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A geometric probabilistic approach to random
packing of hard disks in a plane†

H. J. H. Brouwers

In this paper, the random packing fraction of hard disks in a plane is analyzed, following a geometric

probabilistic approach. First, the random close packing (RCP) of equally sized disks is modelled.

Subsequently, following the same methodology, a simple, statistical geometric model is proposed for

the random loose packing (RLP) of monodisperse disks. This very basic derivation of RLP leads to a

packing value (E0.66) that is in very good agreement with values that have been obtained previously for

2D disk packings. The present geometrical model also enables a closed-form expression for the contact

(coordination) number as a function of the packing density at different states of compaction. These

predictions are thoroughly compared with empirical and simulation results, among others the Rényi

parking model, yielding good agreement.

1. Introduction

The packing of hard disks is of interest in mathematics and
physics. In the mathematical branch it is generally known as
‘‘circles packing’’. In physics the packing of spheres in a plane,
which is equivalent to that of circles in a plane, is studied as an
introduction to 3-dimensional (3D) problems. Furthermore, the
packing of disks and spheres in a plane has been used to model
the structure of monolayer films, the adsorption on substrates,
and the organization of cells.1–3

For ordered/regular packings in the 2-dimensional (2D)
Euclidean plane, Lagrange proved in 1773 that the highest-
density lattice packing of circles is the hexagonal arrangement,
in which the centers of the circles are arranged in a triangular
lattice, and each circle is surrounded by 6 other circles (Fig. 1a),
packing fraction jtri = p/2O3 E 0.907. This packing was proved
to be the densest disk packing in the plane, so optimal among all
packings, not just lattice packings, by Thue in 1910,4,5 although
some consider Thue’s proof flawed.2 Fejes Tóth published
rigorous proof that this triangular packing has optimal packing
indeed.2,6 In Fig. 1(b) also the honeycomb hexagonal lattice is
shown, which can be seen as a union of two offset triangular
lattices, with packing fraction jhon = p/3O3 E 0.605.

Randomly, or jammed, close packed disks in 2D were first
studied 60 years ago,7 where a random packing fraction of
0.89 jtri (E0.807) was measured. Later, experimental, model-
ling and simulation studies yielded jrcp E 0.82–0.89.7–26

Higher packing fractions, jrcp E 0.88–0.89, were found by
Shahinpoor16 and Zaccone,26 the latter’s result leading to scientific
debate.26 Random loose packing (RLP) fraction studies have
resulted in jrlp E 0.66–0.84.3,12,19,24,27–30 The lowest of these
packing fraction values was reported recently.29,30

In this paper, the random close packing (RCP) and random
loose packing fraction (RLP) of hard disks are analyzed, following a
geometric probabilistic approach. Statistical geometry (or integral
geometry) can be traced back to the three problems formulated in
the 18th century by George-Louis Leclerc, better known as Comte
de Buffon. These three mathematical games of chances were the
clean tile problem, the needle problem and the grid problem.31,32

Here, in Section 2 first a geometric probabilistic model for
the RCP is presented, an approach also followed in ref. 10. Next,
in Section 3 a new model is put forward for RLP. Subsequently,
in Section 4 the statistical models are used to obtain closed-
form expressions between packing fraction and number of
contacts (coordination number). In Section 5 the classic Rényi
probability theory of car parking33–35 is applied to assess and
confirm the obtained RCP and RLP contact numbers. The
conclusions are collected in Section 6.

For convenience, in this paper the diameter of the congruent
disks (circles) is set to unity, so that the disk area is p/4 and the
circumference is p.

Fig. 1 Hexagonal disk lattices, (a) triangular and (b) honeycomb.
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2. Random close packing

The packing of RCP has been studied experimentally, numeri-
cally and using analytical, relatively simple, models based on
statistical geometry.3,7–26 In ref. 3, a packing fraction of
0.824 for maximum random jammed (MRJ) disks was numeri-
cally generated, whereby the MRJ state can be thought of as the
‘‘most random’’ state of packing.

For RCP, the method used is very similar to that reported in
ref. 10 and 20, which considered a unit cell formed by 4 disks,
the centers of the 4 disks forming a parallelogram, a being the
angle between neighbor disks (Fig. 2), the enclosed disk area Ad

being p/4. For RCP, with a = p/3, locally a triangular domain is
obtained, considered as the densest possible packing configu-
ration, and with a = p/2 a square lattice, with jsq = p/4 (E0.785).

The area of the parallelogram reads

At = sin a (1)

And the packing fraction j follows as

j ¼ Ad

At
¼ p

4At
: (2)

Assuming a uniform probability density for the angle a
between p/3 and p/2, the RCP density follows from eqn (1)
and (2) as

jrcp ¼
p
Ð p=2
p=3ðsin xÞ�1xdx

4
Ð p=2
p=3dx

¼ 3

2
ln tan

x

2

� �� �����
p=2

p=3
¼ 3

4
ln 3;

(3)

yielding jrcp E 0.824.
This value is in accordance with the majority of measured

and modeled results.1,3,7–15,17–25 This confirms that the statis-
tical approach of the considered unit, with a uniformly dis-
tributed from p/3 to p/2, is a representative of RCP. For a = p/3
and a = p/2, the ordered triangular and the square lattice
domains, respectively, are obtained locally, and all other a
values account for the disordered random nature.

An alternative and even more straightforward approach is
based on the area pertaining to the mean angle a.20 Using the
arithmetic mean of a = p/3 and a = p/2, �a = 5p/12, eqn (1) yields
%At = 0.483, and hence eqn (2) jrcp E 0.813. Also, this value is
close to the aforesaid values.

3. Random loose packing

By introducing order3 or friction,29,30,36,37 a jammed random
packing can be generated with lower packing fractions (and
coordination numbers). Also, unjammed or glass-like packings
have a lower packing fraction. This lower random packing limit
was explored in ref. 12, 19, 24, and 27–30. Recently, from
numerical simulations, Pica Ciamarra and Coniglio29 estimated
jrlp = 0.675, Jin et al.30 estimated jrlp = 0.67, and Atkinson et al.3

mapped jrlp = 0.66 as the lowest jammed packing fraction.
As ansatz for a statistical approach of RLP, a unit cell of a

quadrangle formed by 4 disks is proposed (Fig. 3), the assembly
forming a trilateral trapezoid (or isosceles trapezoid). The
assembly is governed by the angle a, p/2 r a r 2p/3. From
elementary geometric considerations, it follows that

At ¼ sin� sin 2a
2

; (4)

and that the disk area Ad of the 4 disks in the quadrangle is
again p/4.

When a is 2p/3, the presented RLP unit allows for a local
honeycomb domain, and for a being p/2, a square lattice,
similar to the presented RCP unit (Fig. 2). Assuming a uniform
probability density for the angle a between p/2 and 2p/3, the
RLP density follows from eqn (2) and (4) as

jrlp ¼
p
Ð 2p=3
p=2 sin x� sin 2x

2

� ��1
dx

4
Ð 2p=3
p=2 dx

; (5)

yielding jrlp E 0.662. This value is in the range of computer
modeled values, viz. 0.66–0.675.3,29,30

For completeness, also the RLP fraction is computed based
on the arithmetic mean of a = p/2 and a = 2p/3, �a = 7p/12, i.e.
again following the approach by Williams.20 Eqn (4) yields %At E
1.216, and hence from eqn (2) it follows that jrlp E 0.646.

In other words, whichever method followed, a uniform
probability density for the angle a or a mean angle �a, the
presented simple derivation produces an RLP packing value
that is slightly different from those that have been obtained
previously.

Fig. 2 Schematic representation of the RCP unit. Fig. 3 Schematic representation of the RLP unit.
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4. Contact number

The presented approach, in the previous sections, for RCP and
RLP also allows correlating the packing fraction to the number
of contact points (or coordination number) Z.

4.1 Present model

The coordination number Z can vary when the mean angle is
lower or higher than the geometrically averaged ones deter-
mined in the previous sections. This can be the case when the
state of MRJ packing has not yet been attained, when friction is
introduced, ordering takes place, etc.

For the RCP model, with

Z ¼ 2p
a
; (6)

a mean coordination Z = 4.8 for mean �a = 5p/12 is obtained.
Alexander38 demonstrated a minimum of Z = 4 for frictionless
spheres. Assuming maximum disorder (and excluding local
order), Bideau et al. confirmed experimentally and numerically
that in such case the maximum coordination number is 4,18

which may be lower when friction is at play. Also from packing
studies it followed that random or MRJ packings are isostatic,
so Z = 4 (2d), with d the dimension, for disks.3,22,23 The present
model is not able to reproduce this value, according to the
model Z = 4 corresponds to the square lattice, with packing
fraction jsq = p/4 (E0.79).

For all configurations p/3 r ar p/2, so 4 r Z r 6, j can be
expressed algebraically in Z by combining eqn (1), (3) and (6),
yielding

j ¼ p

4 sin
2p
Z

� �: (7)

This relation is included in Fig. 4 for Z ranging from 4 to 6,
and hence j from p/4 to p/2O3.

For the RLP model, using mean �a = 7p/12, eqn (6) yields as
mean coordination number Z = 24/7 E 3.43. This value is in
line with Williams27 and Uhler and Schilling28 who found
values of 3.2 and 3.333–3.416, respectively, by geometric prob-
ability calculations. From numerical simulations Hinrichsen
et al.19 assessed Z = 3.02. Note that Z = 3 (d + 1) is the ‘‘loosest
packing condition of Hilbert’’.38 Atkinson et al.3 reported a
tendency towards a kagomé (or trihexagonal) ordering (jtrh =
pO3/8 E 0.68) near their RLP packing fraction (jrlp = 0.66),
having Z = 4.

Coordination number and packing fraction can also be
related in closed-form in the range 3 r Z r 4. By combining
eqn (1), (4) and (6), it follows:

j ¼ p

4 sin
2p
Z

� �
þ 2 sin

4p
Z

� �; (8)

which is also set out in Fig. 4, for Z ranging from 3 to 4, and
hence j from p/3O3 to p/4.

4.2 Empirical data and other models

In Fig. 4 also the experimental values of ref. 9 taken from ‘‘Table I’’
and ‘‘Fig. 10’’ are included. The outlying packing fractions 0.090,
0.092, 0.098 and 0.385 of ‘‘Table I’’9 are omitted. The depicted
values in Fig. 4 are tabulated in Tables 1 and 2 (Appendix).

The scatter of the experimental points of ‘‘Table I’’9 is
considerable, but the positive relation between coordination
number and packing density becomes obvious. Quickenden
and Tan9 observed local ordering (crystallization), which
became more pronounced with higher packing fractions. The
points/line from ‘‘Fig. 10’’9 furthermore illustrates the sharp
decrease in coordination number (from sixfold to fourfold) in a
relatively small packing fraction change, which is captured in
eqn (7) and (8).

By developing a ‘‘jamming phase diagram’’ based on numer-
ical simulations, in ref. 22 and 23 for disks in 2D and spheres in
3D a fit of the form:

Z � Zc = Z0(j � jc)z (9)

was derived, where z is independent of potential, polydisper-
sity, and dimensionality d. For 2d, z E 1

2, Zc = 4 (2d) and jc =
0.842. For the 3D packing of spheres, the same z was fitted. The
fact that z is independent of potential is intriguing because it
suggests that z depends only on the geometry of the packing.
The fact that z is also independent of dimensionality suggests
that there is a property of the packing that is independent of
dimension d.22,23

For frictionless monodisperse disks, Z0 was not given and is
therefore extracted from ‘‘Fig. 9’’,22 see Table 3 (Appendix),
yielding Zc = 4, jc = 0.842 and Z0 = 3.55. As verification, the
same procedure is followed for the spheres given in ‘‘Fig. 9’’,22

taking Zc = 6 and jc = 0.639,22,23 and the provided value Z0 = 7.7
could be reproduced.

In Fig. 4, eqn (9) is set out for Z0 = 3.55, Zc = 4 and jc = 0.842,
j ranging from 0.842 to jtri (frictionless I). One can see that the
equation yields Z E 4.9 for jtri (instead of 6). This is not

Fig. 4 Phase diagram of 2D disk packings, mean number of contacts Z
versus packing fraction j. Frictional I: z = 0.5, Z0 = 2.35, Zc = 3 and
jc = 0.660, frictionless I: z = 0.5, Z0 = 3.55, Zc = 4 and jc = 0.842, frictional
II: z = 0.5, Z0 = 2.35, Zc = 3, and jc = jhon = p/3O3 E 0.605, frictionless II:
z = 0.5, Z0 = 5.74, Zc = 4, and jc = jsq = p/4 E 0.785.
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surprising as eqn (9) was derived for (j, Z) in the vicinity of (jc,
Zc). If Z0 was 7.5, the value of 3D, the right endpoint of the
curve would be (j, Z) = (0.907, 6) instead of (0.907, 4.9).

To examine (j, Z) for RLP of disks, the paper by Silbert38 is
instrumental. In ref. 38, (j, Z) of both frictional and frictionless
spheres was simulated. In Tables 4 and 5 (Appendix), the
extracted values for frictionless and frictional spheres packings,
respectively, are listed, taken from ‘‘Fig. 9’’, they are shown in
Fig. 5.

Also here it appears that eqn (9) is applicable for both
packings, again with z = 1

2 and Z0 = 7.7 for both packing
configurations. Note that in ref. 22 and 23, the same z and Z0

were proposed for the 3D frictionless sphere packing, which
values seem to be applicable to frictional spheres as well. For
frictionless spheres, it appears also that the values Zc = 6 and
jc = 0.639 are identical as in ref. 22 and 23. In Fig. 5, eqn (9) is
set out with these values, and also for Zc = 4 and jc = 0.560 for
frictional spheres. The isostatic condition requires that for
frictional spheres the critical Zc = d + 1, and for frictionless
spheres Zc = 2d.37 One can see that with aforesaid values,
eqn (9) follows that numerical data of ref. 38 very well, both
for frictional and frictionless spheres. So again, eqn (9) is
consistent with a broad set of data.

Eqn (9) is apparently applicable to both frictional and
frictionless spheres, so all (j, Z), even with the same z, and
this also holds for frictionless disks. It is therefore plausible to
propose that eqn (9) is also applicable to frictional disks, so in
the lower (j, Z) range of Fig. 4, again with z = 0.5, Zc = 3 (= d + 1)
and jc = 0.66 (frictional I). By invoking Z0 = 2.35, eqn (9) has as
the right endpoint (j, Z) = (0.842, 4), which is the left endpoint
of the frictionless disk packing curve (Fig. 4).

The frictionless and frictional sphere curves of ref. 38 are concave
and have a discontinuity at Z = 2d (Fig. 5), which is also the case for
eqn (7) and (8). Only the packing fraction values at Z = 3, 4 and 6 are
not equal. To illustrate the similarity of eqn (7)–(9), In Fig. 4, eqn (9)
is set out for z = 0.5, Z0 = 2.35, Zc = 3, and jc = jhon = p/3O3 E 0.605,
and for z = 0.5, Z0 = 5.74, Zc = 4, and jc = jsq = p/4 E 0.785
(frictional II and frictionless II, respectively). Note that for j = p/3O3,

p/4 and p/2O3, these equations yield Z = 3, 4 and 6, respectively.
From Fig. 4, it follows that eqn (7) and (8), based on the simple
geometric model, are following eqn (9) quite closely. This latter
correlation has its foundation in the results of thermodynamic
modelling.

All data in Fig. 4 feature an increase of Z with packing
fraction j, as expected. But following the presented models and
refs. 22, 23, and 38, Z(j) is a concave function in 2D and 3D.
Also, the experiments by ref. 9 suggest a concave-shaped
relation. For refs. 22, 23, and 38, this concave trend follows
from the exponent z E 1

2, which is smaller than unity.
In Fig. 4, also (Z, j) is included as computed by Jin et al.30

pertaining to jRCP = 0.804 (‘‘n = 3’’), listed in Table 6 (Appen-
dix). The data shows a convex Z(j) relation, so a power z 4 1.
Also, the model by Zaccone et al.26 and Anzivino et al.39 yields a
convex equation. This can be attributed to their assumption
that Z is proportional to the product of j and the semi-
empirical Carnahan-Starling (CS) expression. For d = 2, this
CS expression reads (1 � 0.436j)/(1 � j)2.26

In all, the phase diagram of the 2D disk packing shows that
eqn (7) and (8) are able to correlate reported measured and
simulated (Z, j) quite well, especially considering the simplicity
of the presented model.

5. Parking problem approach

Rényi’s33,34 classic parking problem (or 1D sequential interval
packing problem) concerns the probabilistic properties of the
following random process: consider an interval of length x
(x Z 0), with x eventually tending to infinity, and sequentially
and randomly pack disjoint unit in x as long as the remaining
space permits placing any new unit segment. At each step of the
packing process, the position of the newly placed interval is
chosen uniformly from the available space.

The expected value of the covered part is denoted by M(x), so
the ratio M(x)/x is the expected filling density of the ‘‘parking
process’’. The interval x is the street curb, and the packed unit
segments are the parked cars. The placing of disks on a center
disk can be modelled using this parking model (Fig. 6). The
circumference of the center disk corresponds to 6 units (disks)
and can be seen as a circular street curb. After parking the first
unit on a center sphere, a closed interval of length x = 5 is
remaining in which the remaining units (disks) are randomly
placed on the center sphere.

Weiner35 presented the following lower and upper limits for
M(x) for x 4 4:

0.7432x � 0.2568 r M(x) r 0.75x � 0.25, (10)

yielding 3.46 r M(5) r 3.5.
These values are compatible with the approximate solution

provided by Rényi33,34 for large x:

M(x) E Cx � (1 � C), (11)

with C E 0.748, yielding M(5) E 3.49. C is the Rényi parking
constant which is the asymptotic mean filling density M(x)/x for

Fig. 5 Number of contacts Z versus packing fraction j for packing of
spheres (3D). Eqn (9) frictional: z = 0.5, Z0 = 7.7, Zc = 4 and jc = 0.56,
eqn (9) frictionless: z = 0.5, Z0 = 7.7, Zc = 6 and jc = 0.639.
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x - N. To summarize, the parking approach to the RCP disk
packing yields Z E 4.48, which is not far from the value 4.8
derived here.

The parking problem approach can also be applied to the
RLP of disks. To allow for obtaining a lower parking density,
each unit (disk) that is placed on the center disk is considered
to have extra excluded space in which another unit cannot be
parked. With the estimated Z E 3.35 for RLP, the space taken
by one unit can be estimated.

After parking the first unit, in the remaining interval x, 2.35
units can be parked. The following equation34

MðxÞ ¼ 7� 10

x� 1
� 4 lnðx� 2Þ

x� 1
; (12)

is exact for 3 r x o 4, and with M(x) = 2.35, it follows that
x = 3.5. The total interval length x is hence 4.5 units, i.e. the
circumference of the center disk can accommodate 4.5 loosely
placed disks. In other words, where in the case of a random
close packing, the circumference can accommodate 6 disks, in
random loose packing, it is about 75% of this value. So, in RCP,
each disk occupies p/6 (or 3p/18) of the center disk’s circum-
ference of p, as the disk diameter is unity (Fig. 5). For RLP, on
the other hand, the excluded space of each disk effectively is
about 4p/18 of this circumference.

6. Conclusions

This paper addresses the ancient problem of random packing
of hard disks/circles in a plane, of interest in mathematics,
science and engineering, following a geometric probabilistic
approach.

Simple models for RCP and RLP units are constructed
(Fig. 2 and 3), which assume that each state can be visited with

equal probability. They result in packing fractions and contact
numbers jrcp = 3 ln(3)/4 E 0.824 and Z = 4.8 for RCP, and
jrlo E 0.662 and Z = 24/7 E 3.43 for RLP. Both Z-values are
higher than the minimum Z required by isostatisticy, Z = 4 (2d)
and Z = 3 (d + 1), respectively. The derived packing fraction
values are commonly observed, in other probabilistic studies,
more sophisticated computer simulations, and experimental
studies.

The derived mean contact number of RCP, Z = 4.8, is also
very close to the number that is obtained here by applying the
classic Rényi parking theory, viz. Z E 4.5. Applying the Rényi
parking solution to Z E 3.35 for RLP reveals that the disks
occupy 4p/18 of the center disk’s circumference of p on which
they are placed, whereas it is p/6 for RCP (resulting in aforesaid
Z = 4.8).

It also appears that the present approach allows for a phase
diagram of average contact number versus 2D disks packing
fraction (Fig. 4), based on closed-form expression eqn (7) and
(8). Also, these equations produce results that are only slightly
different from eqn (9) provided by ref. 22 and 23 both for
packed disks in 2D and for spheres in 3D.

In line with the geometric probabilistic approach10,11,31 and
Rényi’s parking model,33,34 a uniform distribution of the disks
is invoked here. In other words, there is no preference for a
(Fig. 2 and 3) nor where a car/sphere is placed (Fig. 6). In future
work, it would be interesting to study the effect of non-uniform
distributions (e.g. by perturbing the uniform distribution) on
the packing fraction and mean contact number.
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Appendix

Tables 1–6

Fig. 6 Schematic representation of randomly placing (‘‘parking’’) spheres
on a center sphere. After placing the first sphere (closed line) there is a
place left for the parking of a maximum 5 other spheres (‘‘cars’’), i.e., the
‘‘street interval’’ length x = 5. The dotted line sphere represents the first
randomly placed sphere.

Table 2 Packing fraction j versus coordination number Z, taken from
‘‘Table I’’ of Quickenden and Tan9

F Z F Z j Z

0.832 4.31 0.876 4.70 0.909 5.43
0.63 2.81 0.906 5.10 0.792 3.49
0.869 4.03 0.844 5.37 0.819 4.36
0.863 4.45 0.873 5.25 0.858 4.45
0.823 4.42 0.888 5.43 0.838 5.18
0.825 4.65 0.891 5.55 0.869 5.44

Table 1 Packing fraction j versus coordination number Z, taken from
‘‘Fig. 10’’ of Quickenden and Tan9

F Z F Z j Z

0.630 2.999 0.841 5.992 0.878 5.999
0.830 3.988 0.848 5.992 0.899 5.999
0.840 5.004 0.871 5.999 0.910 5.999
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