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hydroxyaromatic carboxylic acids as a sustainable
method for chemical utilisation and fixation of CO2

Omar Mohammad, Jude A. Onwudili * and Qingchun Yuan

Hydroxyaromatic carboxylic acids (HACAs) such as salicylic acids, hydroxynaphthoic acids and their

halogenated derivatives are essential feedstocks for the pharmaceutical, dye, fragrance, cosmetic and

food industries. Large-scale production of HACAs is currently based on the Kolbe–Schmitt reaction

between CO2 and petroleum-based phenolic compounds. This batch reaction is carried out at ∼125 °C,

∼85 bar and reaction times of up to 18 hours to achieve high conversions (z99%). The long reaction

times and dependence on fossil-derived phenols have negative sustainability implications. However, as

a CO2-based process, HACA production has the potential for large-volume anthropogenic CO2

sequestration and contributes to net zero. A big challenge is that the current global production capacity

of HACAs uses only about 41 450 tonnes per year of CO2 which is just z0.00012% of the annual

anthropogenic emissions. Therefore, significant efforts are needed to increase both the sustainable

production and demand for such CO2-based products to enhance their economic and environmental

sustainability. This review covers the basic kinetic and thermodynamic stability of CO2. Thereafter,

a comprehensive coverage of early and current developments to improve the carboxylation of phenols

to make HACAs is given, while discussing their industrial potential. Moreover, it covers new propositions

to use biomass-derived phenolic compounds for sustainable production of HACAs. There is also a need

to expand the uses and applications of HACAs and recent reports on the production of HACA-based

recyclable vinyl polymers point in the right direction.
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Carbon capture, utilisation and storage (CCUS), through chemical xation of anthropogenic CO2 in organic chemicals such as hydroxyaromatic carboxylic acids
(HACAs), has the potential to contribute to a circular economy and net zero. At present, commercial production of HACAs via the Kolbe–Schmitt reaction
involves the use of unsustainable fossil-derived phenols and long reaction times in batch reactors. This present work critically reviews the historical and current
research efforts to nd various pathways to promote sustainable production of HACAs as well as expand their uses and applications. Industrial-scale production
of HACAs from CO2 and sustainable biomass-derived phenols aligns with the following UNSDGs; SDG9 ‘Industry, Innovation and Infrastructure’; SDG12
‘Responsible Consumption and Production’; and SDG13 ‘Climate Action’.
1 Introduction

The concentration of carbon dioxide (CO2) in the atmosphere
has increased since the beginning of the industrial era, from
approximately 277 parts per million (ppm) to nearly 410 ppm in
2019 due to anthropogenic emissions.1,2 Scientic evidence
indicates that the increase in atmospheric CO2 concentration
has been primarily caused by fossil fuel burning, cement
production, deforestation and other land-use activities, in
particular, large-scale farming and agriculture.3 Presently,
global anthropogenic CO2 emissions are about 34 billion tonnes
per year and it is anticipated to continuously increase in the
coming years.1

The most obvious way of reducing the concentration of CO2

in the atmosphere is to stop its release through burning of
carbon-based fuels (both fossil and non-fossil). Atmospheric
CO2 concentrations can also be reduced through industrial-
scale xation of CO2 through carbon capture, utilisation and
storage (CCUS) technologies. Presently around 230 million
tonnes of CO2 are used every year as raw material, ingredient
and chemical feedstock across various sectors.4 North America
accounts for 33% of the current global demand for CO2, fol-
lowed by China with 21% and Europe at 16%. These three
regions, therefore, account for more than two-thirds of global
CO2 demand, with the market for existing uses expected to grow
in the coming years.4 There are two possible approaches to
using CO2 as a chemical, namely the direct approach,4,5 and the
chemical conversion approach.6 Unfortunately, most of these
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uses are short-lived, meaning that they release CO2 back into
the atmosphere within a short period of time. These short-lived
uses include urea production, which consumes around 130
million tonnes of CO2 annually,4 through the Snamprogetti urea
process. In addition, enhanced oil recovery (EOR) consumed
between 70 and 80 million tonnes of CO2 per annum. Other
sectors that use CO2 without long-term storage include metal
fabrication, healthcare, re extinguishers, dry cleaning and
production of food and beverages. Indeed, urea production and
EOR consume nearly 90% of all annual CO2 being currently
used. However, for chemical xation to contribute to CO2

emission reduction, its use in the production of durable
chemical products must be encouraged. There are other
chemical xation processes being developed for CO2 utilisation
including the production of inorganic materials such as lime-
stone and aggregates7 as well as the production of organic
compounds such as methanol,8 cyclic carbonates,9 hydroxy
aromatic carboxylic acids (HACAs)10 and polycarbonates.11

Although the current global demand for CO2-based organic
chemicals lacks the potential to valorise enough CO2 emissions
to make a major contribution to meeting the global reduction
objectives, it can play a major role to meet global goals as part of
an “all technologies” approach.4,12 For instance, every year
around 100 million tonnes of methanol are produced, with
a yield of 728 kg per tonne of CO2 consumed.13 Hence, global
methanol production via CO2 hydrogenation would require
around 140 million tonnes of CO2 each year. While this is only
0.4% of current anthropogenic CO2 emissions, it sounds
promising as future increases in the demand for methanol and
other CO2-based organic chemical are possible.

One group of CO2-based chemicals with potential high
future demands is HACAs, due to the versatility of their possible
uses and applications. Notable HACAs include salicylic acids,
hydroxynaphthoic acids and various halogenated derivatives
that may be employed as intermediates or starting materials in
the pharmaceutical,14–16 dye,17,18 fragrance,19 cosmetic,20,21

food21,22 and bioplastic industries.23–25 Currently, commercial
quantities of HACAs are produced via the Kolbe–Schmitt reac-
tion between phenolic compounds and CO2. Thus, increasing
the production, uses and applications of HACAs can contribute
to increased CO2 utilisation and long-term CO2 sequestration.

Even though CO2 is being consumed in the Kolbe–Schmitt
reaction, reducing the energy demand and using renewable
energy from low-carbon or carbon-free sources are hugely
important that can also contribute to the CCUS strategy.26 In
addition, the production of durable solid materials fromHACAs
can offer long-term carbon storage capability and, therefore,
can be considered as a method of CO2 sequestration.12 In
RSC Sustainability, 2023, 1, 404–417 | 405
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Scheme 1 Model for oxidation of alkylarenes to aromatic carboxylic
acids.

Scheme 2 Hydrolysis of aromatic amides to aromatic carboxylic acids.

Fig. 1 Chemical structure of the CO2 molecule.
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contrast, the manners of usage of urea andmethanol mean they
can only store CO2 for limited periods of time. For instance,
using CO2-derived methanol as fuel means realising it back to
the environment arguably before the benets of CCUS are
realised.26 Instead, producing engineering and construction
plastics from HACAs27 can give much longer sequestration and
sustainability advantages, whether they are biodegradable or
non-biodegradable.28 However, there is a stronger case for CO2-
derived non-biodegradable plastics with a longer lifespan to
contribute to the CCUS strategy by being incorporated into long-
term products.29

There are established methods for production of aromatic
carboxylic acids such as the oxidation of alkyl benzenes
(Scheme 1),30,31 or through hydrolysis of aromatic amides
(Scheme 2).32 Yet, the Kolbe–Schmitt reaction still remains the
most straightforward method for accessing many HACAs.33,34

Production of HACAs generally involves a two-stage reaction.
First, production of dry alkali metal salt of hydroxy aromatics or
phenolic compounds e.g., sodium phenoxide followed by
carboxylation at moderate temperatures and high pressures
(125 °C and 85 bar) in batch mode. Hence, many research
efforts have focused on improving the current carboxylation
method since the original report in 1884.10,35 However, most of
the developed methods have not been industrially adopted due
to their limitations at scale, safety concerns and high costs.
There is also the chemical barrier of the difficulty of inducing
enough nucleophilicity to a level that promotes the addition of
CO2 to monohydric aromatic compounds, which accounts for
most industrial HACA production.

This review, therefore, critically analyses each of the devel-
oped carboxylation methods by using phenol as a model
compound. This review also discusses (i) possible conversion
routes via the Kolbe–Schmitt reaction, (ii) background on how
the Kolbe–Schmitt reaction has been developed, (iii) the
proposed mechanisms of the carboxylation reaction, (iv) critical
analysis of each of the developed carboxylation methods and
406 | RSC Sustainability, 2023, 1, 404–417
their setbacks and nally, (vi) identify gaps in the research area
as well as proposing a new synthetic procedure that has the
potential to move from the reliance of HACAs from crude oil to
biomass-derived-HACAs.
2 Thermodynamic and kinetic
stability of CO2

CO2 is a highly stable molecule due to its linear structure, strong
covalent bonds and low energy state. It is weakly acidic which
makes it able to readily react with inorganic basic oxides. Hence,
the most extensive natural reactions of CO2 are the formation of
metal carbonates (e.g., limestone) and hydrogen carbonates due to
its weakly acidic nature.36 However, chemical xation of CO2 into
organic compounds requires high temperatures and pressures to
overcome these energy barriers.37 Since most emissions arise from
human activities relating to the use of organic carbons in fossil
fuels, the most efficient utilisation of captured CO2 should be to
make new organic molecules. This will help to establish
a sustainable anthropogenic carbon cycle38 and thereby promote
a circular economy. Presently, only a few industrial processes
utilise CO2 as a raw material to make organic chemicals due to its
thermodynamic and kinetic stability. In other words, CO2 has
a strong covalent bond, which means it requires a lot of energy to
undergo a chemical transformation.39 Most CO2 conversions are
catalytically promoted.38 Thus, only a few specic reactions of CO2

are well known and commercially useful.
In its ground state, the CO2 molecule is a linear triatomic

molecule belonging to the DNh point group. The central carbon
atom possesses sp hybridisation, meaning both C]O bonds
have equivalent orbitals with a C–O distance of 116 pm. Each of
the C–O bonds has a dipole moment with the same magnitude
but in opposite directions. Because of its linearity, the dipoles
associated with each C–O bond cancel each other out, see Fig. 1.
Such a facet makes the CO2 molecule non-polar and exhibit
remarkable kinetic and thermodynamic stability.37

The strong electronegativity differences between carbon and
oxygen enable CO2 to exhibit amphoteric character, having both
Lewis basic character at oxygen and Lewis acidic character at
the carbon. These characteristics inuence CO2 binding to
transition metals. In this case, metals with high oxidation states
predominantly interact with the oxygen atoms whereas metals
with low oxidation states mainly interact with the carbon
atom.37,40 However, CO2 is a stronger acceptor of electron
density than a donor; therefore, the molecule's reactivity is
driven by the electrophilic character of carbon rather than the
weak nucleophilic characteristics of the oxygen atoms.37 In
other words, due to the electron deciency of the carbonyl
© 2023 The Author(s). Published by the Royal Society of Chemistry

http://creativecommons.org/licenses/by-nc/3.0/
http://creativecommons.org/licenses/by-nc/3.0/
https://doi.org/10.1039/d2su00105e


Critical Review RSC Sustainability

O
pe

n 
A

cc
es

s 
A

rt
ic

le
. P

ub
lis

he
d 

on
 1

3 
M

ar
ch

 2
02

3.
 D

ow
nl

oa
de

d 
on

 2
/1

1/
20

26
 1

1:
13

:3
4 

PM
. 

 T
hi

s 
ar

tic
le

 is
 li

ce
ns

ed
 u

nd
er

 a
 C

re
at

iv
e 

C
om

m
on

s 
A

ttr
ib

ut
io

n-
N

on
C

om
m

er
ci

al
 3

.0
 U

np
or

te
d 

L
ic

en
ce

.
View Article Online
carbon of the CO2 molecule, it has stronger affinity towards
electron-donating species and nucleophiles which is observed
in the Kolbe–Schmitt reaction.39
Scheme 4 Kolbe's developed carboxylation method by starting with
sodium phenoxide.

Scheme 5 The industrially applied Kolbe–Schmitt reaction conducted
under high pressures (80–94 bar).

Scheme 6 The Marasse modification of the Kolbe–Schmitt reaction
uses an excess of anhydrous potassium carbonate.
3 Historical developments of the
Kolbe-type carboxylation reactions

Kolbe developed one of the few industrially relevant CO2-based
methods in 1860.41 This was achieved through heating
a mixture of phenol and sodium in the presence of CO2 at
atmospheric pressure. The reaction proceeded via the forma-
tion of sodium salicylate which was consequently dissolved in
water and precipitated into salicylic acid upon acidication
(Scheme 3).33

Kolbe needed to prepare a considerable amount of salicylic
acid a few years later. However, the initial work was not easily
scalable, as salicylic acid yields varied signicantly under
seemingly similar reaction conditions. In order to correct this
variation in yield, Kolbe discovered that one-half of the initial
amount of phenol was volatilized from the reaction mixture. He
also discovered that not only was sodium salicylate produced in
the reaction, but also sodium phenoxide and sodium carbonate.
From this observation, Kolbe recommended a new procedure
for the preparation of salicylic acid starting from sodium
phenoxide (Scheme 4). This was achieved by evaporating to
dryness an equimolar solution of phenol and sodium
hydroxide.

Dried sodium phenoxide was heated to 180 °C in an iron
retort and CO2 passed slowly over the heated salt. The nal
temperature was raised to 220–250 °C and the reaction was
considered complete when no more phenol could be distilled.
Since half of the starting phenol was lost by volatilisation, the
yield of salicylic acid never exceeded 50%.33

Schmitt enhanced Kolbe's method by carrying out the reac-
tion under pressure in 1884, which improved the overall yield
signicantly.10 In a closed vessel, dry sodium phenoxide was
heated with carbon dioxide at 120–130 °C for several hours at
a pressure of 80 to 94 bar, see Scheme 5. No phenol was lost
under these conditions, and a nearly quantitative yield of sali-
cylic acid was produced. This procedure is now known as the
Kolbe–Schmitt reaction, and it is still the standard method for
manufacturing a wide range of salicylic acids.

A further variant of the Kolbe–Schmitt reaction was intro-
duced byMarasse in 1894, see Scheme 6.42 This method involves
the carbonation of a mixture of free phenol and excess anhy-
drous potassium carbonate under pressure and elevated
temperatures to produce salicylic acid potassium salt which is
followed by acidication. In many cases, the Marrase
Scheme 3 Kolbe's first developed carboxylation reaction in the 1860s.

© 2023 The Author(s). Published by the Royal Society of Chemistry
modication provides better yields as well as avoids the time-
consuming preparation of hygroscopic phenoxides.33 However,
industrially, the Marrase variant is economically more expen-
sive due to the costs of the carbonates compared to metal
hydroxides. In order to make the process cheaper, Marrase
proposed to adjust the molar reaction, instead of excess
potassium carbonate to onemole of potassium carbonate to two
moles of phenol in the presence of CO2.33,42

Despite the efforts conducted by Marasse, the Kolbe–Schmitt
reaction remains the standard method for preparation of many
salicylic acids. It is important to highlight that the described
method is not limited to phenols but can be applied for prep-
aration of other aromatic carboxylic acids through carboxyla-
tion of naphthols and halogenated benzenes.
3.1 Reaction mechanisms of Kolbe–Schmitt type
carboxylation reactions

Phenols contain hydroxyl (–OH) group bonded to an sp2-hybri-
dised carbon atom of an aromatic ring. As a result, the phen-
oxide ion is highly stable due to the negative charge being fully
delocalised over the benzene ring (Scheme 7).43
Scheme 7 Delocalisation of the alkoxide ion over the benzene ring.

RSC Sustainability, 2023, 1, 404–417 | 407
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Scheme 8 Johnson's proposed intramolecular chelation mechanism.

Scheme 9 Hale's proposed carboxylation mechanism.

Scheme 10 TS1, TS2, TS3 are the transitions states, and B, C and D are
the proposed intermediates.
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Also, the lone pairs on the –OH oxygen atom are equally
delocalised into the aromatic ring, making phenols more acidic
than cyclohexanol and acyclic alcohols. Scheme 7 also shows
that carboxylation is via electrophilic attack on the aromatic
ring at the ortho and meta positions, which become enriched
with electrons following delocalisation.

Several experimental and theoretical investigations have
been conducted to elucidate the mechanism of the Kolbe–
Schmitt reaction and the structure of the intermediate NaOPh–
CO2 complex. As a plausible intermediate, Schmitt and Hent-
schel proposed that the reaction proceeded via the formation of
alkali metal phenyl carbonate (PhO–CO2Na).10,33,44 Johnson
proposed that ortho-substitution in an allylic system occurs due
to intra-molecular chelation according to Scheme 8 (alkali-
metal-induced electrophilic replacement of nuclear hydrogen
by carboxyl with migration of the alkali metal to the carboxyl
group).45,46

Hales agreed with Johnson regarding the formation of metal
carboxylate as the nal product. However, through an infrared
absorption spectra study, he proposed a mechanism based on
the preliminary association of sodium phenoxide with CO2 to
form a complex followed by an intramolecular reaction with the
displacement of the ortho-hydrogen by an electrophilic attack,
based on Scheme 9.33,46

In 2002, Marković disclosed more precise information
regarding the mechanisms of the Kolbe–Schmitt reaction when
the density functional theory (DFT) was evaluated as a more
accurate approach for quantum chemistry calculations.47 The
DFT method revealed that the reaction between sodium phen-
oxide and carbon dioxide proceeds via the formation of three
transition states and three intermediates. In the rst step, the
carbon dioxide molecule attacks a polarised O–Na bond of
408 | RSC Sustainability, 2023, 1, 404–417
sodium phenoxide, forming the intermediate NaPh–CO2

complex. In the following stage, the electrophilic carbon atom
attacks the ring predominantly at the ortho position, creating
two new intermediates. A 1,3-proton shi from the C to the O
atom produces sodium salicylate as the nal product (Scheme
10).47

For a long time, the alkali metal phenoxide–CO2 complex
had been widely accepted as an intermediate in the rst stage of
the reaction of phenoxide. Further studies using C-13 nuclear
magnetic resonance (NMR), the general-purpose semi-
empirical molecular orbital package (MOPAC) and parametric
method 3 (PM3) for the study of chemical structures and reac-
tions have revealed further details. For instance, through C-13
NMR and MOPAC/PM3 calculations,56 Kosugi et al. proved
that the CO2 complex is not an intermediate that gives carbox-
ylic acids. Contrasting previous notions, the authors proposed
a competitor that decomposes thermally (<100 °C) to phen-
oxide, which then undergoes further competitive reactions. On
this basis, a carbonate-like complex (PhOK–CO2) that
undergoes direct carboxylation was proposed as the interme-
diate of the Kolbe–Schmitt reaction.57 In accordance with
experimental results obtained by the NMR and infra-red (IR)
measurements, Marković et al. later vaguely supported the idea
of the existence of the PhOK–CO2 complex and, however,
negated the mechanism of direct carboxylation of the benzene
ring. It suggested that under reduced pressure of carbon
dioxide, the complex is not solvated with the CO2 molecules –

hence no reaction occurs. In contrast, at high pressure and
temperature, carbon dioxide behaves as a solvent, and the
KOPh–CO2 complex becomes solvated with one or two CO2

molecules. One of the added CO2 moieties performs an elec-
trophilic attack on the benzene ring, whereas the old CO2

moiety becomes a molecule of solvent.58
4 Recent carboxylation methods

Since the Kolbe–Schmitt reaction was rst reported in 1884,10

numerous investigations have focused on overcoming either
the two-pot, high pressure or batch mode nature of the
industrially applied carboxylation process. This has led to the
© 2023 The Author(s). Published by the Royal Society of Chemistry
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Table 1 Recently developed carboxylation methodologies since the Kolbe–Schmitt reaction

Phenol
feedstock Catalyst type Catalyst/reagent Solvent Reactor Yield Reference

Phenol-
3-methoxy

— NaH — Balloon and vial 80% 48

Phenol Heterogeneous C@Fe–Al2O3 H2O 250 ml three-necked
round-bottom ask

<5% 49

Phenol Heterogeneous Ag@ZIF — Gas ow cell — 50
Phenol Heterogeneous AlBr3 scCO2 50 ml autoclave 55.9% 51
Phenol — Sodium ethyl carbonate — 100 ml glass placed

in a stainless steel autoclave
87.4% 52

Resorcinol — 1,8-Diazabicyclo[5.4.0]
undec-7-ene (DBU)

Dimethylformamide
(DMF)

Pressure tube inside
a stirred autoclave

>99% 35

Resorcinol — KHCO3 H2O Micro-reactors 37% 53 and 54
Resorcinol Ionic liquids 1-Ethyl-3-methylimidazolium

hydrogen carbonate
MeOH/H2O (2 : 3) Microwave-assisted

80 ml quartz reactor
62% 55

Resorcinol 1-Ethyl-3-methylimidazolium
hydrogen carbonate

MeOH/H2O (2 : 3) 1/16-Inch capillary reactor 57% 53
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development of various carboxylation methodologies, cat-
egorised by the use of novel activation/carboxylation
agents,53,55 heterogeneous catalysts48–52 and homogeneous
stoichiometric reagents35,53,54 as shown in Table 1. These new
developments attempt to reduce the long reaction times and
high CO2 pressures that characterise the conventional Kolbe–
Schmitt reaction.
4.1 Novel activation/carboxylation agents

4.1.1 Alkali metal hydrides. The use of alkali metal
hydrides as activating reagents to promote the carboxylation of
phenol has been reported. It is regarded as an efficient method
to produce aromatic hydroxycarboxylic acids at high yields. This
new method involves a one-pot reaction of NaH with a phenolic
compound at atmospheric CO2 pressures (Scheme 11).

Using NaH instead of NaOH prevents the formation of
water during the deprotonation of the phenolic compound,
thereby providing direct access to salicylic acid derivatives
without the need of preparing and drying sodium phenoxide.
It is important to highlight that 2,4,6-trimethylphenol as
a recyclable additive signicantly increased the initial reaction
rate as well as improved the nal yield of the carboxylation. It
was suggested that the additive 2,4,6-trimethylphenol acts as
an aid for CO2 capture.48 However, sodium hydride (NaH),
when used with certain solvents, can undergo exothermic
decomposition at relatively low temperatures generating heat
and incondensable gases, leading to a runaway reaction or
even an explosion.59
Scheme 11 Carboxylation reaction using alkali-metal-hydrides at
atmospheric pressure.

© 2023 The Author(s). Published by the Royal Society of Chemistry
4.1.2 Carboxylation with alkyl carbonates. In 1983, Mar-
asse invented the rst carboxylation of phenols utilising alkali
metal carbonates as a modication on the industrially applied
Kolbe–Schmitt reaction, with the aim of avoiding the time-
consuming procedure of preparing the hygroscopic phen-
oxide.42 Later, Suerbaev illustrated an alternative carboxylating
reagent for phenols by utilising alkali metal salts of ethyl-
carbonic acid (Scheme 12).52

The two-step synthetic procedure of the alkali metal salts of
ethylcarbonic acid was performed by reacting ethanol with
NaOH/KOH to produce sodium or potassium ethoxide. Subse-
quently, this was carboxylated to synthesise sodium and
potassium ethyl carbonates. The experimental procedure was
carried out by loading a 100 ml glass reactor with dry powdered
sodium/potassium ethyl carbonate and phenol in solvent-free
mode. Aer the reaction, the unreacted phenols were recov-
ered using toluene, and the conversion was calculated based on
the unreacted phenols. It was reported that the optimal condi-
tions (T = 200 °C and s = 6 h) for the carboxylation reaction of
phenol with sodium ethylcarbonate yielded 87.4% of hydrox-
ybenzoic acid whereas the yield under optimal conditions was
63.7% using potassium ethylcarbonate.52

Since making sodium/potassium ethylcarbonate is time
consuming and requires a lot of energy, starting with sodium
hydroxide to make the hygroscopic sodium phenoxide remains
the optimum method.

4.1.3 Ionic liquids. Ionic liquids (ILs) are dened as
compounds composed of ions with melting point below 100 °C.
Despite the rst ionic liquid (ethylammonium nitrate) being
Scheme 12 Carboxylation reaction using metal ethyl carbonates.
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Fig. 2 Chemical structure of 1-ethyl-3-methylimidazolium
hydrogencarbonate.
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reported by Paul Walden in 1914,60 ionic liquids have received
wider attention only in the past two decades.61 ILs exhibit
a number of unique properties that make them suitable
solvents for various industrial applications. High polarity,
thermal stability, ionic conductivity and low volatility and
melting point are some of the physiochemical properties of
ILs.62 In order to investigate the applicability of ILs in the Kolbe–
Schmitt reaction, hydrogencarbonate-based ILs, particularly, 1-
ethyl-3-methylimidazolium hydrogencarbonate, [C2MIM]
[HCO3], has been investigated as an exemplary reactive solvent
(Fig. 2).55

Selective conversion of resorcinol to 2,4-hydroxybenzoic acid
using [C2MIM][HCO3] was found to produce maximum yields of
60% at temperatures between 100 and 160 °C within 10–60
minutes in a microwave-assisted autoclave operating between 6
and 8 bars.55 Although little difference at ambient pressure was
found for the carboxylating reagents [K][HCO3] and [C2MIM]
[HCO3],55 the production process of ILs is process-intensive. ILs
as heat transfer uids currently have signicant cost disad-
vantages due to the lack of large-scale synthesis and the high
cost of reagents.63
Scheme 13 Carboxylation reaction in an unconventional region using
MOFs and an electron donating group (Ag@ZIF). “Reprinted with
permission from copyright 2020 American Chemical Society”.50
4.2 Heterogenous catalysts

4.2.1 Carbon coated g-alumina pellets. The rst Kolbe–
Schmitt type reaction using a heterogeneous catalyst was
recently reported.49 Carbon-coated g-alumina pellets (C@Fe–
Al2O3), a new hybrid material catalyst, were synthesised to give
both catalytic and hydrophobic characteristics for the phenol
reaction in aqueous solutions under atmospheric pressure and
mild temperature conditions, using CO2 as a feedstock.49 The
Kolbe–Schmitt reaction is inhibited by the presence of water
since anhydrous phenoxide is considered as the intermediate
for carboxylation of the aromatic ring.10 The novel catalyst
provided a gateway for the reaction to occur by allowing the
phenol and CO2 to diffuse to the active sites in the carbon-
coated alumina hybrid, while the aqueous solution remains
outside the spheres due to their hydrophobic characteristics
created by the coated carbonaceous material. The participation
of Fe was not resolved; hence it was not possible for the
researcher to elucidate a mechanism. The yield of salicylic acid
was relatively low, <5% which was measured using HPLC.49 The
poor yields can be attributed to the synergistic impact of
internal and exterior mass transfer limitations of diffusion
which is the porous catalyst structure and gas–liquid–solid
interphase between the reactants and catalyst particles.
410 | RSC Sustainability, 2023, 1, 404–417
4.2.2 Metal–organic frameworks (MOFs). Due to their well-
dened 3D architectures, permanent porosity, and diverse
chemical functionalities, metal–organic framework nano-
particles (MOF NPs) are emerging as potentially promising
matrices for catalytic reactions. Advancements in methods for
producing modular MOF NPs have allowed precise control over
particle size, shape, and surface chemistry, hence maximising
their catalytic capabilities unnnder unconventional condi-
tions.64 A recent study has been conducted using the Kolbe–
Schmitt type reaction as a model for direct C–H carboxylation of
mercaptophenol (MP) using CO2 gas on active Ag nanoparticles
and a zeolitic imidazolate framework (ZIF) layer (Ag@ZIF) under
ambient conditions. The reaction was monitored in situ using
Surface-Enhanced Raman Spectroscopy (SERS). The SERS-active
Ag nanoparticle and ZIF layer exhibited unprecedented CO2

meta-carboxylation that was previously deemed impossible, see
Scheme 13.50 NP@MOFs are therefore a promising strategy to
achieve high performance and selective CO2 valorisation
without the need of elevated temperature or pressure, thus
more energy efficient for an environmentally and economically
sustainable gas process.

Although MOFs exhibit numerous advantageous properties,
the practical use of these novel materials has been restricted
due to high production costs, low capacity and difficulties in
regeneration. This type of Kolbe–Schmitt reaction is only
a proof-of-concept at this point, and further study is necessary
before it can be scaled up for commercial application.

4.2.3 Lewis acid catalyst. The rst Lewis-acid mediated
carboxylation was discovered by Friedel and Cras when CO2

was bubbled through a mixture of aluminium chloride (Al2Cl6)
and benzene heated to its boiling point; a little quantity of
benzoic acid was formed, along with the production of a small
amount of hydrogen chloride.65 Owing to CO2's low electro-
philicity and the side reactions caused by the high Lewis-acidity
of aluminium-based compounds, carboxylic acids are obtained
in low yields.66 The acid strength of the halogen atom is
a function of the nature of the groups covalently bonded to it.67

The Lewis acid strength is enhanced by electron-withdrawing
© 2023 The Author(s). Published by the Royal Society of Chemistry
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Scheme 14 Proposed mechanism of carboxylation of phenols using
a Lewis acid catalyst with improvement from the original report.51

Scheme 15 Carboxylation of di-hydroxy aromatic compounds
mediated by an organic base under ambient conditions.
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groups. For instance, AlBr3 combines the highest Lewis acidity
and good solubility in non-polar solvents.51 The empty 2p
orbital on the boron makes trivalent boron compounds act as
Lewis acids.67 In 2008, Iijima reported an efficient regioselective
carboxylation of phenol to salicylic acid with supercritical CO2

in the presence of aluminium bromide.51 Among the Lewis acid
halides investigated, aluminium bromide (AlBr3) was found to
be the most active. AlBr3 as the catalyst yielded 55.9% of sali-
cylic acid at moderate temperatures (80 °C) and under super-
critical CO2 conditions.

According to the original report,51 the reaction is initiated
with the formation of the phenoxyaluminium dibromide
intermediate. This intermediate then attacks the CO2 at its v+

carbon through the electron-rich carbon at the ortho position to
form the aluminium salt of salicylate. However, the insertion of
CO2 into the O–Al bond to form a carbonate is more likely to
occur as suggested in other reports.68,69 Following the insertion
of CO2 into the Al–O bond, the double bond at the ortho-posi-
tion attacks the carbonate carbon, with the subsequent cleavage
of the PhO–C bond to form the phenoxide ion and ortho-posi-
tioned aluminium dibromide salicylate group. This is followed
by re-aromatisation through proton shi to the phenoxide
oxygen to form the phenolic group as seen in Scheme 14. In the
last stage, the salt is protonated by HBr to yield salicylic acid
and regenerates the AlBr3 catalyst.

The results of this work provide a promising opportunity to
investigate other Lewis-based catalysts. Yet, it does not solve the
issues associated with batch mode operation. Moreover, using
NaOH is ten times more cost-effective than using AlBr3 from the
perspective of process viability.
4.3 Homogeneous stoichiometric reagents

4.3.1 Organic base. As previously reported, forming the
phenoxide ion via treatment with a basic hydroxide metal e.g.,
KOH and NaOH or other basic reagents e.g., KHCO3, NaHCO3

and K2CO3 is the popular route for the carboxylation of
phenols.33,52,70,71 The aim of utilising a base is to increase the
nucleophilicity of the benzene ring to a level that promotes CO2
© 2023 The Author(s). Published by the Royal Society of Chemistry
addition. Unlike monohydroxylbenzenes, activated phenols
such as dihydroxylbenzenes are more readily reactive and can
react even in aqueous solutions.55 Therefore, a recent study
anticipated that introducing dianion species using an organic
base would induce enough nucleophilicity to promote the
addition of CO2. This type of Kolbe–Schmitt reaction proceeded
under ambient conditions through treating dihydroxybenzenes
(resorcinols) with a strong organic base to synthesise the cor-
responding salicylic acid (Scheme 15).35

The Kolbe–Schmitt type reaction of resorcinol using 1,8-
diazabicyclo[5.4.0]undec-7-ene (DBU) as an organic base under
2.0 MPa of CO2 at 30 °C was found to be the optimal condition
in terms of yield and cost. It is important to note that the
solvents had a synergistic effect in facilitating the reaction. For
example, CH3CN and dimethylformamide (DMF) yielded 99%
of the corresponding resorcylic acid, however, the yield was
signicantly reduced using toluene as a solvent.35

Aqueous solutions of organic amines including DBU are
highly irritating and prolonged exposure may lead to injury to
the eyes, skin and respiratory system.72 Moreover, inorganic
bases such as NaOH and KOH are 10 times cheaper than
organic bases. Thus, from an economic and chemistry point of
view,73 the conventional Kolbe–Schmitt reaction is more
favourable. Despite the aws of this research, it provides
a gateway for further research in testing immobilised organic
base catalysts as a novel route for the Kolbe–Schmitt reaction
which has not been conducted before.
5 Attempts on continuous
carboxylation systems

Most industrial and laboratory-scale attempts to produce
HACAs have relied on batch processing due to the prolonged
reaction times required for the chemical transformation.
However, there are several reports in the literature on attempts
to use continuous processing for HACA production. For
example, to test and validate the implementation of continuous
ow in the Kolbe–Schmitt reaction, Hessel carried out the rst
aqueous Kolbe–Schmitt synthesis using resorcinol to yield 2,4-
dihydroxybenzoic acid in a microreactor rig.70 Resorcinol was
reacted with aqueous KHCO3 at high temperatures (up to 200 °
C) and pressures (up to 74 bar) which shortened the reaction
time from 2 hours to less than a minute. The maximum yield of
resorcylic acids at optimised protocol settings was 48%;
however, due to short reaction times, the microreactor
increased the space-time yields by a factor of 440 compared to
a batch process.70
RSC Sustainability, 2023, 1, 404–417 | 411
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Ionic liquids were also investigated in a continuous 1/16-
inch capillary reactor using reactive imidazolium-based ionic
liquids with a hydrogen carbonate anion. 1-Ethyl-3-
methylimidazolium hydrogen carbonate (EMIM-HC,
C7H12N2O3, 172.18 g mol−1) exhibited maximum yields of
57% for 220 °C and a residence time of 32 s or for only 6.5 s at
200 °C, which exceeded the best results obtained for the
aqueous KHCO3-based Kolbe–Schmitt synthesis by 13%.53

Later, in 2008 as part of the German Federal Environmental
Foundation's nancing cluster “Novel Process Windows”, the
potential of continuous processing with the aim to intensify the
Kolbe–Schmitt synthesis using the example of the 2,4-dihydrox-
ybenzoic acid from resorcinol was experimented. Krtschil and
his co-workers revealed that the micro-structured reactor resul-
ted in tenfold higher productivity (0.75 tonnes per annum) with
the ability of further scalability compared to the capillary reactor
of different scales (1/8 inch and 1/18 inch).53 It is worth noting
that the CO2-donating salt, KHCO3, produced higher yields (58%)
and activity, indicating that hydrogen carbonates are preferable
to carbonates. The results obtained from the laboratory scale
were scaled up to the pilot scale. This was achieved through a set
of tailor-made electrically heated micro-structured reactors
comprising 40 microchannels. This enabled space–time yields
up to 28 800 kg m−3 h−1 at a product yield of 32%. Despite low
yields, the space–time yields were signicantly improved due to
reduced reaction times from hours to a few seconds.54

Using continuous processing for the Kolbe–Schmitt type
reaction means that time and energy can be saved by avoiding
frequent loading, unloading, and heating up and cooling down
cycles. Furthermore, the high surface area of the reactor wall
increases heat transfer, allowing efficient heat management –
saving both energy and costs. In any case, the drawbacks of
continuous ow chemistry are inevitable; small reactor diame-
ters increase the chances of cloggages and blockages leading to
unstable plant operation. Micro-reactors used as a green route
are limited to large-scale productions.74 Mixing in narrow
diameters is static and arises from uid velocity and pressure,
which inuences important process parameters including
reaction kinetics, uid mechanics and thermodynamics.
Therefore, many continuous ow technologies have not been
implemented at a commercial scale. If this CCUS option is to
play a role at a commercial scale, continuous ow reactor
technology that is easily scalable needs to be developed.
6 Trends and future perspectives on
HACA production

While new carboxylation methods are gaining attention, none
of them has been tested at an industrial scale due to several
reasons. Some of the limitations are high production costs, low
yields and saturation of the HACA’s low market volumes, due to
limited uses and applications.
6.1 Expanding the HACA market

Salicylic acid is the best-known HACA for its use in anti-acne
treatments.19 It is also an important intermediate for the
412 | RSC Sustainability, 2023, 1, 404–417
production of pain relief drugs such as aspirin and rubefacients
for acute and chronic musculoskeletal pain.75,76 Moreover,
aminosalicylic acid, starting from 3-nitro salicylic acid can be
used in the synthesis of azo dyes. Azo-dyes can then be
employed as colourants in a variety of consumer products,
including textiles, agriculture, pharmaceuticals, and
cosmetics.77

Although HACAs can be used directly or as an intermediate
for the production of various commercial end products, there is
currently insufficient worldwide demand to fully valorise CO2 to
offset anthropogenic CO2 emissions.78 The annual production
of HACAs such as salicylic acid and hydroxynaphthoic acid is 13
000 metric tonnes per year,79,80 and if it is assumed that the
production process consumes 1 : 1 molar ratio of CO2, the total
CO2 consumption would be 41 450 tonnes per year of CO2. This
is only 0.00012% of the global anthropogenic CO2 emissions. It
is important to highlight that this case does not take into
account other HACAs such as alkylated HACAs, halogenated
HACAs, protocatechuic acid, resorcylic acid, vanillic acid and so
on. Therefore, the total annual CO2 consumption via HACA
production should be even higher.

Recent fundamental research hinted at the development of
recyclable vinyl polymers from HACAs, providing a gateway for
a partial replacement of polymer vinyl chloride (PVC) whose
annual global production is estimated to be 44.3 million
tonnes.25 Further research effort is therefore required to expand
on current application of HACAs and their potential use in
production of vinyl polymers and others. In addition, HACAs
can be used for the production of azo dyes. Therefore, the
present and potential uses of HACAs could potentially be
increased through innovation. With the growing interest in
CCUS, more research efforts can be focused on more cost-
effective and safer HACA production processes. This can
enhance the competitiveness of using HACAs in a variety of
organic chemical products and by extension, increase CO2 uti-
lisation and make signicant contributions to net-zero targets.
6.2 Sustainability through biomass-derived phenolic
compounds

Petroleum-based aromatic chemicals are the primary source of
industrial raw materials for the manufacturing of many
HACAs.81 However, a range of phenolics can be obtained from
biomass which can be used as green raw materials for the
production of HACAs. For instance, the pulp and paper industry
generates 70 million tonnes of lignin annually and generally,
this is used as a green source of thermal energy through direct
combustion.82 The thermochemical conversion of lignin to
high-value chemicals such as phenolic compounds is more
feasible and economically advantageous than its use as an
energy source or through any existing bioconversion routes.83

Bio-oil yield from fast pyrolysis can reach up to 70% (wet basis)84

and yield up to 94% of phenolic compounds using lignin from
the pulping process.85 Vast quantities of lignin are available for
conversion into useful aromatic compounds which then can be
converted into HACAs but at the moment, lignin is still
exploited as a low-value bio-energy source.86
© 2023 The Author(s). Published by the Royal Society of Chemistry
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Fig. 3 One step process for demethoxylation and dealkylation over
a mixed bed of Au/TiO2 and HZSM-5 catalysts in benzene using
a fixed-bed reactor. Reprinted from (ref. 87).
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Other ways of utilising lignin have been proposed by
researchers such as funnelling and functionalisation of
a mixture of lignin-derived monomers into a singular high-
value chemical. Some of these methods include catalytic
demethoxylation and transalkylation of a mixture of phenolic
compounds using Au/TiO2 and HZSM-5 zeolite in a mixed-bed
conguration to phenols,87 the use of activated carbon (AC)-
supported MoWBO to convert vanillic acid and syringic acid
into terephthalic acid (TPA),88 and depolymerisation of lignin
with H2 in methanol over a Ru/C catalyst to obtain phenolic
monomers in the rst step. The obtained monomers were then
demethoxylated with MoOx/AC. The generated 4-alkylphenols
were then carbonylated with CO into 4-alkylbenzoic acid. In the
nal stage, the various alkyl chains were then oxidised with the
Co–Mn–Br catalyst into carboxy groups, transforming the 4-
alkylbenzoic acid mixture into TPA.89 An example of funnelling
and functionalisation of a mixture of lignin-derived phenolic
monomers into phenol is depicted in Fig. 3.

Despite the optimistic efforts conducted by researchers, it is
important to understand the bottleneck of valorisation of the
“lignin-to-chemicals” strategy before phenolics from lignin can
be used industrially. For instance, funnelling and functionali-
sation of a mixture of lignin-derived monomers into a single
high-value chemical require additional steps – not feasible from
a step-economy point of view. Furthermore, the valorisation of
one or two phenolic compounds is concerning due to combined
yields typically below 5 wt%.89 Therefore, narrowing the product
distribution to target industrially relevant phenolics that can be
converted to HACAs is necessary. Obtaining the right tech-
nology and separation technique will ultimately allow com-
mercialisation since it is economically advantageous to produce
HACAs from lignin than a direct energy source. If successful,
obtaining HACAs from biomass will help to meet the twin goals
of reducing CO2 and the overwhelming dependence on fossil-
derived chemicals for a more sustainable future.
Fig. 4 The two general routes for electrochemical carboxylation
reactions using CO2 to synthesize carboxylic acids. Reprinted from
(ref. 99). Route 1: reduction of the substrate at the cathode to generate
the radical anion or carbanion intermediate which then reacts with
CO2; route 2: prior reduction of CO2 at the cathode which then reacts
with the substrate.
6.3 Sustainability through continuous carboxylation

The rst continuous Kolbe–Schmitt type reaction was carried
out in 2005. This was achieved through carboxylation of
a dihydric-phenol (resorcinol) in an aqueous solution to 2,4-
© 2023 The Author(s). Published by the Royal Society of Chemistry
dihydroxybenzoic acid (b-resorcylic acid) using a microreactor
rig.70 As previously stated, this case is only valid for di- or tri-
hydric aromatic compounds. However, due to the popularity
of HACAs from monohydric phenols, this potential has been
largely overlooked. Therefore, new uses can be found for the
HACAs obtained from polyhydric phenols in order to accelerate
the development of the feasible continuous processing that can
lead to large consumption of CO2.

For example, the b-isomer of resorcylic acid (b-resorcylic acid)
is currently being produced by carboxylation of resorcinol, in
which the global production capacity stood at 44 800 tonnes in
2000.90 b-Resorcylic acid has been reported to be useful in the
production of moisture-proof materials for direct adhesion to
a oor panel for transportation vehicles and building structures,91

synthesis of methylphenidate pro-drugs,92 avouring agents,93

and synthesis of various active pharmaceutical ingredients such
as etamivan, modecainide, brovanexine and vanitiolide93 and
polymer aerogels.94 Therefore, the prospect for continuous
production of certain HACAs is bright, given that several poly-
hydric phenols can easily be obtained from sustainable biomass.
6.4 Sustainability through renewable energy and
electrocarboxylation

Renewable and carbon-free energy sources, such as solar,
hydroelectric, wind, geothermal and nuclear, provide energy
with zero or almost zero emissions.95–97 Hence, synthesis
methods that utilise CO2 and do not rely on a petrochemical
energy source to further reduce the carbon footprint are
attractive options to explore. One promising process is
RSC Sustainability, 2023, 1, 404–417 | 413

http://creativecommons.org/licenses/by-nc/3.0/
http://creativecommons.org/licenses/by-nc/3.0/
https://doi.org/10.1039/d2su00105e


RSC Sustainability Critical Review

O
pe

n 
A

cc
es

s 
A

rt
ic

le
. P

ub
lis

he
d 

on
 1

3 
M

ar
ch

 2
02

3.
 D

ow
nl

oa
de

d 
on

 2
/1

1/
20

26
 1

1:
13

:3
4 

PM
. 

 T
hi

s 
ar

tic
le

 is
 li

ce
ns

ed
 u

nd
er

 a
 C

re
at

iv
e 

C
om

m
on

s 
A

ttr
ib

ut
io

n-
N

on
C

om
m

er
ci

al
 3

.0
 U

np
or

te
d 

L
ic

en
ce

.
View Article Online
electrocarboxylation, which involves the electrochemical xa-
tion of CO2 in organic chemicals including alkenes, organic
halides, aldehydes, ketones and imines.98 The electrochemical
carboxylation can either be conducted with a sacricial anode,
like magnesium or aluminium, or with an inert anode, like
platinum or carbon. Sacricial anodes have larger oxidation
potential than other reaction species, thereby making this setup
compatible with a straightforward undivided electrolysis cell
between the catholyte and anolyte. The metal cations (Mg2+,
Al3+) produced by the counter electrode rapidly coordinate with
the carboxylate anions formed at the cathode. The corre-
spondingmetal carboxylates are easily isolated from the organic
solvents. The cathodic reduction in the synthesis of carboxylic
acids can be categorised into two possible routes (Fig. 4).99

In the case of the Kolbe–Schmitt type reaction, carboxylation
of phenols is most likely to take place via the rst route. Hence,
electrocarboxylation using CO2 can be a worthy alternative to
overcome the limitations associated with the Kolbe–Schmitt
reaction.98

Although electrochemical carboxylation might be a potent
substitute for the traditional chemical approach, this method
inevitably has its limits. The metal cations (Mg2+, Al3+) gener-
ated from the sacricial anodes contaminate the reaction
mixture, which is a major drawback.100 Additionally, the
inability to reduce phenols with sufficient nucleophilicity has
prevented electrocarboxylation of phenolics from being ach-
ieved to this date.

7 Conclusion

In this study, several historical and recent research efforts on the
carboxylation of phenolic compounds for the production of
HACAs have been reviewed. Starting from the well-known Kolbe–
Schmitt reaction, the review covers some of the recent research
efforts to enhance the carboxylation of phenolic compounds
utilising CO2. While the industrial production scale of HACAs
still relies on the historical two-pot Kolbe–Schmitt reaction,
many recent developments have focused on the modication of
this reaction to reduce, CO2 pressures, reaction times, high
energy demand and dependence on fossil-derived feedstock.
These developments include the synthesis and use of interme-
diate compounds (e.g., ionic liquids), heterogeneous catalysts
(e.g., C@Fe–Al2O3) and homogeneous stoichiometric reagents
(e.g., DBU). Currently, this process consumes only 0.00012% of
global anthropogenic emissions which is not enough to valorise
enough CO2 to cope with the anthropogenic emissions. There-
fore, research efforts have also focused to expand the use of the
nal HACAs in the chemical industry for the manufacture of
plastics such as vinyl polymers and other household goods as
well as obtaining phenolic compounds from biomass for a more
sustainable HACA production. Increased utilisation of CO2 in
chemical production has the potential to promote net zero and
scale back the effects of climate change.
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78 R. M. Cuéllar-Franca and A. Azapagic, Carbon capture,
storage and utilisation technologies: A critical analysis and
comparison of their life cycle environmental impacts, J.
CO2 Util., 2015, 9, 82–102, DOI: 10.1016/j.jcou.2014.12.001.

79 CEIC, China Market Price: Monthly Avg: Organic Chemical
Material: Methanol, Methyl Alcohol j Economic Indicators,
2021, https://www.ceicdata.com/en/china/china-
petroleum–chemical-industry-association-petrochemical-
price-organic-chemical-material/cn-market-price-monthly-
avg-organic-chemical-material-salicylic-acid-technical-
grade, accessed November 23, 2021.

80 M. Y. Kawamura and M. H. Maruyama, SIDS Initial
Assessment Report For SIAM 19, 2004.

81 S. T. Yang, H. Huang, A. Tay, W. Qin, L. D. Guzman and
E. C. San Nicolas, Extractive Fermentation for the
Production of Carboxylic Acids, Bioprocess Value-Added
Prod from Renew Resour, 2007, pp. 421–446, DOI: 10.1016/
B978-044452114-9/50017-7.

82 D. S. Bajwa, G. Pourhashem, A. H. Ullah and S. G. Bajwa, A
concise review of current lignin production, applications,
products and their environmental impact, Ind. Crops
Prod., 2019, 139, 111526, DOI: 10.1016/
j.indcrop.2019.111526.

83 S. Feng, S. Cheng, Z. Yuan, M. Leitch and C. Xu,
Valorization of bark for chemicals and materials: A
review, Renewable Sustainable Energy Rev., 2013, 26, 560–
578, DOI: 10.1016/j.rser.2013.06.024.

84 A. V. Bridgwater, D. Meier and D. Radlein, An overview of
fast pyrolysis of biomass, Org. Geochem., 1999, 30, 1479–
1493, DOI: 10.1016/S0146-6380(99)00120-5.
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