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Environmental pollution due to dye industries is a major concern as it affects both aquatic and human life.
Among various processes, photocatalysis involving the advanced oxidation process (AOP) that employs
semi-conductor based photocatalysis is popular and this process degrades dyes into CO, and H,O. The
currently used TiO, based photocatalysis requires ultra-violet (UV) light irradiation for activation. There is
always a need for a catalyst that works under natural sunlight so that the dye degradation process is
economical. Towards this objective, we have developed Zn doped metal peroxides as efficient
photocatalysts towards rhodamine B (RhB) dye degradation. A new family of zinc-doped barium peroxide
(Ba;-xZn,O, x = 0, 0.2, 0.4, 0.6, and 0.8) and zinc-doped strontium peroxide (Sr;_,Zn,O, x = 0, 0.2, 0.4,
0.6, and 0.8) photocatalysts were prepared by the co-precipitation technique for the photocatalytic
degradation of RhB under UV and natural sunlight irradiation. In particular, Bag4ZngeO, (x = 0.6) and
St06Zno 405 (x = 0.4) photocatalysts exhibit higher photodegradation efficiency than the pure peroxides
both under UV and sunlight irradiation. Bag 4Zng 02 and SrgeZng 4O, photocatalysts show a degradation
efficiency of 99.9% and 99.8% within 15 min and 10 min under UV light, respectively. The rate constants of
degradation by doped peroxides, in particular Bag4ZnoeO, and SrgeZng 40, are 100 times higher than
those of the parent peroxides.

Due to the rapid development of industry, environmental pollution has become a major topic worldwide. Water pollution is a key concern in the world today,
posing a health risk to all living creatures. In particular, rhodamine B is commonly used as an organic dye and is extremely difficult to degrade under UV and
natural sunlight. Consequently, developing novel catalysts to degrade rhodamine B under sunlight is an important topic. Here, we attempt to study effective
photocatalysts (zinc-doped barium and strontium peroxide) for the degradation of rhodamine B under UV and sunlight. The synthesized photocatalysts exhibit
alow bandgap and a high surface area, which helps degrade the rhodamine B dye in a short period under UV and sunlight irradiation. Furthermore, our research
demonstrates an effective photocatalyst for persistent organic pollutants (POPs) that can be used for environmental remediation applications of sustainable

development goals (SDGs).

Introduction

In recent decades, industrial activities have released uncon-
trolled amounts of persistent organic pollutants (POPs) caused
by urbanization and population growth. Among industrial
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paper, printing, and mining industries pollutes the environ-
ment."” These organic pollutants and dyes are vital pollutants
which are highly toxic to aquatic life, and they affect plants and
cause serious effects such as cancer.* The most common
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methylene blue, rhodamine B and azo derivatives.*” Rhoda-
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organic dyes. The International Agency for Research on Cancer
(IARC) has classified rhodamine B (RhB), one of the most
commonly used organic dyes, as a carcinogen.* RhB is
commonly used in textiles, paper, printing and food items as
a pigment. Its release into the environment as waste water
causes serious health hazards due to its toxicity profile. It
results in carcinogenicity and neurotoxicity. Some specific
problems are nausea, vomiting, respiratory problems and
gastritis. RhB is difficult to degrade.”” To date, numerous
treatment techniques have been researched to remove water
contaminants, including  physical, biological, and
semiconductor-based  photocatalysis."***  Among these
methods, semiconductor catalysis has attracted much attention
as a “green”, energy-saving, and economically advanced oxida-
tion process.” An essential requirement for the catalyst is that
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semiconductor materials have a suitable band gap and show
high photocatalytic performance. As one of the most important
classical materials, TiO, has been extensively considered for the
photodegradation of organic pollutants. However, due to its
higher band gap (3.2 eV), it is active only in the ultraviolet (UV)
or near-ultraviolet region (~4% of the sunlight spectrum).*®*
To extend the use of sunlight, it is important to enhance pho-
tocatalysis in the visible region.

The photocatalytic activity of nanoparticles is particularly
important for improving the degradation efficiency of many
catalysts, including metal oxides, carbides, sulfides, chalcogen-
ides, oxyhalides, halides, and hydroxides."”*** Among all semi-
conductor metal oxides, SnO,,** Zn0,,”*> Ce0,,? Si0,,>* MnO,,*
ZrO,,** and TiO, (ref. 27 and 28) are described as developing
photocatalysts due to their excellent photocatalytic activity. To
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Fig. 1 XRD patterns of (a) Ba;_,Zn,O, and (b) Sr;_,Zn,O,, x = 0.2, 0.4, 0.6, 0.8.
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Fig. 2 FT-IR spectra of (a) Ba;_,Zn,O, and (b) Sr;_,Zn,O, x = 0.2, 0.4, 0.6, 0.8.

1512 | RSC Sustainability, 2023, 1, 1511-1521

© 2023 The Author(s). Published by the Royal Society of Chemistry


http://creativecommons.org/licenses/by-nc/3.0/
http://creativecommons.org/licenses/by-nc/3.0/
https://doi.org/10.1039/d3su00091e

Open Access Article. Published on 17 July 2023. Downloaded on 1/22/2026 9:33:24 PM.

Thisarticleislicensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence.

(cc)

Paper

improve photocatalytic performance, many researchers focus on
metal or nonmetal doping, surface modification, heterostructure
formation, and composite materials. In particular, doped nano-
materials can improve structural, optical, electrical, magnetic,
catalytic, and antibacterial activities.****** There is always a need
to develop photocatalysts that work under natural sunlight so that
the process is economical. Towards this objective, we attempt to
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study the photocatalytic activity of barium peroxide and strontium
peroxide through zinc doping.

In the present work, zinc-doped barium peroxide (Ba;_,-
Zn,0, x = 0, 0.2, 0.4, 0.6, and 0.8) and zinc-doped strontium
peroxide (Sr; _,Zn,0, x =0, 0.2, 0.4, 0.6, and 0.8) were developed
as photocatalysts to improve the catalytic performance of
barium peroxide and strontium peroxide. These photocatalysts
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Fig. 3 of (a) Ba;_,Zn,O; and (b) Sry_,Zn,O5.

i

Fig. 4 HRTEM and SAED images of (a and b) Bag 4Zng.60, and (c and d) Srg.¢ZNg 405.
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were prepared by the co-precipitation method. The prepared
compounds were analyzed by powder X-ray diffraction (XRD),
UV-vis-differential reflectance spectroscopy (UV-DRS), Fourier
transform infrared spectroscopy (FT-IR), high resolution-
transmission electron microscopy (HR-TEM), X-ray photoelec-
tron spectroscopy (XPS), and Brunauer-Emmett-Teller analysis
(BET). The photocatalytic performance was determined by the
degradation of the dye RhB under UV and sunlight. Zinc-doped
barium peroxide (x = 0.6) and strontium peroxide (x = 0.4)
photocatalysts show 99.9 and 99.8% degradation in about 15
and 10 minutes, respectively, under UV light. These composi-
tions exhibit 99.5 and 99.8% degradation efficiency within 90
minutes under sunlight irradiation. Among the studied
compositions, Bay 4Zny 0, and Sry¢Zn, 4O, photocatalysts are
found to be more active and efficient than well-known catalysts
for RhB degradation. Zn doping into Ba & Sr peroxides has
enhanced the photocatalytic activity significantly.

Experimental section
Synthesis of Zn-doped BaO, and Zn-doped SrO,

All chemical reagents (99.9% pure) were purchased from S D
Fine Ltd, Chennai, India, and used without further purification.
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The zinc-doped barium peroxides (Ba;_,Zn,O,, x = 0, 0.2, 0.4,
0.6, and 0.8) and the zinc-doped strontium peroxides (Sr;_,-
Zn,0,, x = 0, 0.2, 0.4, 0.6, and 0.8) were prepared by co-
precipitation. Stoichiometric ratios of barium chloride (BaCl,)
or strontium chloride (SrCl,) and zinc chloride (ZnCl,) were
added to 1 M Na,O, under ice-cold conditions under an N,
atmosphere. Then the solution was stirred for 0.5 h. The
precipitate from the slurry was filtered and washed well with
deionized water and dried for 12 h at 100 °C.

Characterization

The phase purity of the photocatalyst was checked by powder X-
ray diffraction (XRD, D8 advance, BRUKER Germany, source: 2.2
kW Cu anode ceramic tube) in the 26 range of 10°-90°. In
transmission mode, Fourier transform infrared spectra were
recorded with a SHIMADZU in the range of 400-4000 cm .
Diffuse reflectance spectroscopy of the photocatalysts was per-
formed using a JASCO-V670 spectrophotometer in the range of
200-2500 nm. The particle size and morphology of the synthe-
sized samples were studied using a high-resolution trans-
mission electron microscope (HR-TEM, 200 kV FEI -Tecnai G2
20 S- TWIN) and X-ray photoelectron spectroscopy (XPS, PHI
5000 versa prob II, FEI Inc). The concentration of rhodamine B
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Fig. 5 XPS spectra, (a) survey scan of (b) Ba 3d, (c) Zn 2p and (d) O 1s of Bag 4Zng.¢0>.
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for the dye degradation study was analyzed by UV-vis spectros-
copy employing a JASCO V-730 model UV-visible spectropho-
tometer. Inductively coupled plasma - optical emission
spectroscopy spectra were recorded on a PerkinElmer Avio 220
to get the bulk chemical composition.

Photocatalytic performance

The photocatalytic performance of zinc-doped barium peroxide
(Ba; »Zn,0,, x = 0, 0.2, 0.4, 0.6, and 0.8) and zinc-doped
strontium peroxide (Sr;_,Zn,0,, x = 0, 0.2, 0.4, 0.6, and 0.8)
was evaluated through the photodegradation study of RhB
under irradiation with UV light (250 W Xe lamp, 365 nm
wavelength) and natural sunlight. The synthesized photo-
catalyst (25 mg) was suspended in 50 ml of RhB (10 ppm) dye
solution. The suspension was magnetically stirred for 60 min in
the dark to reach equilibrium. Then the suspension was irra-
diated with UV light. Similarly, the suspension was exposed to
natural sunlight. During the experiment, 3 ml of the aqueous
solution was taken periodically and centrifuged to remove the
photocatalyst particles. The absorbance of the filtrates of the
dye solutions at 554 nm was recorded using a JASCO V-730
model UV-visible spectrophotometer. Dye solution without the
catalyst was used as a control to negate the effect of light on the
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dye. The degradation rate is calculated using the formula,
Degradation rate (%) = (C, — C)/C, x 100 where C,, is the initial
concentration of the dye and C, is the concentration of the dye
at time ¢.

H,0, estimation

H,0, generated was estimated by KMnO, redox titrations. A
known quantity of the catalyst was suspended in 50 ml of water.
Then, calculated amounts of KMnO, and H,SO, were added. It
was kept under constant stirring. At regular intervals, 5 ml
aliquots were withdrawn and filtered through a membrane
filter. H,0, was estimated by a standard back titration.

Results and discussion
Characterization of materials

The powder XRD patterns of zinc-doped barium peroxide
Ba; ,Zn,0,, x = 0, 0.2, 0.4, 0.6, and 0.8) and zinc-doped
strontium peroxide (Sr; _,Zn,0,, x = 0, 0.2, 0.4, 0.6, and 0.8)
are shown in Fig. 1a and b, respectively. The synthesized
compounds crystallize in a tetragonal structure with space
group I4/mmm (BaO, (ICDD No.: 96-901-3414) and SrO, (ICDD
No.: 96-901-0115)). In addition, the phase formation of MO, (M
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Fig. 6 XPS spectra, (a) survey scan of (b) Sr 3d, (c) Zn 2p and (d) O 1s of Srg.6ZNp 405.
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= Ba and Sr) was confirmed by Rietveld refinement using the
atomic parameters of BaO, and SrO, as the starting materials.**
Fig. S1a and bt show the refined patterns of BaO, and SrO,,
respectively. The structural parameters of MO, (M = Ba and Sr)
are given in Table $1.f The lattice parameters are a = 3.81(3) A, ¢
= 6.85(2) A for BaO, and a = 3.57(3) A, ¢ = 6.63(4) A for SrO,.
The difference in lattice parameters results from the smaller
ionic radius of Sr** (rs; = 1.18 A) than Ba®" (rg, = 1.35 A).* It is to
be noted that we could obtain phase pure BaO, and SrO,
without the carbonate impurity by carrying out the reaction in
a nitrogen atmosphere. From Fig. 1a and b, for x = 0.2 and
above, it can be seen that the ZnO phase is present in addition
to BaO, and SrO,. The peaks marked with a star symbol indicate
the presence of ZnO and the products are a composite of
peroxide and ZnO in the composition range of x = 0.2 to 0.8 The
crystallite size of the synthesized compounds was calculated
using Scherrer's equation.* The sizes of pure BaO, and SrO, are
45 nm and 36 nm, respectively. The crystal structure of MO, (M
= Ba and Sr) is shown in Fig. S2 using the software VESTA. The
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crystal structures of both compounds are isostructural to those
reported by Bernal et al.’* for BaO, and SrO,.

The FT-IR spectra of zinc-doped barium peroxide (Ba;_,-
Zn,0,, x = 0, 0.2, 0.4, 0.6, and 0.8) and zinc-doped strontium
peroxide (Sr;_,Zn,0,, x = 0, 0.2, 0.4, 0.6, and 0.8) are shown in
Fig. 2a and b, respectively. The M-O stretching is observed in
the frequency range of 400-900 cm™'. The bands at 1400-
1475 cm™~ ' confirm the 0, species,* 830-864 cm™ ' (O-Ba-O
and O-Sr-O stretching modes),***” 690-720 cm ', and 400-
430 em™" (Ba-0, Sr-O and Zn-O bending modes).****” ICP-OES
confirms the bulk compositions (Table S27).

The optical absorption spectra of zinc-doped barium peroxide
(Ba;_»Zn,0,, x = 0, 0.2, 0.4, 0.6, and 0.8) and zinc-doped stron-
tium peroxide (Sr;_,Zn,O,, x = 0, 0.2, 0.4, 0.6, and 0.8) were
studied by UV-DRS analysis. The band gap (eV) of the synthesized
products was calculated using Tauc's equation.* Fig. 3a and
b show that the band gaps of Ba; ,Zn,0,, x = 0, 0.2, 0.4, 0.6, 0.8
and Sr;_,Zn,0,, x = 0, 0.2, 0.4, 0.6, 0.8 are in the range of 3.66 to
3.20 eV and 3.97 to 3.21 eV, respectively.
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Fig. 7
Bap 2Znp g0, photocatalysts under UV light irradiation.
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For further characterization (HR-TEM, XPS, and BET) we chose
the low band gap materials Ba, 4Zn, O, and Sr ¢Zng 40,. The HR-
TEM analysis was carried out to investigate the size and shape of
Bay4Zne¢0, and SryeZny,0, particles (Fig. 4a-d). The
morphology of Ba, 4Zn, 0, shows the shape of rods (Fig. 4a) and
Sro6Zn,y 40, has a flower-like morphology (Fig. 4c) respectively.
The selected area electron diffraction (SAED) (Fig. 4b and d) image

Table 1 Photocatalytic performance of the catalysts
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shows that the d-spacing is 0.39 nm and 0.27 nm and 0.36 nm and
0.32 nm, corresponding to Bay 4Zn, 0, and Sty ¢Zn, 40, phases.
The surface chemical composition and bonding states of the
Ba, 4Zn, 0, and St 6Zn, 4O, photocatalysts were analyzed by XPS.
Fig. 5 and 6 show the XPS spectra of Bag 4Zn ¢0, and Srg ¢Zng 40,
samples showing peaks of Zn 2p, Ba 3d, Sr 3d, O 1s, and C 1s. The
C 1s binding energy was used to calibrate all binding energies (C
1s: 283.4 eV). The deconvolution method is used for the Zn, Ba, Sr,
and O elements. Ba 3d (Fig. 5b) contains two spin-orbit doublets
Ba 3ds, (777.83 eV and 778.69 eV) and Ba 3d;, (793.32 eV and
794.19), confirming the presence of Ba>" ions.** The XPS spec-
trum of Sr 3d is shown in Fig. 6b, with four peaks at 131.37 eV and

Ba,.Zn.0, St1-x21:0, 132.32 eV and 133.24 eV and 134.09 eV related to Sr 3ds, and Sr
Composition % of % of 3d;, of Sr**.7% Zn 2p is shown in Fig. 5¢ and 6c, and Zn 2p;,
€3] Time (min) degradation Time (min) degradation (1020.07 eV) and Zn 2p,,, (1043.05 eV) confirm the presence of
Zn*" ions in both compounds.***! The binding energy of the O 1s
8 ) 2(5) 22'2 22 22'2 peak (Fig. 5d and 6d) was found to be 529.28 €V, 530.24 eV, and
0: 4 25 99' 10 99:8 531.74 eV, which are related to the lattice oxygen in the metal-
0.6 15 99.9 15 99.2 oxygen bonds, hydroxyl species, and O,  species,
0.8 25 97.6 20 98.5 ];espective]yﬁ“v“’v“lv‘lZ
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Fig. 8 Influence of Zn doping on the photocatalytic degradation of RhB using (a) SrggZng 05, (b) Srg.eZng.402. (C) Srp.4ZngeO,. and (d)

Srp.2Zno g0, photocatalysts under UV light irradiation.
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One of the main factors on which the photocatalytic
performance depends is the surface area of the catalyst. BET
surface areas of BaO,, SrO,, Bag,Zng¢0,, and SryeZng 40,
samples are 2.2, 3.4, 13.5, and 18.3 m> g, respectively. Zinc-
doped barium peroxide and strontium peroxide have a larger
surface area with smaller particles.

The present study deals with the degradation of RhB, an
organic pollutant, using BaO,, BaygZn,,0,, BageZng 0.,
Bag 4Zng¢0,, and Bay,ZnggO, and SrO,, SrggZng,0,,
Srg.6Zn 405, Sty 42N 60,, and Sty ,Zn, O, photocatalysts under
UV and direct sunlight. For the model reaction, 25 mg of the
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different photocatalysts and 50 ml of a 10 ppm RhB dye solution
were examined with a photocatalytic instrument under UV light
irradiation. Fig. S3t, 7a-d & Table 1 show the efficiency of RhB
dye degradation using the Ba; ,Zn,O, photocatalysts.

From Table 1, it is evident that all the compositions degrade
the dye more than 95% within a short duration; in particular the
compositions Bay4Zn, 0, and SryeZng,0, exhibit faster
degradation. This may be due to the high surface area. The
amount of H,0, released from the aqueous suspension is
tabulated in Table S3.7 It is to be noted that the best compo-
sitions Ba, 4Zn, 0, and Sty ¢Zn, 4O, release the highest amount

(a) BaO,

~——— Control ‘

Absorbance (a.u.)

(b) Bay 4Zn 60,

Absorbance (a.u)

Wavelength (nm)

Wavenumber (nm)

© Sro,

Absorbance (a.u.)

SroeZng 40,

=~ Control
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T
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T
450 500 550 600

[ = Bao,
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In(C/C)
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Fig. 9 The photocatalytic degradation efficiency of RhB by (a) BaO,, (b) Bag 4Zng.60> (c) SrO, and (d) Srg ¢Zng 40, photocatalysts under direct
sunlight. First-order-kinetics plots of RhB degradation using (e) BaO, and Bag 4Zng O, and (f) SrO..
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of H,0, confirming that the photocatalytic activity is maximum
in these compositions.

The photocatalytic performance of Sr;_,Zn,O, against the
RhB dye under UV light is shown in Fig. S47, 8a-d & Table 1. The
composition x = 0.4 shows the fastest degradation. From the
results, we conclude that zinc doping enhances the perfor-
mance of the photocatalyst. Fig. S5f shows the first-order
pseudo-kinetics for the photocatalytic degradation of RhB by
Ba0,, Bay 4Zn, ¢0,, and SrO,, Sty ¢Zn, 40, photocatalysts under
UV light illumination. The rate constants, k, calculated for
BaO,, Bay4Zn, 0, photocatalysts are 0.082 and 0.344 min %,
respectively (Fig. S5af). As shown in Fig. S5b,f the rate
constants for SrO, and Sr, ¢Zn, 4O, are 0.099 and 0.394 min !
respectively. Compared with the undoped peroxides, the
Bay 4Zn, 60, and Sty ¢Zn, 40, photocatalysts exhibit four times
faster kinetics.

The photocatalysts Bag4Zn, O, and Sr,eZng 40, exhibit
higher photocatalytic performance for the degradation of RhB
(Table S4t) under UV light compared with other systems re-
ported in the literature. The rate constants are two orders of
magnitude higher in the peroxide composite system. This is
associated with the interface of peroxide and ZnO. Therefore,
Ba0,, Bay 4Zn, 0,, Sr0O,, and Sr, ¢Zn, 4,0, photocatalysts were
selected for photocatalytic degradation of RhB under direct
sunlight. According to Fig. 9a-d, the photocatalytic degradation
of RhB with the photocatalysts BaO, and Bay 4Zn, ¢O,, and SrO,
and Sty ¢Zn, 40, is 50.2% after 120 minutes and 99.8% after 90
minutes and 60.5% after 105 minutes and 99.5% after 90
minutes respectively under direct sunlight. This may be due to
large surface area and a higher amount of H,O,. In addition, the
photodegradation kinetics of RhB by BaO,, Bay 4Zng0,, and
SrO,, Sry6Zn, 40, photocatalysts under sunlight are shown in
Fig. 9e and f, respectively. The rate constants (k) for Bay 4Zn, O,
and Sty ¢Zn, 40,, are 2.480 and 2.340 min ™" respectively which
are two orders of magnitude higher compared to those for BaO,
and SrO, (0.018 and 0.020 min~", respectively). The higher
activity of the doped samples may also be due to the more
efficient generation of electron-hole pairs under sunlight.*®
From the results, we conclude that the compositions
Bay 4Zn 60, and SryeZn, 4,0, are suitable photocatalysts for
degradation by sunlight. These photocatalysts exhibit high
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photocatalytic performance in direct sunlight compared to
previous reports (Table S51). This finding can be used for a wide
range of environmental remediation applications.

To wunderstand the photocatalytic performance of
Bay 4Zny 0, and Sr0.6Zn0.402 photocatalysts, a possible
mechanism is proposed as shown in Scheme 1. The general
mechanism involves excitation of electrons from the valence
band (VB) to the conduction band (CB) resulting in holes in the
VB and electrons in the CB.** Holes and electrons react with
water and oxygen producing °OH radicals and super oxide
radicals respectively that could degrade the dyes. The various
steps are given in eqn (1)-(7).

MO, + hy — ¢~ (CB) + h™ (VB) (1)
H,O +h" — "OH + H" (2)
O,+te — Oy (3)

0,” + H' >HO,~ (4)

2HO, »H,0, + 0, (5)

2'0H — H,0, (6)

H,O0, + e~ — OH™ + 'OH (7)

Doping of Zn into the peroxides creates additional levels
below the conduction bands of BaO, and SrO, similar to doped
Zn0.*

Metal peroxides in aqueous suspensions release hydrogen
peroxide. The released hydrogen peroxide could be decomposed
under UV light and sunlight into hydroxyl radicals that degrade
the dye. Thus, the composites of peroxide could degrade dyes
through the chemical route and photochemical routes. More-
over, hydrogen peroxide is a scavenger of the e~ from zinc that
is present on the surface of BaO, and SrO,, forming hydroxyl
radicals and hydroxyl ions. The highly reactive hydroxyl radical
and O, are responsible for the photochemical degradation of
RhB, which is degraded to non-toxic products such as carbon
dioxide and water.

02
,\:c 5»“'47(! D) ; .()2_
N Qo oV
o bt *OH FH <>
s .".'""" Degraded products
0 G G H,O0  CO,+H,0

Scheme 1 Photocatalytic mechanism of BaO,, Bag.4ZNng 602, SrO,, and SrgeZNng 40;.
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Degradation pathway

From the literature it is proven that RhB degradation predom-
inantly occurred via chromophore cleavage resulting in 18 small
molecules (mainly organic acids and alcohols), confirmed by
GC - MS, that mineralize into CO, and H,0.*

Reusability

To ascertain the stability and reusability of the catalysts for dye
degradation, catalysts after dye degradation were centrifuged,
washed with water and dried in an oven at 60 °C. The dried
powder was re-used for degradation. This cycle is repeated 3
times. Fig. S61 shows that the catalysts are stable and reusable.

Conclusions

In summary, we have successfully prepared and characterized
BaO, and SrO, and their composites with ZnO and tested their
photocatalytic activity against the organic pollutant RhB dye
under UV and sunlight irradiation. The compositions
Bay 4Zn 60, and SryeZn, 40, as photocatalysts show higher
photocatalytic performance. Zn doped peroxides exhibit higher
photocatalytic activity than the pure peroxides both under UV-
light and sunlight. The rate constants, k, of Bag4Zn, 0, and
Srg 6Zn, 40, for degradation are two orders of magnitude higher
than those of the undoped photocatalysts under sunlight.
Moreover, the doped catalysts perform better than known
catalysts under UV and sunlight irradiation.
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