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Noncentrosymmetric (NCS) silicon phosphides have recently shown promise as nonlinear optical materials
due to the balance of strong second harmonic generation (SHG) activity and large laser damage threshold
(LDT) values. While arsenides of electropositive metals, such as Ba, Mg, Zn, and Cd were explored, no NLO
properties for transition metal tetrel arsenides have yet been reported. IrSizAsz is a novel compound,
isostructural to IrSizP3, which allows a direct investigation on the impact of the heavier pnictogen on
structural and optical properties. The direct bandgap is reduced from 1.8 eV for IrSizPs to 1.55 eV for
IrSizAsz. Unlike many NLO chalcogenides, IrSizAss has a small bandgap without compromising the
balance between SHG signal and high LDT values. IrSisAss was found to outperform both its phosphide
analogue IrSizPs, as well as the state-of-the-art infrared SHG standard AgGasS, (AGS) in SHG activity and

rsc.li/materials-a the LDT.

Introduction

Noncentrosymmetric (NCS) structures give rise to interesting
physical phenomena and have been sought after in the
condensed matter physics community. Reinvestigating M-Si-P
phases to understand their structure-property relationships
opens the door for the discovery of novel tetrel-pnictide mate-
rials with exciting physical properties. An example stems from
the case of IrSi;P;, which was previously reported in the incor-
rect space group,' then reinvestigated by our group and was
found to have excellent nonlinear optical (NLO) properties.”
IrSi;P; crystallizes in the polar monoclinic space group Cm. The
exploration of the arsenide system resulted in the discovery of
the first example of an ordered noncentrosymmetric (NCS)
transition metal silicon arsenide, IrSizAs;. The other reported
NCS transition metal silicon-arsenide, Fe;SiAs, crystallizing in
the NisAs, structure type (P6s;cm space group), was reported to
have random mixing of Si and As in all sites.® The introduction
of As into heavier metal silicides also resulted in mixed Si/As
sites such as the centrosymmetric MosSi,As superconductor.*
Among 5d transition metals, only a few metals were reported to
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form silicon arsenides with the common formula MSiAs but
drastically different structures for M = Hf, Ta, and M = Au.*” By
using isovalent replacements of the pnictogen (P with As), the
materials’ properties can be adjusted. Novel metal silicon
arsenides based on known metal silicon phosphides may be
a successful approach to realize materials with symmetry-driven
physical properties, such as second harmonic generation,
topologically non-trivial phenomena, piezoelectricity, and
superconductivity.>>**3

Tetrel pnictides have only been recently highlighted for their
advantages as infrared-nonlinear optical (IR-NLO) mate-
rials,>*'*'” as compared to their more popular and much more
studied chalcogenide counterparts. Synthetic methodology
which we developed for phosphides, including the reaction of
phosphorus with an atomically mixed refractory precursor, pre-
melted M + Si, allowed the discovery of several previously
inaccessible compounds.>'*** In this work we extended this
methodology to arsenides. Based on the ease of synthesis and
discovery of the title compound, IrSizAs;, it is expected that
many other metal tetrel arsenides exist with likewise exciting
properties. The structure-property relationships including
crystal and electronic structures, and optical and transport
properties of IrSi;As; are reported.

Results and discussion

Crystal structures

IrSizAs; crystallizes in the NCS monoclinic space group Cm (no.
8) with fully occupied sites. High-resolution single crystal X-ray
diffraction (SCXRD) datasets were collected (sin f,./A = 0.9
A~") and solved. The overall structural motif is similar to that of
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the P-containing analogue, IrSizP;. Nevertheless, heavy twin-
ning of the produced crystals resulted in relatively large R-values
and differences in electron density peaks. To verify the
produced structural model, a high-resolution synchrotron
powder X-ray diffraction dataset was used for Rietveld refine-
ment, which confirms the fully ordered crystal structure (Fig. S2
and Table S27).

The crystal structure is composed of NCS fac-[IrSizAs;] octa-
hedral units, with 3 Si atoms composing one face and 3 As
atoms composing the other. These units are held together by Si-
As bonds, packed into an extended NCS structure (Fig. 1).
Energy dispersive X-ray spectroscopy (EDS) was used to confirm
the composition of IrSi;As;. EDS shows an absence of foreign
elements and resulted in the compositions of IrSi; ;)As3.1(4)
averaged over several sites on different synthetic batches.

Assuming an ionic nature of metal-silicon and metal-
arsenic bonds, i.e. a Zintl-Klemm counting scheme, each As
atom forms three covalent bonds to Si thus being As®. In turn, Si
atoms bonded to three arsenic atoms have a formal charge of
—1. This leads to a +3 oxidation state for iridium: Ir**(Si')s(-
As®);. Due to the strong ligand field of a Si ligand, a low-spin
closed-shell d® configuration of Ir is expected, which is favor-
able for SHG materials.

Octahedral top view
3.578 A

Fig. 1 Crystal structure of IrSizAss with the unit cell outlined in thin
black lines showing Ir@SizAss octahedra highlighted in light purple
(left) and a top-down view of the distorted octahedron emphasizing
selected distances and angles (right). Ir: purple, Si: black, and As: pink.

Table 1 Crystallographic data for IrSizPs and IrSizAss
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The distortion of the octahedral unit is more extreme in the
arsenide than in the phosphide structure (Fig. S1 and Table
S1t). Crystallographic details are outlined in Table 1, showing
a comparison of the previously published IrSi;P; structure to
the new IrSi;As; reported here (showing both SCXRD and
Rietveld refinement structural results). Although isostructural
to the parent phase of IrSizP;> the electronegativities and
relative sizes of atoms in IrSiz;As; slightly change the bond
distances observed in the structures. The Pauling electronega-
tivity of Ir (2.20) is similar to that for P (2.19) and As (2.18).°
Silicon (1.90) is the most electropositive atom in the studied
systems. The nonmetal covalent radii are also of consideration
here; P (1.11 A) is smaller than Si (1.17 A) and As (1.22 A). When
Ir silicon phosphide and arsenide are compared, the inter-
atomic Ir-Pn distances elongate (Table 2). In IrSizAs;, the Ir-Si
(2.34-2.37 A) bond distances are comparable to the those of Ir-
Si (2.36-2.40 A) in IrSizP;, but Ir-As (2.52-2.64 A) and Si-As
(2.34-2.43 A) distances are longer than Ir-P (2.41-2.51 A) and
Si-P (2.24-2.31 A) ones in the structure of IrSi;P;. Furthermore,
the Ir-Si bond distances of 2.34-2.37 A are similar to bond
distances found in binary metal silicide IrSi (2.32-2.56 A).!

Synthesis and thermal stability

The synthesis of the title compound was achieved via our
developed strategy of atomically mixed precursors (arc-melted Ir
+ 3Si) to introduce both refractory elements into the reaction
with As in close spatial and temporal proximity.>** Phase-pure
samples were achieved as described in the Experimental
section and characterized by powder X-ray diffraction (PXRD).
Generally, metal silicon phosphides (with M/(Si + P) < 1) have
high thermal stabilities (up to 1100 °C), whereas silicon arse-
nides, germanium phosphides, and germanium arsenides tend
to have lower thermal stabilities, as was observed for the family
of equimolar gold tetrel pnictides.” Along this trend, IrSi;P;
exhibits no decomposition or melting up to 1100 °C, while
IrSizAs; decomposes at around 1060 °C (Fig. S3t) into binary
iridium silicides and arsenides as confirmed by PXRD.

IrSisP;> IrSizAs; (SCXRD) IrSizAs; (Rietveld)
Space group (no.) Cm (no. 8) Cm (no. 8) Cm (no. 8)
Radiation (1) Mo K, (0.71073 A) Mo K, (0.71073 A) Synchrotron (0.45895 A)
Temperature (K) 100 100 295
Z 2 2 2
Density, p (g cm ) 5.293 6.506 6.496
a(A) 6.5895(3) 6.8373(5) 6.8476(1)
b (A) 7.2470(3) 7.4722(5) 7.47633(1)
¢ (A) 5.4916(3) 5.6941(4) 5.69156(9)
8 (°) 117.892(1) 118.420(3) 118.4270(2)
Vol. (A%) 232.78(2) 255.85(3) 256.2468(5)
Final R indices[all data] R, =0.013 R, =0.041 x> =2.0

WR, = 0.028 WR, = 0.099 WR =10.7%
w (mm™1) 30.425 45.88 —
Data/parameters 2059/38 1417/22 —
Flack parameter 0.01(1) 0.10(1) —
Goodness-of-fit 1.06 1.13 —
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Table 2 Bond distances of IrSizPs and IrSizAsz

IrSi; P IrSizAs;

Distance (A) Distance (A)

Ir-Si 2.356(1) Ir-Si 2.335(4)
2.406(3) 2.372(6)
Ir-P 2.404(1) Ir-As 2.523(3)
2.512(3) 2.641(2)
Si-P 2.240(2) Si-As 2.432(7)
2.287(2) 2.391(3)
2.288(2) 2.341(4)
2.306(5) 2.405(4)

Electronic structures

Band structures and density of states (DOS) were calculated to
predict electronic properties of IrSizAs; using the tight binding-
linear muffin tin orbital-atomic sphere approximation (TB-
LMTO-ASA) code (Fig. 2).”* The band structure slightly
changes for IrSizAs; as compared to that for isostructural
phosphide with an indirect bandgap of 1.05 eV, with the valence
band maximum at the M point in the Brillouin zone and the
conduction band minimum between the I" and Z points. The
direct bandgaps of 1.46 eV and 1.59 eV are seen at the L and V
points, correspondingly (Table 3).

Energy (eV)

10 T T T T
— Ir 5d
I si 3p
—— As 4p
— 5 —— Total |]
>
L
>
o 0 .
—
Q
=
w
-5 J
-10

o 1 2 3 4 5 6 7 8
DOS (states/cell)

Fig.2 Band structures and DOS for IrSizAss with Ir 5d, Si 3p, and As 4p
atomic orbitals projected (16 x 16 x 16 k-mesh).
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Table 3 Summary of calculated and experimental optical bandgaps
for IrSizAss

Direct (eV) Indirect (eV)

LMTO Optical LMTO Optical
1.46 (L) 1.55 1.05 (M, z-T") 1.20
1.59 (V)

The DOS for IrSizAs; is comparable to the DOS calculated for
IrSi;P;.”> Strong hybridization of the Ir 5d and Si/As 3p/4p states
is observed in both valence and conduction bands over a large
energy range which suggests covalent Ir-Si and Ir-As bonding.
The total DOS plots show a steep slope of states near the Fermi
level, which is typically indicative of a high Seebeck coefficient.
If the bandgap of another structural analogue can be further
shrunk to a narrow gap (0.1-0.5 eV), perhaps by using heavier
tetrel and pnictogen elements such as Ge or Sn and Sb or Bi,
these materials may be efficient thermoelectrics.

Optical and transport properties

To verify the predicted bandgaps, diffuse reflectance measure-
ments were conducted. Tauc plots for direct and indirect
bandgaps are shown in Fig. 3, with IrSi;P; shown for compar-
ison. For IrSizAss, the direct bandgap (1.55 eV) is larger than the
indirect one (1.20 eV) in a good agreement with the calculated
band structure (Table 3). Additionally, four-probe resistivity
measurements were conducted on sintered pellets of IrSizAs;,
which showed typical semiconducting temperature dependence
(Fig. S47).

A powder sample of IrSi;As; was measured using the Kurtz
and Perry method with a Q-switch 2.09 um laser source (3 Hz, 50
ns).> Due to the smaller bandgap and long shortwave absorp-
tion edge of the material, the SHG signal may have been
weakened. Regardless, IrSizAs; outperformed the AGS standard
at all probed particle sizes. IrSizAs; did not show phase
matchability due to the decreasing SHG signal at 88-105 um

IrSi,P, IrSi,As,

Direct
(ahv)? (arb. units)

10 12 14 16 18 20 22

16 18 20 22 24 08

Indirect
(ahv)'? (arb. units)

10 12 14 16 18 20

hv (eV)

10 12 14 16 18 20 22 08

hv (eV)

Fig.3 Tauc plots for direct and indirect optical bandgaps of IrSizPs and
IrSi3AS3.
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(Fig. 4). Nevertheless, the sample showed a large SHG response
compared to the current state-of-the-art standard of AgGas,
(AGS) with a maximum signal of 1.7x AGS signal, which is
similar to the response seen in a different experimental set-up
for IrSi;P; where the SHG response was 1.6x AGS signal. The
signal is relatively robust for an arsenide phase with a smaller
bandgap than for the phosphide phase. Further studies of the
SHG efficiency with respect to variations of wavelength,
frequency, and energy of incoming radiation will be possible
after large optical quality single crystals of IrSi;P; are produced.

The stability of the material under laser conditions is
another important property for the application of nonlinear
optics; the laser damage threshold (LDT). To evaluate LDT we
used a short wavelength high-energy laser (1.06 um10 Hz, 5 ns).
IrSizAs; has a high LDT value of 68 MW ¢cm~> compared to AGS
with an LDT of 29.6 MW cm ™ %; ~2.3 x AGS. The main advantage
of transition metal tetrel pnictides is the balance of good SHG
with high LDTs at relatively small bandgaps (Table 4). Gener-
ally, chalcogenides have larger bandgaps and therefore larger
SHG signals, but lack stability under laser irradiation.

Our work demonstrates the promise of arsenides for non-
linear optical applications. Covalent metal-Si and metal-As
bonding realized remarkable LDT properties — a feature unex-
pected for arsenides with a relatively small bandgap. Iridium is
an expensive metal and materials containing iridium found use
for niche applications. An importance of the current work is in
the demonstration that the completely unexplored field of

350 T T
= AgGaS,
a0l | ® IrSi;As, o )

250 |- e ° i

SHG signal (mV)

150 |- - -

50

1 1
55-88 88-105 105-150 150-200
Particle size (um)

38-55

Fig. 4 SHG activity vs. particle size for IrSizAss and AGS.

Table 4 Comparison of second harmonic generation (SHG) and laser
damage threshold (LDT) values for various ternary tetrel pnictides,
including IrSizAss, normalized to the AgGaS, (AGS) standard

Composition SHG/LDT (xAGS)
AgGas, (AGS) 1.0/1.0
IrSi;P; 1.6/1.6
IrSizAs; 1.7/2.3
MgSiAs, 0.6/1.1
MnSiP, 6.0/2.4
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transition metal silicon-arsenides has promise for NLO appli-
cations due to lower meting points in comparison to corre-
sponding phosphides, thus opening the possibilities for crystal
growth, yet preserving excellent optical properties. In analogy
with the development of earth-abundant substitutes for scarce
Ir and Pt metals in homogeneous and electro-catalysis fields,
one can expect that silicon-arsenides with more earth-abundant
transition metals and outstanding NLO characteristics will be
developed, which is a subject of undergoing research.

Experimental
Synthesis

Warning: The As vapor pressure produced at high temperatures
may be sufficient to compromise the reaction ampoule and may lead
to ampoule shattering. For related reactions, the amounts of toxic
As should be kept to a minimum. Additionally, reaction ampoules
may be wrapped in protective ceramic wool casings to limit the
impact of potential ampoule breakage. Placing furnaces in a well-
ventilated space, like a fumehood is highly recommended.

All samples were prepared via solid-state reactions between
a metal silicide precursor and arsenic powder (Alfa Aesar,
99.999%) without the use of flux or crystallizing agents. Each
reaction was loaded into a fused silica ampoule, evacuated,
flame-sealed, and then annealed in a muffle furnace at the
profile specified below.

IrSi; precursor. Iridium metal pieces were acquired from the
Materials Preparation Center (MPC) at Ames Laboratory, which
is supported by the US DOE Basic Energy Sciences. The IrSi3
precursors were prepared using Ir pieces (99.9999%, Lot# PM-
1501, MPC, US DOE Ames Laboratory, USA) and Si chips
(99.99996%, Lot Si-18, MPC, US DOE Ames Laboratory, USA).
The samples with a total mass of 1 g were weighed out in a ratio
of Ir: Si = 1:3.1 to account for the evaporation of silicon. The
samples were then placed in an arc-melter onto a copper hearth
along with oxygen getter materials (zirconium metal). The arc-
melter chamber was sealed and evacuated for 20 minutes fol-
lowed by purging with argon; this process was repeated 3 times
to ensure that no oxygen was present in the chamber. During
arc-melting, the getters were melted first to ensure the absor-
bance of any trace oxygen, and then the samples were heated
using a current of I ~70 A until molten, and then allowed to
solidify, flipped, and re-arced 2 more times to ensure homoge-
neity at a current of I ~100 A. Powder X-ray diffraction (PXRD)
shows that the products of the precursors were IrSi;.

IrSiz;As;. Finely ground IrSi; precursor and arsenic powder
were added to a silica ampoule in a 1: 3 molar ratio for IrSizAs;.
This heating profile involves a 14 hour ramp up to 800 °C,
dwelling at that temperature for 72 hours, and then allowed to
cool naturally back to room temperature. The product was
a dark grey powder with a slightly brown tint.

X-ray diffraction

Powder X-ray diffraction (PXRD) was carried out on a Rigaku 600
Miniflex with Cu-K, radiation with a Ni-Kg filter. Single crystal
X-ray diffraction (SCXRD) datasets were collected on a Bruker

This journal is © The Royal Society of Chemistry 2023
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D8 Venture diffractometer with Mo-K,, radiation at 100 K. The
data were collected with w-scans at 0.3° step widths and inte-
grated using the Bruker SAINT software package. The structure
was determined and refined using the SHELX suite of
programs.* The FINDSYM program was used to determine
Wyckoff positions.>*>*

High resolution synchrotron powder diffraction data were
collected at beamline 11-BM at the Advanced Photon Source
(APS), Argonne National Laboratory using an average wave-
length of 0.45895 A. A mixture of NIST standard reference
materials, Si (SRM 640c) and Al,O; (SRM 676) is used to cali-
brate the instrument, where the Si lattice constant determines
the wavelength for each detector. Corrections are applied for
detector sensitivity, 26 offset, small differences in wavelength
between detectors, and the source intensity, as noted by the ion
chamber before merging the data into a single set of intensities
evenly spaced in 26.>*° Rietveld refinement was performed in
CSAS-II software.*

Scanning electron microscopy (SEM)

Elemental analyses of powder and single crystal samples were
performed using an FEI Quanta 250 field emission-SEM with
energy dispersive X-ray spectroscopy (EDS) detection (Oxford X-
Max 80) and Aztec software. Samples were mounted in epoxy,
polished to a level surface, and coated with a conductive layer of
carbon. The energy of the electron beam used was held constant
at 15 kv.

Differential scanning calorimetry (DSC)

DSC was used to determine each sample’s thermal stability. The
samples were analyzed with a Netzsch DSC 404 F3 Pegasus.
Approximately 20 mg of each phase-pure polycrystalline sample
was sealed into an evacuated silica ampoule and measured
against a blank. Both heating and cooling profiles were
collected using a 10 K min ™" rate from 50 °C to 1100 °C.

Solid state diffuse reflectance spectroscopy

Solid state UV-vis spectroscopy measurements were taken on
a PerkinElmer Lambda 1050+ UV/Vis/NIR spectrometer equip-
ped with a 150 mm Spectralon-coated integrating sphere. Finely
ground samples were loaded into a powder holder equipped with
a lens. The samples were pressed against the lens and held in
place by a press and a spring within the holder. The holder was
then placed at the reflectance port while the specular port was
left open. The iris aperture was adjusted so that the sample beam
was focused only on the samples. A sample holder containing
a lens and Spectralon reference standard was used as a blank.
The Kubelka-Munk conversion of the diffuse reflectance data
was used to determine the bandgap of all the samples. Figures
showing the band gap of the samples are expressed as Tauc plots.

Second harmonic generation and laser damage threshold

Powder SHG responses were estimated via the Kurtz and Perry
method,>?" using a Q-switch laser (2.09 um, 3 Hz, 50 ns) with
different sample particle sizes, including 38-54, 54-88, 88-105,

This journal is © The Royal Society of Chemistry 2023
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105-150, and 150-200 um. The as-grown high-quality AgGas,
single crystal was ground by the Bridgman-Stockbarger method
and sieved into the same size range as the reference. The laser
damage thresholds (LDTs) were evaluated on a powder sample
(150200 pm) with a pulsed Nd:YAG laser (1.06 um, 10 Hz, 5 ns).
Similar size AgGaS, is chosen as the reference. To adjust
different laser beams, a 10 optical concave lens is added into the
laser path. The damage spot is measured by the scale of an
optical microscope.

Spark plasma sintering (SPS)

Powders were well-ground under hexane, sieved through a 100-
mesh screen, and then loaded into a 5 mm diameter graphite
die, with WC plungers and graphite foil spacers. The SPS
chamber was evacuated, and then partially filled with Ar gas to
decrease the likelihood of arsenic outgassing. The pellet of
IrSizAs; was prepared by initially applying a pressure of 51 MPa,
then heating to 400 °C over 5 minutes and further heating to
600 °C over 10 additional minutes. At the maximum tempera-
ture of 600 °C, the pressure was increased to 255 MPa and
allowed to dwell for 10 minutes. This pressing profile resulted
in a 60% geometrical relative density pellet.

Resistivity measurements

Temperature dependence of electrical resistivity was measured
on a sintered pellet of IrSi;As; on a commercial multipurpose
physical property measurement system (PPMS, Quantum
Design). Electrical resistivity was measured from 150-300 K
with a four-probe geometry using the alternating current
transport option using 50 um platinum wires and silver paste.

Quantum chemical calculations: electronic structure

The band structures and density of states (DOS) of IrSizAs; were
calculated using the tight binding linear muffin tin orbital
atomic sphere approximation (TB-LMTO-ASA) program.> The
calculations used basis sets of Ir (6s, 6p, 5d), Si (3s, 3p), and As
(4s, 4p) atomic orbitals, with the Ir (5f), Si(3d), and As (4d) ones
downfolded. The band structures and DOS of each structure
were calculated after convergence of the total energy on a dense
k-mesh of 16 x 16 x 16 points, with 2176 irreducible k points.

Conclusions

Structures and properties were determined for IrSizAs; and
compared against those of IrSizP; Replacement of P with As
resulted in shrinking of the direct bandgap from the 1.8 eV of
IrSi;P; to 1.5 eV for IrSizAs;. Nevertheless, the balance of the
second harmonic generation signal and laser damage threshold
is maintained and IrSi;As; still outcompetes the state-of-the-art
AgGaS, standard by both characteristics. This work demon-
strates that non-centrosymmetric transition metal tetrel arse-
nides may be viable nonlinear optical materials given their
lower melting point than that of phosphides.
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