
of applied bias from 1.8 V in an electrochemical cell to 0.8 V in
a PEC, leading to a 60% decrease in energy consumption.

Using porous WO; as the photoanode, Sayama's group suc-
ceeded in C-H oxygenation of cyclohexane at room temperature
and atmospheric pressure.”” As shown in Fig. 5, the C-H bond
in cyclohexane (13) is directly activated by the photogenerated
holes on the photoanode and the generated cyclohexyl radical
(14) immediately captures a molecule O, in air to form a cyclo-
hexylperoxyl radical (28), whose disproportionated reaction
yields cyclohexanol (29) and cyclohexanone (30). Cyclohexanol
may also undergo a two-electron oxidation into cyclohexanone.
Under simulated-solar light irradiation, cyclohexane could be
converted efficiently with a high partial oxidation selectivity of
99%.

Compared with cyclohexane, methane (31) has a stronger C-
H bond (bond dissociation energy, BDE = 105 kcal mol™"),*
and hence, is more difficult to activate. The challenging
methane oxygenation towards ethylene glycol (EG, 35) has been
accomplished by Xiong and co-workers in a PEC equipped with
a monoclinic WO; photoanode.” Through the hydrothermal
method, they successfully grew WO; nanobar, nanoplate, and
nanoflake arrays on FTO substrates. The facet-dependent
performance of WO; was studied. It was found that WO;
nanobars, exhibiting the highest {010} facet ratio, has the best
EG productivity and selectivity upon light irradiation in an
acidic medium (pH 2.0 H,SO, solution), which may be due to
the high reactivity of *OH bound on {010} facets. A plausible
mechanism proposed by the author is illustrated in Fig. 6. First,
the H,O molecule is oxidized by the photoanode to generate the
surface-bound ‘OH. Methane (31) is then activated by “OH and
"CHj3; (32) is formed. The combination of *OH and "CH; leads to
the generation of CH3;OH (33), which subsequently undergoes
a similar activation process to form ‘CH,OH (34). The coupling
between two 'CH,OH yields the final product EG (35). The
byproduct ethane (36) may result from the coupling of two "CHj3
radicals.

A. Methane oxygenation, Xiong (2021)
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Fig. 6 Photoanode-mediated methane oxygenation.
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A. C—H amination, Hu (2019)
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Fig. 7 Photoanode-mediated arene amination.

2.2.3 C-H amination. Ubiquitous in natural and man-
made products, nitrogen-containing organic compounds have
a broad scope of applications.?*® Synthesizing these
compounds from C-H amination is very strategically attrac-
tive.®*® However, the conventional methods adopting this
strategy are suffering from harsh reaction conditions (excess
oxidant, elevated temperature, or high applied potential)®***° or
poor catalyst stability.””® A more sustainable solution was
devised by Hu and co-workers in 2019.°* Inspired by the similar
theoretical oxidizing power of the hematite valence band and
acridinium, the author adopted nanoporous hematite as the
photoanode and achieved the C-H amination of various arenes
with serval kinds of nitrogen nucleophiles (42-47). Taking
LiClO, as the electrolyte, the hematite photoanode was capable
of sustaining the long-time (10 h) C-H amination of anisole
with an acceptable yield (77%) in hexafluoroisopropanol (HFIP)
and MeOH co-solvent at a low external bias of 0.73 V vs. Fc¢/Fe"
without the need of an adscititious oxidant.

Surprisingly, an unusual ortho selectivity could be obtained
in this hematite-mediated PEC, which was speculated to be
originated from the interactions between the radical cations
and the solvent HFIP. Considering these experimental results,
the author proposed a mechanism for C-H amination (Fig. 7).
To begin with, the electron-rich arene (37) is directly oxidized by
the photogenerated holes to form a radical cation (38). With the
help of the HFIP molecule, the nucleophilic azole (39) attacks
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A. C-H phosphorylation, Wu (2019)
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Fig. 8 Photoanode-mediated C—H phosphorylation.

the ortho position of arene and generates an adduct 40, which
then loses one electron and two protons to form the final
product 42.

2.2.4 C-H phosphorylation. Organophosphorus
compounds are important structural motifs that widely exist in
agrochemistry, material chemistry, and biochemistry.”*** In
2019, Wu and co-workers achieved the P-H/C-H cross-coupling
in PEC and EC systems with hydrogen evolution.® In contrast to
traditional synthetic methods (e.g., transition metal catal-
ysis,®*®” chemical oxidation,®®* and photocatalysis***®"), this
work showed that the fabricated BiVO, PEC was able to produce
a series of C-P bond derivatives (52-56) in good to excellent
yields without the aid of any external oxidants or metal cata-
lysts. The applied bias to produce a (photo) current of 5.0 mA
was 0.1 V and 1.5 V in the BiVO, photoelectrochemical system
and the glassy carbon electrochemical system, respectively.
These potentials afforded the target products with very similar
yields after 12 h of (photo) electrolysis, indicating that PECOS is
a more energy-saving method than the traditional electro-
chemical organic synthesis.

A plausible mechanism for photoelectrochemical P-H/C-H
cross-coupling is outlined in Fig. 8. The holes reach the surface
of BiVO, to oxidize 48 into a radical cation intermediate (49).
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Then, the N-hydroxyphthalimide (NHPI) deprotonated by 2,6-
lutidine goes through an anodic oxidation to give the corre-
sponding PINO radicals. Next, the PINO radical extracts
a hydrogen atom from 49 to regenerate NHPI, and 49 is further
oxidized to afford an iminium ion intermediate (50), which
reacts with diphenyl-phosphine oxide (51) via a nucleophilic
attack to enable the formation of the final product with a C-P
bond (52).

2.2.5 C-C coupling. C-C coupling is an effective approach
for the construction of organic compounds with complex skel-
etons.'>'* In conventional organic synthesis, the formation of
a C-C bond is usually accompanied by discarding a huge
leaving group, which is of a low atomic economy.®® In contrast,
the coupling between two carbon radicals generated from C-H
activation only wastes two hydrogen atoms, thus making it
a greener synthetic strategy. In 2022, Wu and Kim et al. reported
the synthesis of N-bearing fused rings adopting this strategy in
a PEC with a BiVO, photoanode.'** Under blue LED irradiation,
the substrates 2-phenyl-1,2,3,4-tetrahydroisoquinoline (48) and
malononitrile (63) could be coupled into 5,12a-dihydroindolo

A. C—C coupling, Wu (2022)
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Fig. 9 Photoanode-mediated C-C coupling.
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[2,1-a]isoquinoline-12,12(6H)-dicarbonitrile (67) with a yield of
72% even without external bias. Meanwhile, 2-phenyl-1,2,3,4-
tetrahydroisoquinoline-1-carbonitrile (66) was found to be the
byproduct. BiVO, exhibited a similar reactivity after ten cycles of
catalysis, indicating long-term stability. The substrate scope
was further expanded by investigating the coupling between the
derivatives of 48 or 63. 68-75 are the representative examples of
products obtained by this method.

The possible reaction pathways are illustrated in Fig. 9.
Generally speaking, 48 loses its electron(s) at the photoanode
and forms either a radical (57) or cation (58) intermediate. In
the meantime, 63 undergoes a deprotonation process at the
cathode to generate a malononitrile anion 65. 65 could be
oxidized by the photoanode to give the malononitrile radical 66.
The intermediate product 58 is generated either from a radical
process (57 + 66) or from an ion process (50 + 65). After complex
oxidation, deprotonation, and radical cyclization processes, 58
is finally converted into N-containing fused ring compound 67.
The generation of byproduct 66 originated from the coupling of
50 and cyanide, which is produced via the oxidation of 63 or 66
by a superoxide anion reduced from the O, molecule at the
cathode.

2.3 Oxidation of other organic compounds

2.3.1 Furan. The first work using a PEC for furan oxidation
was presented by Sayama's group in 2017, where a BiVO,/WO;
composite was utilized as a photoanode.'® WO; and BivVO, were
sequentially deposited onto the FTO substrate through the spin-
coating method. Scanning electron microscopy revealed that
the BiVO,/WO; photoanode displayed a rough and porous
morphology. The oxidation was carried out in a mixture of
MeCN and MeOH, taking Et,NBF, and Et,NBr as the electrolyte.
When the system was irradiated by using a solar simulator (AM
1.5 G, 100 mW cm ™ ?), furan (76) could be converted into 2,5-
dimethoxy-2,5-dihydrofuran (DMDF, 77) with a faradaic effi-
ciency (>99%) at a low bias (0.1 V vs. SHE). It was found that the
addition of Et,NBr is crucial for the effective production of
DMDF and Et,NBr cannot be replaced by Br,, indicating that
furan was probably not oxidized by Br, but by a Br'-like species.
Based on these results, the author proposed a Br'/Br -mediated
indirect oxidation mechanism for furan conversion (Fig. 10).

In 2021, Kuang's group improved this reaction by using
a perovskite single-crystal thin film (SCTF) as the
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Fig. 10 Photoanode-mediated furan oxidation.
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Fig. 11 Dyes and catalysts used in photoanode-mediated sulfide
oxidation.

photoanode.’® A space-limited crystallization method was
applied to obtain the in situ growth of a methylammonium lead
bromide (MAPbBr;) SCTF on an FTO/TiO, substrate.'*”'® Later,
the surface defects of the MAPbBr; SCTF were greatly passivated
by the deposition of an ultrathin Al,O; layer, which effectively
enhanced the stability of the photoanode. After depositing
a Ti**-rich titanium layer, the stability and PEC performance of
the photoanode were further advanced. The maximum photo-
current density of the as-prepared MAPbBr; SCTF/Al,O;/Ti
photoanode was up to 7.8 mA cm ™2 at 0.8 V vs. Ag/AgCl, which
was significantly higher than that reported by Sayama's group
(0.55 mA cm™? at 0.5 V vs. SHE). Besides, this photoanode was
capable of maintaining its reactivity after 6 h of continual
DMDF production at an applied potential of 0.2 V vs. AgCl,
indicating that it possessed eminent stability towards PECOS.
DFT simulations unveiled the advantageous Br adsorption and
significant charge transfer on the Ti*"-titanium layer, which
explained the excellent PEC performance of the MAPbBr; SCTF/
Al,O5/Ti photoanode.

2.3.2 Sulfides. Early in 2015, Llobet and Palomares et al.
realized the oxidation of sulfide into sulfoxide in a PEC at
a proof-of-concept level.' Oxidation was performed on
a dye(78)-sensitized TiO, photoanode together with a homoge-
nous ruthenium-based catalyst (79) (the molecular structures of
the dyes and catalysts used in photoanode-mediated sulfide
oxidation are illustrated in Fig. 11). Even though a high faradaic
efficiency for H, evolution (89%) could be obtained, the yield of
sulfoxide is very low (ca. 0.6%).

One year later, Sun's group developed a molecular ruthe-
nium catalyst (80) modified hematite photoanode and applied it
to the PEC oxidation of thioanisole in aqueous solutions (pH =
3 potassium hydrogen phthalate buffer).** At an applied bias of
1 Vvs. RHE, the photocurrent density for thioanisole oxidation
reached around 300 pA cm > Long-term photoelectrolysis
exhibited a high faradaic efficiency of 93% and benzyl methyl
sulfoxide was found to be the only organic product.

The performance of the hematite photoanode was further
improved by Zhao, Chen, and Zhang et al. in 2021, where MeCN
rather than water was used as the solvent.”® In the preparation
of the photoanode, FeOOH was first hydrothermally grown on
a clean FTO substrate; then, a temperature-programmed
annealing treatment transformed FeOOH into hematite with
a nanowire morphology. It was found that a bare hematite
photoanode is able to produce methyl phenyl sulfoxide (81)
from thioanisole in an efficient manner. The author also
investigated the sulfoxidation reaction of para-substituted
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A. Sulfide oxidation, Zhao, Chen and Zhang (2021)
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Fig. 12 Hematite-mediated oxygen atom transfer reaction.

thioanisole derivatives (82-85) and discovered a negative
correlation in the Hammett plot, which suggested that the rate-
limiting step of hematite-mediated sulfoxidation has a posi-
tively charged transition state.'*"'**> Based on the experimental
results and theoretical calculations, an oxygen atom transfer
(OAT) mechanism was established (Fig. 12). Upon light illumi-
nation, holes are generated and trapped on the surface of
hematite to form two adjacent Fe'Y=0 sites. After that, the
nucleophilic substrate attacks the oxygen atom of one Fe"V'=0
site. The following step is the rate-determining step, where an
oxygen atom is transferred from the hematite surface to the
substrate with a concerted two-hole transfer after a positively
charged transition state. Finally, the oxygen vacancy left on the
surface is replenished by the water molecules in the solvent and
the catalytic cycle is completed. Notably, with such an OAT
mechanism, the hematite photoanode can also be applied to
other organic transformations such as PPh; oxygenation and
C=C epoxidation, but we will not introduce them in detail in
this review.

3. (Photo)cathode-mediated organic
synthesis

Compared with the widely researched photoanode-mediated
organic synthesis, the potential of a PEC cathode in organic

synthesis is nearly undeveloped. But there are, indeed, a few
published studies trying to cultivate (photo)cathode-mediated
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A. Propylene epoxidation, Kwak, Jang and Joo (2021)
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Fig. 13 Cathode-mediated in situ H,O, generation for propylene
epoxidation.

organic synthesis. Some of them utilize the electron transported
from the photoanode for in situ H,O, generation'*'* or
cofactor regeneration**''>'® to accomplish the oxidation or
reduction of organic substrates, while others adopt a photo-
cathode as an electron source."'”**®

3.1 Cathode-mediated in situ H,0, generation

H,0, is a powerful, environmentally benign oxidizing agent
because it has considerable oxidation potential (H,0,/H,O:
+1.76 V vs. NHE)">'** and does not generate toxic reduction
products. It has been reported that heterogenous catalyst tita-
nium silicalite-1 (TS-1) has the capacity of using H,O, to
selectively epoxidize propylene (86).'*'** The current method
for H,0, production, however, is the inefficient anthraquinone
process which meanwhile produces organic waste."”® In 2021,

A. Asymmetric C—H oxygenation, Park (2019)
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Fig.14 Cathode-mediated in situ H,O, generation for asymmetric C—
H oxygenation.
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Kwak, Jang, and Joo et al. presented a bias-free PEC system
where in situ photoelectrocatalytic H,O, generation was coupled
with propylene epoxidation mediated by TS-1."** In this system,
the photoanode consisted of a BiVO, film for light harvesting
and cobalt phosphate (CoPi) deposition as an oxygen evolution
catalyst; the cathode was made of carbon nanotubes with
atomically dispersed Co-N, sites (Co-N/CNT), which enabled
the selective reduction of O, to H,0, (Fig. 13). When TS-1 was
dispersed in the cathodic electrolyte (pH 6.0 NaPi buffer), the
PEC managed to continuously produce propylene oxide (87) at
a rate of 11.8 pmol h™" with a selectivity higher than 99%. This
work demonstrated that it is practical to carry out propylene
epoxidation in a green and sustainable manner by coupling
PEC-mediated in situ H,O, generation with heterogeneous
catalysis.

Besides heterogeneous catalysts, heme-dependent enzymes,
especially unspecific peroxygenases (UPOs), also have the ability
to transfer the oxygen atom in H,0O, to organic substrates."**
Therefore, UPOs should be able to cooperate well with a PEC in
the oxidation of organic compounds. In fact, a recombinant
peroxygenase from Agrocybe aegerita (rtAaeUPO) has been used
in a PEC for the C-H oxygenation of ethylbenzene (85) by Park's
group in 2019." In their PEC system, the cathode was
a graphitic carbon nitride (CN)/reduced graphene oxide (rGO)
hybrid film. The cathode-mediated in situ H,O, generation was
powered by a FeOOH/BiVO,-Cu(In, Ga)Se, photoanode-
photovoltaic tandem structure which provided sufficient pho-
tovoltage. By carefully tuning the loading amount of rGO, the
production rate of H,O, was optimized, which maximized the
conversion rate of ethylbenzene and maintains the activity of
rAaeUPO. Upon illumination, (R)-1-phenylethanol (89) was
produced at a rate of 0.89 mM h ™' with an enantiomeric excess
(ee) value higher than 99% in a pH 7.0 KPi buffer, indicating the
successful cooperation between the PEC and the enzyme
(Fig. 14).

Recently, Park's group provided another example by using
anthraquinone-2-carboxylic acid (AQC) anchored carbon fiber
paper (CFP) as the cathode.'® They adopted Zr-doped

A. C=0 reductive amination, Park (2018)
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Fig. 15 Cathode mediated cofactor regeneration for C=0O reductive
amination.
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hematite as the photoanode, which had the capability of
converting poly(ethylene terephthalate) (PET) microplastics
into chemical fuels in an alkaline medium (5 M NaOH). The
electron extracted from PET is transferred to the cathode and
reduces the anchored AQC into AQCH,, which then reacts with
O, and realizes the in situ H,O, generation in a pH 6.0 KPi
buffer (Fig. 16). With the help of rAaeUPO, the oxygen atom in
H,0, could be transferred into a variety of organic substrates
such as ethylbenzene, cyclohexane, tetralin, and cis-B-
methylstyrene (92).

3.2 Cathode-mediated cofactor regeneration

Having extraordinary catalytic activity and selectivity, redox
enzymes are ideal catalysts for redox reactions in organic
synthesis.'?>*** Nevertheless, many redox enzymes can only
reduce organic substrates in the presence of expensive cofac-
tors, which limits their applications in industrial produc-
tion."””"*® Regenerating cofactors from their oxidized forms
during the reaction can not only sustain the reduction of
organic substrates but also minimize the amount of cofactor
addition.

In 2018, Park's group employed this strategy for the
production of r-glutamate (91) in a PEC system.'*® A tandem
structure of light-absorbing layers (FeOOH/BiVO, photoanode
and perovskite solar cell) was constructed to generate the bias
for the cathode reaction. On the surface of the carbon nanotube
(CNT) film cathode, the electron is transferred to an Rh-based
electron mediator M ([Cp*Rh(bpy)H,O]**, Cp* = Cs;Mes, bpy
= 2,2"bipyridine), which then realizes the regeneration of

A. Schematic diagram, Park (2022)
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Fig.16 PET conversion coupled with cathode-mediated biosynthesis.
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Fig. 17 Photocathode-mediated C—H oxygenation.

nicotinamide adenine dinucleotide (NADH) by reducing NAD".
The rapid rate of NADH regeneration enabled glutamate dehy-
drogenase (GDH) to efficiently convert a-ketoglutarate (90) into
r-glutamate at an initial rate of 2.4 mM h™" in a pH 7.5 phos-
phate buffer, which was comparable to the production rate
obtained in the enzymatic NADH recycling system (Fig. 15).

Cathode-mediated cofactor regeneration has also been
coupled with the aforementioned PET conversion by Park's
group."” M was also used as the mediator for the electron
transfer between the bare CFP cathode and NAD'. The regen-
erated NADH can participate in either the reductive amination
of C=0 bonds catalyzed by GDH or the hydrogenation of C=C
bonds driven by the old yellow enzyme (OYE) (Fig. 16).

3.3 Photocathode-mediated organic synthesis

The first photocathode-mediated PECOS was reported by Park's
group in 2017."" In this work, the photocathode was prepared
by anchoring flavin molecules on the surface of a single-walled
carbon nanotube (SWNT) cathode. Under illumination, photo-
sensitive flavin molecules are excited and then converted to
their reduced form by receiving electrons from an SWNT
cathode. Reduced flavins facilitate the charge transfer between
SWNTs and O, thereby decreasing the overpotential of O,
reduction. When luminchrome (LC), a kind of flavin derivative,
was immobilized on the surface of SWNTs, O, was reduced to
H,0, at —0.32 V vs. Ag/AgCl with a photocurrent density of
—1.42 mA cm™?, which was better than the performance of
pristine SWNTs (—0.49 V vs. Ag/AgCl and —0.87 mA cm ™ ?). By
coupling photocathode-mediated H,O, generation with proper
peroxygenase-catalyzed reactions, the oxidation of alkane (88),
arene (96), and indole (98) in phosphate buffer was respectively
achieved (Fig. 17).

In 2021, Wu's group developed an Sb,(S, Se); photocathode
for the selective functionalization of aryl halide."*® The Sby(S,
Se); photocathode had an ultra-narrow band gap (1.20 eV) and
a rod-like structure with high surface area, which were benefi-
cial for the light absorption performance in the visible and near-
infrared region and for the electron and mass transportation
ability, respectively. An organic photocatalyst N,N-bis(2,6-ddii-
sopropylphenyl)perylene-3,4,9,10-bis(dicarboximide) (PDI) was
introduced in the electrolyte to promote the electron transfer
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Fig. 18 Photocathode-mediated C—-X activation.

between the photocathode and aryl halides. It was found that
light and PDI played crucial roles in the catalytic activity, and
"Bu,NAcO-containing DMSO was the best reaction medium.
Under optimized reaction conditions, 4-bromoacetophenone
could be activated and coupled with N-methyl pyrrole with an
excellent yield of 89% (Fig. 18, 104), which was much higher
than that in photocatalytic and electrophotocatalytic C-X acti-
vation mediated by PDI, demonstrating the superiority of this
coupled PEC-photocatalysis (c-PEC/PC) system. The substrate
scope was also explored. It turned out that such c-PEC/PC was
tolerant to a broad scope of aryl halides and trapping agents
(105-111).

A plausible mechanism for this photocathode-mediated C-X
functionalization is displayed in Fig. 18. Upon light illumina-
tion, electrons in Sb,(S, Se); are excited from the valence band
to the conduction band. The anion-r interaction between the
electrolyte anion OAc™ and photocatalyst PDI makes PDI easier
to be oxidized. PDI can either be reduced by the photogenerated
electron at the surface of the photocathode or accept an electron
from OAc™ to form PDI, which can be further excited by
a photon into the more reductive PDI “*, PDI “* then transfers
one electron to the aryl halide (100), leading to the formation of
a radical anion intermediate (101). After that, the C-X bond
breaks heterolytically, forming an aryl radical (102). The aryl
radical subsequently reacts with the trapping reagent and loses
one electron at the anode to yield the coupling product (103).

This journal is © The Royal Society of Chemistry 2023
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4. Conclusions and perspectives

In this review, we summarize recent advances in photo-
electrochemical alcohol oxidation, C-H functionalization, and
(photo) cathode-mediated organic synthesis. Compared with
electrochemical systems, PEC systems are still in their infancy
but offer prospects for the evolution of solar-induced organic
transformations towards better, cheaper, higher efficiency, and
sustainable alternative reaction methodologies. Following on
from here are four major aspects that will enable photo-
electrochemical organic transformations to become a broad
subject of interest in the future:

(1) In conventional photoelectrochemical setups, typically,
electrode distances range from millimeters to centimeters. The
PEC reaction efficiency could be affected by the inefficient
mixing of the persistent radical and transient radical. There-
fore, how to enhance substrate diffusion will be the key problem
of PECOS. (I) The extremely thin interelectrode gap would
prevent intermediate decomposition, selectively
producing the target product. Considering this aspect, new PEC
devices should be developed to minimize electrode spacing and
improve reaction efficiency. (II) In heterogeneous catalysis, the
porous nanocatalyst formed on a photoanode can increase the
exposure of active sites. The active intermediates produced on
the catalyst surface can accelerate the diffusion of thesubstrate
during photoelectrolysis.

(2) Heterogeneous catalysis has attracted more attention
from researchers due to the tunability of the catalyst structure,
morphology and size. From the perspective of economic
resources, heterogeneous catalysis avoids the separation
process, reduces the cost of catalysts, and realizes recyclable
applications. In the future, various catalysts can be modified on
the surface of the photoelectrode to generate high-value-added
chemicals. For example, high surface area nanopores can be
deposited on the photoanode by atomic layer deposition,
chemical synthesis, and chemical vapor deposition, which can
play a vital role in various organic transformations with
enhanced efficiency.

(3) Transition metal catalysis plays an important role in
biochemistry and medicinal chemistry, but its large-scale
production is limited by harsh reaction conditions. At
present, great progress has been made in electrochemical
transition metal catalysis, but not in photoelectrochemical
transition metal catalysis. Transition metal catalyst deposition
on photoanodes can potentially add more value to this process
as cocatalysts can offer additional oxidation or reduction active
sites. In the future, photoelectrochemical metal catalysis is
a new technology for organic synthesis.

(4) Asymmetric catalysis has always been the most chal-
lenging research area and the focus of organic chemists. At
present, many factors are hindering the development of elec-
trochemical asymmetric catalysis. For example, chiral catalysts
are easy to inactivate during electrolysis. The bottleneck of this
field is to develop appropriate catalysts that can withstand
electrochemical oxidation and provide stereoselective control.
In contrast, photoelectrochemical asymmetric catalysis has

active
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unique advantages due to its lower bias voltage, which can
effectively prevent peroxidation, ligand deactivation, and other
problems. In the future, the development of photo-
electrochemical asymmetric catalysis will add new vitality to
organic synthesis methodology.
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