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oach for the synthesis of chiral b-
aminoketones using an encapsulated chiral Zn(II)–
salen complex†

Pratikkumar Lakhani, a Sanjeev Kane,b Himanshu Srivastava,b U. K. Goutamc

and Chetan K. Modi *a

To enable sustainable chemical transformations, it is imperative to adopt ecofriendly strategies aligned with

economic growth and environmental preservation. We present a more environmentally conscious method

for synthesizing Zn(II)–salen ligand encapsulated within an MWW host as a heterogeneous chiral catalyst,

denoted as Zn(II)–salen@MWW. Various techniques, including FTIR, FESEM, EDX, XRD, BET, and XPS were

used to confirm the successful chiral Zn(II) ligand encapsulation. Utilizing an uncomplicated ultrasonic

approach, the synthesized catalyst efficiently produces chiral b-amino carbonyl compounds at room

temperature under solvent-free conditions. The catalytic process takes 120 minutes, yielding an

impressive 94% with selectivity >94%. This protocol offers multiple benefits, including an environmentally

friendly catalyst, simple setup, easy separation, and the capability to reuse the chiral Zn(II)–salen@MWW

catalyst for up to five runs. Substrate tests involving aldehydes, ketones, and anilines exhibit yields

ranging from 96% to 80% and selectivity from 96% to 83%. The process holds significant potential for

academia and industry.
Sustainability spotlight statement

The pursuit of sustainable chemical transformations necessitates the integration of eco-friendly approaches, economic growth, and environmental conserva-
tion. In line with this objective, a remarkable breakthrough has been made in the development of a greener decorum for synthesizing the present catalyst. The
present heterogeneous chiral catalyst exhibits immense potential for promoting sustainable practices in the eld of asymmetric synthesis. The utilization of an
unpretentious ultrasonic approach allows the synthesized catalyst to efficiently generate chiral b-amino carbonyl compounds under solvent-free conditions at
room temperature. This signicantly contributes to the reduction of both energy consumption and the generation of toxic byproducts. Another noteworthy
feature is the effortless separation of the catalyst from the reaction mixture, facilitating its recovery and reusability. The ability to reprocess the catalyst for up to
ve runs not only minimizes waste generation but also optimizes resource utilization. This further reinforces the sustainability aspect of the process, as it
promotes the efficient use of materials and reduces the demand for fresh catalyst production. As efforts towards sustainability continue to gain momentum, this
innovative approach is poised to play a crucial role in advancing both academic research and industrial practices.
Introduction

Asymmetric catalysis has become highly advanced in recent
years, but there are still challenges to overcome in this area,
such as developing environmentally safe methods and using
substrates that have been considered unreactive.1 Ketones, in
particular, pose a signicant challenge to the current state of
asymmetric methodologies.2 Due to their low reactivity and
of Technology and Engineering, The
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anna Centre for Advanced Technology,

Research Centre, Mumbai-400085, India

tion (ESI) available. See DOI:

the Royal Society of Chemistry
difficulties in restraining facial stereoselectivity, some enan-
tioselective chiral catalytic C–C bond formation reactions with
carbonyl are available, despite being effective procedures for
enantioselective reduction of ketones.3 In contrast, salen–metal
complexes may be useful as bifunctional Lewis acid–base
catalysts for contemporary catalytic reactions with imperative
substrates.4

Scientists have embraced Green Chemistry principles over
the past few decades, and environmental considerations have
become part of chemical processes.5 A signicant part of the
active pharmaceutical ingredient (API) manufacturing
processes relies on the reaction media, which accounts for up to
80% of the total mass.6,7 To overcome this issue, the major
pharmaceutical companies have developed solvent selection
guides for drug synthesis chemical processes. The development
of clean technologies that replace hazardous organic solvents
with environmentally friendly solvents has become increasingly
RSC Sustainability, 2023, 1, 1773–1782 | 1773
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popular in recent years.8 Owing to this new challenge, organic
synthesis has become increasingly popular under solvent-free
conditions, as “green chemistry” strives to minimize pollu-
tion, costs, and tedious procedures.9,10

In synthetic organic chemistry, multicomponent reactions
(MCRs) are becoming increasingly popular for their many
advantages, including increased atom economy, simplicity,
structural disparity, energy savings, and waste reduction.11

MCRs are particularly valuable for the production of distinctly
functionalized organic compounds that can succor as valuable
heterocyclic forerunners in pharmacology.12 The Mannich
reaction is one such MCR that is widely used for the
manufacturing of new-fangled nitrogen-encompassing organic
moieties with biological activity.13 Aminocarbonyl molecules
synthesized through the Mannich reaction can be used as
intermediates for the synthesis of many important biomole-
cules, including amino alcohols, amino acids, peptides, and
lactams.14–19 Among the various Mannich reaction catalysts
explored, ultrasonic-assisted organic synthesis (UAOS) is an eco-
friendly and competent tactic that signicantly enhances reac-
tion rates, yields, and selectivity. In recent years, UAOS have
been utilized to uphold multi-component self-Mannich reac-
tions and asymmetric Mannich reactions effectively and
expeditiously.20–22

Considering their improved recyclability, novel heteroge-
neous catalytic systems such as nanoparticle-supported/
encapsulated solid acids, metal nanoparticles, and metal-
coordinated polymers have received increasing attention in
recent years.23,24 However, the synthesis of these catalysts limits
their practical applications among insoluble bulk materials.25–27

As a way to solve this problem, micro- and/or meso-porous
siliceous substances likes MCM-41, MCM-48, MCM-50, SBA-
15, KIT-6, USY zeolite, or MWW-zeolite have been extensively
studied because of their unvarying interior pore structure,
elevated surface areas, wide-ranging ordered pores with
conned size distributions, and superior hydrothermal
stability, making them ideal for heterogeneous catalysts. This
study uses zinc metal ions as Lewis acids, which are highly
potent, low-cost, non-toxic, and so enough and therefore,
suited for Mannich reaction. Herein, we report a green decorum
for synthesizing distinctive Zn(II)–salen ligand encapsulated in
MWW host as a heterogeneous chiral catalyst, i.e., Zn(II)–
salen@MWW, and employed for the efficient and rapid
synthesis of b-amino ketones under measly conditions using an
Scheme 1 A conceptual illustration of the preparation of chiral salen lig

1774 | RSC Sustainability, 2023, 1, 1773–1782
ultrasound-assisted one-pot tactic in solvent-free conditions
(Scheme 1).

Experimental
Synthesis of MWW-zeolite

Using hexamethyleneimine (HMI) as a template, we synthesized
MWW-zeolites using a previously published protocol.28–30

Preparation of chiral salen

A chiral ligand was prepared from chiral amine and salicy-
laldehyde using a reported method and conrmed by 1H, 13C
NMR & FTIR spectral data (shown in Fig. S1 to S3†).31–33

Zn(II) exchanged MWW-zeolite

A sample was prepared by mixing 5 grams of MWW-zeolite with
12 mmol of Zn(II) salt in 300 ml of deionized water with
continuous stirring for 24 hours at 90 °C. As soon as the stirring
period ended, the nal product was isolated and washed
numerous times with deionized water to remove any metal ions.
Following this, the solid was dried at 120 °C for 15 hours.34,35

Synthesis of chiral Zn(II)–salen@MWW

A MWW-zeolite, in which Zn(II) ions were exchanged, was
combined with an excess of chiral salen in a round ask. The
ratio of metal to ligand was 0.33. The mixture was covered with
an adequate amount of solvent and subjected to reux for 24
hours under a ow of nitrogen gas. The unbound ligands were
eliminated by extracting with acetone, and any Zn2+ ions that
were not coordinated were removed via an ion-exchange process
using a 0.1 M sodium chloride aqueous solution. Aerwards,
the sample felt a complete washing process using deionized
water, followed by air-drying for a duration of 60 minutes. This
process led to the creation of a chiral Zn(II)–salen ligand
securely encapsulated within the MWW-zeolite. Thus, the
resulting product is referred to as the Zn(II)–salen@MWW
catalyst (Scheme 1).4,36–40

Catalytic activity

In brief, a mixture of aniline, benzaldehyde, and acetophenone
(each 1 mmol) was combined with 0.05 g Zn(II)–salen@MWW
catalyst. The reaction mixture was subjected to ultrasonic waves
using a bath sonicator. The reaction was allowed to continue for
and (1) and Zn(II)–salen@MWW catalyst (2).

© 2023 The Author(s). Published by the Royal Society of Chemistry
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a duration of 120 minutes. Immediately aer the accomplish-
ment of the reaction, the solid catalyst was isolated from the
crude solution by dissolving it in ethanol. Aer an exhaustive
wash with ethanol, the catalyst was dried under vacuum so that
it could be reused.21,41,42
Results and discussion

Powder X-ray diffraction (XRD) is a crucial method used to
assess the level of crystallinity in powdered samples. Fig. 1
displays the XRD patterns of three samples: MWW-zeolite (a),
Zn(II)-exchanged MWW-zeolite (b), and chiral Zn–salen@MWW
catalyst (c). In all three samples, diffraction peaks are observed
at 2q values of 7.2°, 8.0°, 9.6°, 25°, and 26°, corresponding to the
(100), (101), (102), (220), and (310) reections, respectively.
These peaks are distinctive characteristics of the MWW-zeolite.
The results ensure that the crystalline arrangement of the
MWW-zeolite remains intact aer graing.43–46

In Fig. 2 presents FE-SEM images of three samples: MWW-
zeolite, Zn(II)-exchanged MWW-zeolite, and chiral Zn–
salen@MWW. Fig. 2a shows the characteristic cube
morphology of the primary crystals of MWW-zeolite. Fig. 2(b)
and (c) demonstrate that the introduction of metal and scaffold
Fig. 1 XRD patterns of (a) MWW-zeolite (b) Zn(II)-exchanged MWW-
zeolite (c) chiral Zn–salen@MWW catalyst.

Fig. 2 FE-SEM results of (a) MWW-zeolite (b) Zn(II)-exchanged MWW-ze

© 2023 The Author(s). Published by the Royal Society of Chemistry
produced minimal alterations in the surface morphology of the
MWW-zeolite.47–49

Fig. S4(A) and (B)† exhibit N2 adsorption–desorption
isotherms and BJH pore size distributions for MWW-zeolite (a),
Zn(II)-exchanged MWW-zeolite (b), and chiral Zn–salen@MWW
(c). The hybrid materials demonstrate consistent pore size
distributions within their mesoporous regions due to their type
IV isotherm characteristics. These attributes validate the
retention of the meticulously arranged mesoporous cage of
MWW-zeolite within the synthesizedmaterials. Table 1 presents
a decrease in pore diameter, from 6.2 nm in pure MWW-zeolite
to approximately 3.3 nm in Zn(II)-exchanged MWW-zeolite and
3.0 nm in chiral Zn(II)–salen@MWW. The BET surface area of
the synthesized materials exhibits a gradual reduction, indi-
cating the successful encapsulation of organic scaffolds onto
the MWW-zeolite.50

Fig. S5† illustrates the FTIR spectral data of three samples:
MWW-zeolite, Zn(II)-exchanged MWW-zeolite, and chiral Zn(II)–
salen@MWW. In Fig. S5(a),† the FTIR spectra of MWW-zeolite
reveals the presence of a prominent and wide band at
1015 cm−1, indicating the occurrence of stretching vibration
associated with aluminum silicate element. Conversely, the IR
bands observed in the chiral Zn(II)-salen@MWW exhibit rela-
tively weak intensities, which could be attributed to the lower
concentrations of Zn(II)–salen present within the cage of MWW-
zeolite. In the FTIR spectral data of the pure chiral salen ligand
(Fig. S3†), a characteristic vibration of phenolic –OH is detected
at 3450 cm−1. However, in the chiral Zn(II)–salen@MWW, this
vibration is notably absent, indicating the deprotonation of this
group through coordination with the metal ion. The interaction
of the nitrogen with the metal ion is assurance by the existence
of a band at 1629 cm−1. In spectra of chiral Zn(II)–salen
complex, this band experiences a displacement towards the
lower frequency range. The FTIR spectrum of chiral Zn(II)–salen
complex encapsulated within the MWW-zeolite exhibits
a prominent broad band around 3479 cm−1 these specic bands
are indicative of –OH stretching, along with relatively less
intense band in the around 804–816 cm−1 for rocking and 664–
694 cm−1 wagging vibrations respectively, providing evidence
for the presence of coordinated water molecules within the
complex.51

Fig. S6† exhibits the results of the EDX analysis, conrming
the existence of zinc, silica, aluminum, and oxygen elements in
the composition of the chiral Zn(II)–salen@MWW.52,53
olite, (c) chiral Zn–salen@MWW.

RSC Sustainability, 2023, 1, 1773–1782 | 1775
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Table 1 Porosity and texture features of catalyst and catalyst precursors

Sample Surface area/m2 g−1 Pore volume/cm3 g−1 Average pore diameter/nm

MWW-zeolite 414.50 0.51 6.2
Zn(II)-exchanged MWW-zeolite 263.48 0.48 3.3
Chiral Zn(II)–salen@MWW 31.96 0.14 3.0

Fig. 3 XPS spectra of chiral Zn(II)–salen@MWW; (a) survey spectrum, (b) Zn 2p, (c) N 1s and (d) C 1s.
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The data of the XPS analysis are shown in Fig. 3. This anal-
ysis was carried out to examine the surface elemental compo-
sition and elemental bonding of the chiral encapsulated Zn(II)–
salen catalyst successfully prepared. The comprehensive XPS
spectrum (Fig. 3a) demonstrates the existence of Zn, O, Si, C,
and N elements. The XPS spectra of Zn 2p (Fig. 3b) exhibits
peaks at 1021.6 eV for Zn 2p3/2 and 1044.6 eV for Zn 2p1/2,
conrming the presence of Zn(II) within the sample. In the N
1s spectrum (Fig. 3c), three peaks at 402.3 eV (CN), 405.3 eV, and
408.1 eV are observed, indicating the interaction between zinc
and nitrogen within the carbon moiety. Within the C 1s spec-
trum (Fig. 3d), three clearly distinguishable peaks are observed
at 282.3 eV, 284.3 eV, and 288.2 eV, which analogous to chem-
ical bonds C–C, C–O or C–N, and C]N, respectively.54–59
1776 | RSC Sustainability, 2023, 1, 1773–1782
Chiral b-aminoketone derivatives synthesis

As a result of the successful fabrication and characterization of
an chiral Zn(II)–salen@MWW, its catalytic property was
assessed for use in one-pot Mannich reactions as shown in
Scheme 2. An environmentally responsible, affordable, and
economical reaction route is crucial when it comes to organic
transformation reactions. There is one such effective route, i.e.,
ultrasonic route, which has the advantages of being low energy-
consuming, simple to react to, and quick to respond.

Initially, our focus was to establish an unpretentious method
for synthesizing the target product. The use of a catalyst,
howbeit, resulted in a higher yield. In ultrasonic-assisted reac-
tions, ultrasonic radiation interacts with the organic substrate,
creating transient cavities that are lled with liquid vapor or air.
© 2023 The Author(s). Published by the Royal Society of Chemistry
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Scheme 2 Synthesis chiral b-aminoketone derivatives using chiral Zn(II)–salen@MWW.

Fig. 4 Encapsulated chiral Zn(II)–salen complex catalyzes the synthesis of Mannich bases (A–O) derived from aryl ketone. Aldehyde/aniline/aryl
ketone are in a 1 : 1 : 1 molar ratio.
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These cavities collapse rapidly aer a few ultrasound cycles,
generating hot spots with high temperatures and pressures that
help break chemical bonds and increase the yield of product in
a less time. Through this process, mass ow mechanical energy
is transformed into kinetic energy generated by arbitrary
molecular translation and rotation. The method is advanta-
geous because it eliminates the need for solvents, which can be
associated with complex work-up procedures, safety concerns,
high costs, and environmental problems.

To optimize the reaction conditions, we tested varied ratios
of starting substrates and found that using 1 mmol of each
substrate with a 1 : 1 : 1 ratio resulted in a high product yield.
With optimized reaction conditions, we synthesized a different
derivative of b-amino carbonyl compounds (Fig. 4) to evaluate
our catalyst's efficiency and performance (Table 2). We also
tested the upshot of substituents in aromatic aldehyde and
© 2023 The Author(s). Published by the Royal Society of Chemistry
aniline on product yield. In contrast to aldehydes with electron-
donating substituents, those with electron-withdrawing groups
produced a greater yield in fewer hours.

The products obtained were thoroughly analyzed chiral
HPLC (shown in Fig. S7 to S25†) and conrmed by FTIR, 1H &
13C NMR spectral data (shown in Fig. S26 to S70†), and their
data were compared with previously reported data. In addition
to the synergistic effect among the individual components, the
chiral Zn(II)–salen surface was able to adsorb signicant
amounts of reactant molecules, increasing its catalytic activity.
Considering the above results, the presence of Brønsted and
Lewis acidic sites, the synergistic effect amid the discrete
components, and the larger surface area of the catalyst play
crucial roles in its altogether catalytic performance. The acti-
vation of the reaction was further facilitated by ultrasonic wave
through the preparation of b-amino carbonyl compounds.
RSC Sustainability, 2023, 1, 1773–1782 | 1777
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Table 2 Chiral b-aminoketone derivatives synthesized through the one pot Mannich reaction with diverse substrates employing chiral Zn(II)–
salen@MWW catalyst

Entry Substrates (R1, R2 and R3) Product Conversion (%) eea (%)

1 R1 = –H; R2 = –H; R3 = –Ph A 94 94.58
2 R1 = 4-NO2–; R2 = –H; R3 = –Ph B 96 96.33
3 R1 = 4-Me–; R2 = –H; R3 = –Ph C 95 95.40
4 R1 = 4-OH–; R2 = –H; R3 = –Ph D 88 89.73
5 R1= 4-Cl–; R2 = –H; R3 = –Ph E 93 89.45
6 R1 = 4-OMe–; R2 = –H; R3 = –Ph F 89 88.00
7 R1 = 2-OH–; R2 = H–; R3 = –Ph G 81 84.07
8 R1 = –H; R2 = 4-OH–; R3 = –Ph H 87 91.82
9 R1 = –H; R2 = 4-OMe–; R3 = –Ph I 88 89.58
10 R1 = –H; R2 = 2-OH–; R3 = –Ph J 80 83.72
11 R1 = –H; R2 = –H; R3 = –CH3 K 95 94.35
12 R1 = –H; R2 = –H; R3 = 4-Cl-Ph– L 95 89.95
13 R1 = –H; R2 = –H; R3 = 4-Br-Ph– M 93 88.96
14 R1 = –H; R2 = –H; R3 = 4-OMe-Ph– N 86 87.67
15 R1 = –H; R2 = –H; R3 = 4-OH-Ph– O 84 86.98

a ee analyzed through chiral HPLC; reaction conditions: mole ratio of aldehydes, amine and ketone (1 : 1 : 1), and chiral Zn(II)–salen@MWW (0.05 g),
ultrasonication, 120 min.

Table 3 Recyclability data of the chiral b-aminoketone derivatives
synthesis

Entry Product
Conversion
(%) eea (%)

1 A1 94 94.58
2 A2 91 92.98
3 A3 89 87.83
4 A4 86 83.91
5 A5 85 82.44

a ee analyzed through chiral HPLC; reaction conditions: mole ratio of
aldehydes, amine and ketone (1 : 1 : 1), and chiral Zn(II)–salen@MWW
(0.05 g), ultrasonication, 120 min.
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The catalyst's recyclability and stability are crucial for its
effectiveness. To investigate this, we used the optimized
conditions to assess the catalyst's reusability. As soon as the
reaction was completed, the catalyst was recovered, washed
with ethyl acetate to remove organic parts, and dried for 3 hours
underneath vacuum at 80 °C. Despite reusing the chiral Zn(II)–
salen@MWW catalyst ve times, we observed only petite losses
in catalytic activity. The fresh sample yielded 94% product yield
and 94.58% ee as the catalytic run was being carried out, but
Table 4 A comparative study for the synthesis of the chiral b-aminoke

Entry Catalyst Yield (%)

1 H3PW12O40 89
2 Sucrose char sulfonic acid 91
3 NH2SO3H 94
4 Hf(OTf)4 89
5 NDPANI 94

1778 | RSC Sustainability, 2023, 1, 1773–1782
these numbers somewhat fell to 85% and 82.44%, respectively,
aer the h run, as stated in Table 3 and their bar chart, which
is displayed in Fig. S71.† In addition, the catalyst recovered aer
the 5th cycle has been characterized with FTIR and XRD, and it
is compared with the fresh catalyst as shown in Fig. S72 & S73.†

Table 4 presents a comparison of chiral catalytic systems,
both heterogeneous and homogeneous, utilized in chiral b-
aminoketone synthesis. The results reveal that the present
catalyst was compared to other previously reported catalysts and
showed superior efficiency using a sustainable ultrasonic
method, demonstrating higher activity within a short time
frame.13,60–66 Considering all the above results, a proposed
mechanism can be made and is presented in Scheme 2. As
a result of the acidic nature of the catalyst (Brønsted as well as
Lewis) and the effective adhesion of reactant molecules to its
surface, the reaction begins under ultrasonic irradiation.
During the reaction, the carbonyl group of the aldehyde
substrate is activated by protonation (predominantly by the
acidic Brønsted sites of the active catalyst), while the Lewis
acidic site activates aniline substrate. In the next step, the
activated aldehyde is dehydrated by the nucleophilic aniline in
order to form an iminium intermediate.

The asymmetric Mannich reaction of iminium intermediate
with ketone had previously been reported to generate in situ
tone derivatives

Time (hours) Amount of catalyst (mol%) Reference

18 0.24 15
10 4 18
1.5 10 22
6 5 53
7 4 55

© 2023 The Author(s). Published by the Royal Society of Chemistry
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Fig. 5 A plausible reaction pathway for the chiral b-aminoketone derivatives synthesis and transition state models for the prediction of
stereoselectivity.
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metal complexes through axially chiral salen ligands (shown in
Fig. 5). These transition states readily explain the observed Re-
facial enantioselectivity is favored and the opposite selectivity
(Si) is disfavored.4

Moreover, the desired product was efficiently produced by
generating cavitation through ultrasonic irradiation. This
process involved the formation and collapse of microbubbles,
generating an enormous amount of thermal energy and district
pressure that facilitated the fabrication of b-amino carbonyl
compounds. The presence of acid groups on the catalyst, along
with ultrasonic irradiation, favoured the dehydration process
during the formation of the intermediate. Prior literature has
referred to an analogous mechanism involving metal nano-
particles for the synthesis of b-aminocarbonyl compounds.
Conclusion

In this study, a highly persuasive, unprecedented and atypical
encapsulated chiral Zn(II)–salen catalyst, Zn(II)–salen@MWW,
was fabricated, characterized, and used to synthesize chiral b-
amino carbonyls via a one-pot three-component using an
ultrasonic irradiation. Related to other reported systems, the
present catalyst demonstrated superior performance with
a higher product yield 94% and (94.58 ee (%)) achieved in
a shorter reaction time (120 min). Furthermore, the existence of
acidic sites, a sky-scraping the area of surface, ultrasonic irra-
diation, and cooperative interaction among the discrete parts
contribute to increased activity. Moreover, the catalyst exhibited
remarkable reusability for up to ve consecutive cycles,
© 2023 The Author(s). Published by the Royal Society of Chemistry
maintaining signicant catalytic performance without
substantial degradation. In summary, this study demonstrates
that encapsulating chiral metal salen ligands on acidic zeolite
surfaces can lead to highly effective, durable, and recyclable
catalysts for various organic transformations.
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