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Many-body interactions between curvature-
inducing membrane inclusions with arbitrary
cross-sections

P. Galatola *a and J.-B. Fournier b

By means of a multipolar expansion, we study analytically and numerically the interaction, in tensionless

membranes, between multiple identical curvature-inducing membrane inclusions having arbitrary cross

sections but uniform small detachment angles. In particular, for N circular inclusions forming regular

polygons, we obtain analytical expressions for the total asymptotic interaction, up to N = 6, and we

numerically compute the different multi-body contributions at arbitrary separations. We find that the

latter are comparable to the sum of the two-body contributions. For N = 5 inclusions, the analytical

asymptotic interaction scales as the inverse sixth power of the nearest neighbors distance d, weaker

than the d�4 power for N a 5. The analytical interactions are always repulsive and in good agreement

with the numerical results. In the case of noncircular cross sections, we consider the case of two

identical inclusions having a given number of equally shaped lobes. Depending on the number of lobes

and their amplitude, we find that the interaction is asymptotically either repulsive as d�4 or attractive as

d�2, and always repulsive at short distances. We also characterize how the interaction depends on the

inclusion rotation angles in the membrane plane.

1. Introduction

Biological membranes consist of two layers of lipid molecules
arranged in a tail-to-tail fashion, forming the structural barrier
of our cells.1 These membranes have a central hydrophobic
core, and two outer hydrophilic layers, made by the lipid heads,
which come into contact with the surrounding aqueous solvent.
Some proteins are specifically designed to either fit inside the
membrane or adhere to its surface. These include the so-called
curvature-inducing proteins, which have the ability to bend the
membrane so that it can accommodate their conical shape.2

The elastic energy of membranes is controlled by both lateral
tension and bending rigidity, as described by Helfrich.3 Since
curvature-inducing proteins deform membranes on a large scale,
they experience long-range interactions mediated by the energy
required for membrane deformation.4 The disk with detachment
angle (DDA) model, introduced by Goulian et al.,4–6 was developed
to investigate these effects. To describe the deformation caused by
a protein, the section of the protein embedded in the hydrophobic
membrane core is modeled as a disk of radius a, while the
membrane, modeled as a surface, detaches from the disk at a

constant angle a. Multipolar expansion methods were used to
obtain the leading-order asymptotic interaction between two
inclusions.4 In a membrane with bending rigidity k and negligible
tension, two identical curvature-inducing inclusions separated by
a distance d were found to repel each other with an asymptotic
pairwise interaction energy given by E I 8pka2(a/d)4. This
interaction, obtained from a linearized calculation, is valid in
the small detachment angle limit. Using effective field theory,
Yolcu et al.7,8 calculated this interaction, for disks of different
radii and detachment angles, up to order (1/d)6. Using the original
multipolar expansion method, we derived the interaction up to
order (1/d)14, making it possible to study how the series
converges.9

Note that numerical studies, using triangulated surfaces
energy minimization, have been used to explore the regime of
large detachment angles, of inclusions with noncircular foot-
print, and of strongly curved membrane background.10–13 It
was shown in particular that DDA-like inclusions with large
detachment angle can attract each other when adsorbed on the
outer side of strongly curved vesicles13 and that inclusions with
crescent-like shapes experience strong attractions.12

Understanding the collective interactions of proteins in
biological membranes at room temperature is crucial due to
their abundance.1 However, this poses three challenges:
the weakness of the interactions at moderate distances, their
multibody nature, and the noncircular shape of protein
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cross-sections (the non-uniformity of the detachment angle will
not be addressed here). Let us discuss these points sequen-
tially. Membrane typically have bending rigidities k I 30kBT,1

and curvature-inducing proteins can have detachment angles
ranging from a I 101 to 351. Indeed, while a I 5 nm,
spontaneous curvatures of c I (25nm)�1 where measured for
the KvaP channels2 and c I (7nm)�1 for BmrA in the ATP-
blocked configuration.14 At a distance d I 6a, where the
spacing between the inclusions is large enough to hope that
asymptotic expressions are reliable, the interaction energy is
only E I 0.1kBT. Therefore, relying on the first terms of the
asymptotic expansion is not sufficient to investigate interac-
tions that are significantly larger than kBT. The range of
applicability of the expansion to order (1/d)14 is also uncertain.
Therefore, in this paper, we conduct a numerical investigation
of the interaction up to the point of contact. Specifically, we
include up to 400 multipoles to obtain accurate results.

Using an approximate method based on the energy required
to insert a protein into a curved background, Kim et al.15 have
argued that multibody interactions are as significant as pair-
wise interactions. As shown by Yolcu et al., this method
correctly captures pairwise and triplet interactions, but neglects
higher order multibody interactions.8 Therefore, little is known
with certainty about membrane-mediated multibody interac-
tions. In this paper, we use multipolar expansions to derive
exact analytical expressions for the asymptotic many-body
energy of clusters of up to six inclusions forming regular
polygons. Our analysis highlights the relative amplitude of
multibody terms. In particular, we show that pentagonal clus-
ters have a small but nonzero many-body energy.15 Further-
more, we numerically calculate the many-body interaction
energy of these clusters at very small separations between the
inclusions.

Finally, the DDA model assumes the cross-section of the
inclusion to be perfectly circular. Real proteins have an irregu-
lar shape, so it is important to know whether or not this
changes the interaction, especially at short distances where
this irregularity is significant. For example, as shown in ref. 8
and 9, the sixth order of the pairwise interaction between two
identical perfectly circular disks vanishes. In this paper, we
show that this is no longer the case if a shape modulation is
present. We give general numerical results concerning the
interaction between two curvature-inducing proteins with a
noncircular cross-section in a tensionless membrane, discuss-
ing in particular the dependence of their interaction on their
relative orientation.

Our paper is organized as follows. In Section 2 we review the
multipolar method of Goulian et al.4 and we generalize it to
inclusions of arbitrary contours. In Section 3 we apply this
method to numerically compute the interaction between two
identical circular inclusions and we compare the accurate
numerical solution to the asymptotic analytical results. In
Section 4 we obtain the leading asymptotic term of the inter-
action energy for N = 3–6 circular inclusions placed on a
regular polygon. We compare this analytical results with
numerical computations, and we extract from the latter the

various multi-body contributions. In Section 5, we study
numerically the interaction between two identical noncircular
inclusions having a variable number n = 1–4 of identical lobes.
Finally, in Section 6, we summarize and discuss our results.

2. Interaction between arbitrarily
shaped inclusions with a fixed
detachment angle

We consider a bilayer lipidic membrane with no tension and
zero spontaneous curvature, modeled as a geometric surface.
We characterize the membrane shape in the Monge gauge by
means of its height z = h(x,y) above the reference plane (x,y). For
small deformations, the bending free energy of the membrane
is given by3

F ¼ 1

2
k
ð
r2h
� �2

dxdy; (1)

where k is the bending energy, typically of the order of a few
tens of the thermal energy kBT, and the integral runs on the
reference plane. Note that, in general, an extra contribution to
the free energy, proportional to the integral of the Gaussian
curvature, should be considered. However, this term only
depends on the global topology of the membrane and on the
integral of the geodesic curvature along the membrane con-
tours. Therefore, for fixed membrane topologies and fixed
membrane contours imposing local fixed detachment angles,
the Gaussian free energy is a constant contribution that can be
discarded. This is the case for our problem.

Minimizing the free energy F with respect to arbitrary
deformations of the membrane height yields that the equili-
brium membrane shape is solution of the biharmonic equation

=4h = 0. (2)

We suppose that N curvature-inducing inclusions, e.g. conical
integral proteins or adhering colloids, are attached to the
membrane. Generalizing the model of Goulian et al.4 to inclu-
sions of non circular contours, we model each inclusion k as a
planar contour of arbitrary shape from which the membrane
detaches with a given fixed angle ak (see Fig. 1). We associate to
each inclusion k a reference point Ok of coordinates x = xk

0, y =
yk

0, and z = zk
0, lying in the plane of its contour, of normal m̂k.

For each inclusion, we define a local coordinate system (xk, yk)
in the reference plane, centered on the point (xk

0, yk
0) and

possibly rotated with respect to the reference frame (x, y),
depending on the symmetry of the problem.

The orientation m̂k of each inclusion is given by two angles bk

and gk. For small inclinations with respect to the reference
plane, we set

m̂k ¼ ẑ� bkx̂k � gkŷk; (3)

where x̂k, ŷk, and ẑ are unit vectors in the direction of the
corresponding axes. Note that, to first order in the angles bk

and gk, the projected shapes of the contours on the reference
plane coincide with their actual shapes.
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With the first order approximation (3), the equation of the k
contour’s plane is �bkxk � gkyk + z � zk

0 = 0. Therefore, the
condition that the inclusions are attached to the membrane
gives, to first order in the inclinations, the boundary conditions

h(xk,yk) � bkxk � gkyk|Ck
= zk

0, (4)

where |Ck indicates that the quantity on its left is evaluated
along the projection of contour k on the reference plane. In the
following, we will parametrize the latter contours as

rk = rk(fk), (5)

in terms of local polar coordinates (rk, fk) on the reference
plane, associated to the Cartesian coordinates (xk, yk).

The detachment condition implies that the membrane
height, measured from the plane of contour k, has derivative
in the direction normal to the contour equal to tan ak. Then, at
first order in the inclinations bk and gk and the detachment
angles ak, we have the boundary conditions

@

@nk
hðxk; ykÞ � bkxk � gkyk½ � ¼ ak; (6)

where q/qnk indicates the derivative in the direction n̂k of the
outward normal to the contour rk = rk(fk):

@

@nk
¼

rk
@

@rk

����
Ck

� 1

rk

drk

dfk

@

@fk

����
Ckffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

rk2 þ
drk

dfk

� �2
s : (7)

Note that the equilibrium free energy (1) can be expressed, by
using two integrations by parts and the equilibrium condition
(2), as the sum of line integrals along the contours Ck of the

inclusions:

F ¼ 1

2
k
XN
k¼1

I
Ck

h
@

@nk
r2h
� �

� r2h
� � @h

@nk

� 	
dsk; (8)

where dsk is the elementary arc length

dsk ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
rk2 þ

drk

df

� �2
s

dfk: (9)

Finally, the interaction energy E between the inclusions is the
difference between the free energy F and the sum of the free
energies of each isolated inclusion.

2.1 Multipolar expansion

Even for two inclusions with circular contours, the boundary
problem (2), (4), (6) cannot be exactly solved analytically.
Goulian et al., by means of a multipolar expansion, first
obtained4–6 an asymptotic expression for the interaction free
energy of two identical circular inclusions of radii a, valid to
fourth order in the ratio between a and their distance d.

The next to leading, sixth order, asymptotic term for two
different circular inclusions was derived by Yolcu et al. using
effective field theory.7,8 Higher-order terms, up to fourteen
order, were successively obtained by us,9 using the original
multipolar technique.

To solve our boundary problem for N inclusions, similarly to
ref. 4, 9 and 16, we look for a solution of the biharmonic
equation (2) in the form of the multipolar expansion:

h ¼L
XN
k¼1

Ac
k;0 log�rkþ

Ac
k;1

�rk
cosfkþ

As
k;1

�rk
sinfk




þ
X1
m¼2

Ac
k;m

�rmk
þ
Bc
k;m

�rm�2k

� �
cosðmfkÞþ

As
k;m

�rmk
þ
Bs
k;m

�rm�2k

� �
sinðmfkÞ

� 	)
;

(10)

where L is some characteristic length of the problem, that we
use for dimensionalization purposes, and %rk = rk/L. The con-
stant coefficients Ac

k,m and As
k,m (resp. Bc

k,m and Bs
k,m) multiply

elementary solutions of the biharmonic eqn (2) having vanish-
ing (resp. non vanishing) Laplacian. Up to a constant term,
eqn (10) is the sum of all the elementary separated solutions in
polar coordinates of the biharmonic eqn (2) that are singular
only at the centers rk = 0 of the inclusions and that tend to a flat
shape parallel to the reference plane at infinity. Note that not
including in eqn (10) the elementary solutions of the biharmo-
nic equation that have divergent curvatures at infinity implies
that, on each inclusion, the force normal to the reference plane
and the torques parallel to the latter identically vanish (see
Appendix A).

The unknown expansion coefficients in eqn (10) are
uniquely determined by the boundary eqn (4) and (6). Indeed,
truncating the expansion (10) to a maximum order m = M,
yields, for M Z 2, N(4M � 1) unknowns. Expanding eqn (4) and
(6), for each inclusion k, as Fourier series relative to the angle
fk, truncated to the same maximum harmonic M, gives 4M + 2

Fig. 1 Shape of a lipidic membrane around three identical curvature-
inducing proteins with noncircular contours and uniform detachment
angles. The coordinates used for describing the membrane geometry
are shown (see Section 2).
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equations for each inclusion. However, the boundary condi-
tions contain, for each inclusion, the three extra unknowns bk,
gk (the inclusion tilts) and zk (the inclusion height). Thus, we
have a total number of unknowns N(4M + 2) that equals the
number of boundary conditions. In practice, it is simpler to
disregard the zeroth harmonics of eqn (4) from the boundary
equations, along with the corresponding unknowns heights zk.
Then, we are left with only N(4M + 1) equations and the same
number of unknowns. The remaining unknown heights zk can
be determined, once the full solution h is computed, by
evaluating the zeroth harmonics of the left-hand side of eqn (4).

3. Numerical solution for two circular
inclusions

We start by considering two identical circular inclusions of
radius a separated by a center-to-center distance d. We put the
projection on the reference plane of the center of inclusion 1
(resp. 2) at x = �d/2, y = 0 (resp. x = d/2, y = 0) and we define the
local Cartesian coordinates

x1 ¼ xþ d

2
; y1 ¼ y; (11)

x2 ¼ �xþ
d

2
; y2 ¼ �y; (12)

such that the frame (x2, y2) is obtained from (x1, y1) by means of
a rotation of angle p around the midpoint of the segment
joining the centers of the two inclusions. Then, the polar
coordinates associated to the two Cartesian frames are related
by the transformations

r2 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r12 þ d2 þ 2dr1 cosf1

q
; (13)

f2 = arctan(r1 cosf1 � d, r1 sinf1) �p, (14)

where arctan(x, y) is the polar angle of the point (x, y). The
inverse transformations are obtained by the exchanges r1 2 r2,
f1 2 f2.

By symmetry, Ac
1,m = Ac

2,m, Bc
1,m = Bc

2,m, and b1 = b2, while, for
k = 1, 2, all the As

k,m and Bs
k,m coefficients vanish, as well as the

tilt angles gk. We determine numerically all the remaining
independent coefficients up to the maximum order m = M by
means of a Fast Fourier Transform (FFT) of the boundary
conditions (4) and (6) on one of the two inclusions. To avoid
aliasing effects, the FFT is computed up to a sufficiently high
harmonic P c M and we impose the boundary conditions only
on the 1,2, . . ., M cosine harmonics of eqn (4) and the 0, 1,
2, . . ., M cosine harmonics of eqn (6) on one of the two
boundaries. We then solve numerically the resulting system
of 2M + 1 linear equations for the 2M + 1 independent
unknowns Ac

1,0, Ac
1,1, Ac

1,2, Bc
1,2, . . ., Ac

1,M, Bc
1,M, b1. Once the latter

are determined, we compute the membrane free energy (8) by
taking the zeroth harmonic of the integrand with respect to
f1 of eqn (8) and (9). By increasing the maximum order M

(together with P), we check for the convergence of the free
energy interaction.

In Fig. 2 we show the normalized interaction energy �E ¼
E=ðka2Þ as a function of the normalized distance %d = d/a
between the centers of the inclusions (upper red curve). Note
that the free energy of an isolated circular inclusion is zero:
therefore the interaction energy E coincides with F. To obtain
a relative error of the order of 10�3 at contact ( %d = 2) we set M =
200 and P = 210. Note that, for %d 4 2, the relative error rapidly
decreases. On the same curve, we show also the analytical
asymptotic expansions at order n = 4, 8, 10, 12, 14 obtained
in ref. 9. For %d 4 2.5, the n = 14 approximation is excellent,
while at smaller separation higher-order corrections are
needed. For %d 4 3, the lowest order approximation n = 4 is
sufficient. However, as we will see, when multiple or noncir-
cular inclusions are present, the asymptotic interaction does
not, in general, faithfully represent the actual interaction at
such short separations.

4. N circular inclusions on a regular
polygon

To study the importance of multibody interactions, we consider
N 4 2 identical inclusions with circular cross sections of radius
a and centers arranged on a regular polygon:

xk
0 ¼ R cos

2pk
N

� �
; (15)

yk
0 ¼ R sin

2pk
N

� �
; (16)

where R is the radius of the circle circumscribed to the regular

Fig. 2 Normalized interaction energy �E ¼ E=ðka2Þ as a function of the
normalized center-to-center distance %d = d/a for two identical circular
inclusions. The upper thicker red curve is the exact interaction computed
numerically up to the maximum multipolar order M = 200. The thinner
black curves are the analytical asymptotic expansions up to order n,
with n = 4 (dotted line), 8,10,12,14 from bottom to top. The inset shows
a magnification close to the contact %d = 2.
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polygon and k = 0, 1, . . ., N � 1. As for two identical inclusions,
we rotate the local coordinate system centered on inclusion k by
the angle 2pk/N, in such a way that the xk direction coincides
with the direction joining the center of the polygon to the
center of inclusion k, as shown in Fig. 1 for noncircular
inclusions. Then, by symmetry, for any k and c, Ac

k,m = Ac
c,m,

Bc
k,m = Bc

c,m, bk = bc, while all the As
k,m and Bs

k,m coefficients
vanish, as well as the tilt angles gk.

Following ref. 9, for each inclusion k, we introduce the
normalized complex coordinate on the reference plane

zk = %rk exp(ifk), (17)

where i is the imaginary unit and we normalize the lengths with
respect to R. Then, the transformations of coordinates between
the local coordinates centered on the inclusions are, in complex
notation,

zk ¼ z0 þ 1ð Þ exp �2pik
N

� �
� 1: (18)

With the given symmetry and the complex coordinates, the
multipolar expansion (10) can be written as the real part of the
complex function

Z ¼ R
XN�1
k¼0

A0 log zk þ
A1

zk
þ
X1
m¼2

Am

zmk
þ Bmz

�
k

zm�1k

� �" #
; (19)

where z�k denotes the complex conjugate of zk.
By symmetry, it is enough to impose the boundary condi-

tions (4) and (6) on the reference inclusion 0. This can be done
analytically by injecting the transformations (18) in the
complex function (19), truncating the multipoles to a maximum
order m = M, and expanding in Taylor series around z0 = 0 the
terms of the function Z with k = 1, 2, . . ., N � 1, regarded as
analytical functions of z0 for fixed z�k. Taking the real part of Z
and going back to the polar coordinates %r0 and f0, we obtain an
expansion of h in the form of a Fourier series in cos(mf0),
where each Fourier coefficient depends on the coordinate %r0

and the amplitudes Am0 and Bm0, with m0 = 0, 1, . . ., M. The
boundary conditions (4) and (6) on the reference inclusion
0 (%r0 = a/R) give then a linear system of 2M equations in the 2M
unknowns A0, A1, A2, B2, . . ., AM, BM, that we solve to the lowest
order in a/R giving a nonzero interaction energy. For N =
2,3,4,5,6 we find A0 = aa/R, while the next nonzero multipolar
coefficients at lowest order, B2 and B3, are given in Table 1,
along with the corresponding interaction energies. The latter,
since the inclusions are circular, coincide with the free energy
(8)–(9). Note that, generalizing our numerical solution to the
case of N identical circular inclusions, we recover numerically
the same asymptotic behavior. As one can see, except for N = 5,
the next leading nonzero coefficient after A0 is B2 p (a/R)3,
giving an interaction free energy p (a/R)4. For N = 5, the next
leading coefficient is B3 p (a/R)5 and the corresponding
interaction free energy is only p (a/R)6. Note that, contrary to
Kim et al.,15 we find that the interaction energy of five identical
circular inclusion in a regular pentagonal arrangement is
nonzero. Actually, this result is not in contradiction with

ref. 15, since, as pointed out by ref. 8, the result of ref. 15 takes
into account only pairwise and triplet interactions up to terms
scaling with the distance as (a/R)4. Our result, on the other
hand, takes into account all the multibody interactions and
captures in a controlled way the leading contribution to the
interaction in powers of a/R. In agreement with ref. 15 and 8, we
can then conclude that, asymptotically, multibody interactions
are as significant as the pairwise ones: indeed, for N = 5 the
sum of the pairwise interactions scales as (a/R)4, and, for
instance, for N = 3, as can be easily checked, the sum of the
pairwise interactions is the double of the total many-body
interaction.

4.1 Multibody interactions

To assess the relevance of multibody interactions at any separa-
tion, we determine numerically the full many-body interaction
E of N identical circular inclusions on a regular polygon, along
with the p-body contributions Ep, with p = 2, 3, . . ., N. For p
inclusions 1, 2, . . ., p chosen between the N, Ep is defined
recursively as

Epð1; 2; . . . ; pÞ ¼ Eð1; 2; . . . ; pÞ

�
Xp�1
k¼2

X
c1;c2;...;ckf g

Ekðc1; c2; . . . ; ckÞ; (20)

where E(1, 2, . . ., p) is the full many-body interaction between
the p inclusions 1,2,. . .,p and the innermost sum at the right-
hand side of eqn (20) runs over all the different way of choosing
2 r k o p inclusions c1, c2, . . ., ck between the p inclusions. For
instance, for three inclusions, the three-body interaction
between the three inclusions is the full many-body interaction
of the three inclusions minus the sum of the three two-body
interactions between the three different pairs of inclusions.
Similarly, for four inclusions, the four-body interaction
between the four inclusions is the full many-body interaction
of the four inclusions, minus the sum of the four three-body
interactions between the four different triplets of inclusions,
minus the sum of the six two-body interactions between the six
different pairs of inclusions.

Finally, we define the total p-body contribution E(p) to the
interaction energy as the sum of all the p-body contributions

Table 1 Multipolar coefficients B2 and B3 and interaction energy E at
lowest order in a/R as a function of the number N of equal inclusions on a
regular polygon. Note that the distance d between the centers of the
nearest-neighbor inclusions is R

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2 1� cos 2p=Nð Þð Þ

p
N B2 B3 E

2
a

a

R

� �3 0 1

2
pka2

a

R

� �4
3 1

3
a

a

R

� �3 0 4

3
pka2

a

R

� �4
4 1

4
a

a

R

� �3 0
pka2

a

R

� �4
5 0

a
a

R

� �5
40pka2

a

R

� �6
6 � 5

12
a

a

R

� �3 0 25

6
pka2

a

R

� �4
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over all the possible ways of choosing p inclusions between
the N:

EðpÞ ¼
X

c1;c2;...;cpf g
Epðc1; c2; . . . ; cpÞ: (21)

Then, according to eqn (20), the full many-body interaction is
equal to the sum of the total p-body contributions:

E ¼
XN
p¼2

EðpÞ: (22)

Fig. (3)–(6) show, for N = 3–6 identical inclusions on a
regular polygon, the full many-body normalized interaction �E ¼
E=ðka2Þ together with the various total multi-body contribu-

tions �EðpÞ for the interaction index p = 2, . . ., N. The three and
higher multi-body contributions are attractive and considerably
reduce the two-body repulsion (except, possibly, for some
contributions very close to contact). This confirms the result
of Kim et al.15 that nonpairwise multi-body interactions are
comparable to the pairwise ones, even though their magnitude
decreases with their index p, except very close to contact. The
black dotted curves in Fig. (3)–(6) are the analytical asymptotic
full many-body interactions given in Table 1. As it is apparent,
for N = 3 and N = 5 these approximations are actually quite good
even rather close to the contact, while for N = 4 and N = 6 (and,
to a certain degree, for N = 2, see Fig. 2) the approximation
holds only asymptotically ( %d 4 10). Thus, the leading asympto-
tic term captures the relevant nonpairwise interactions and is
more accurate than the total two-body (pairwise) interaction,

even though it is not always quite reliable at distances compar-
able to the sizes of the inclusions.

5. Interaction between two identical
noncircular inclusions

Since real proteins have irregular shapes, it is important to
know how the interaction energy is affected by modifications to

Fig. 3 Normalized total many-body interaction �E (black solid line), along

with the total normalized two-body interaction energy �Eð2Þ (red dashed

line) and the total normalized three-body interaction �Eð3Þ (blue long
dashed-dotted line) for three inclusions on a regular polygon as a function

of the normalized distance %d = d/a between the centers of two neighbor
inclusions. The black dotted curve is the analytical asymptotic expression
�E ¼ 12p= �d4 (see Table 1). The interaction energies are normalized with

respect to ka2. Note that, by definition, �E ¼ �Eð2Þ þ �Eð3Þ.

Fig. 4 Same as Fig. 3 but for four inclusions on a regular polygon. The
total normalized four-body interaction is �Eð4Þ (green long-dashed line). The

analytical asymptotic expression (black dotted curve) is �E ¼ 4p=d4

(see Table 1). Note that, as in Fig. 3 and in the following two figures,
�E ¼

P
p

�EðpÞ.

Fig. 5 Same as Fig. 4 but for five inclusions on a regular polygon. The total
normalized five-body interaction is �Eð5Þ (pink short dashed-dotted line).

The analytical asymptotic expression (black dotted curve) is �E ¼

5 5�
ffiffiffi
5
p� �3

p= �d6 (see Table 1).
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the circular contour case. As discussed in Section 2, for the sake
of simplicity, we assume that the detachment angle is constant
along the contour of the inclusions. We consider two identical
inclusions, the contours of which we model by the parametric
shapes:

%rk(fk) = 1 + e cos[n(fk � ck)], (23)

where k = 1 (k = 2) for the left (right) inclusion. Here, %rk and fk

are polar coordinates centered on inclusion k, with the radial
coordinates %rk normalized with respect to the average radius a
of the inclusions and the angles fk counted counterclockwise
starting from the segment joining the centers of the two
inclusions (see Fig. 7), 0 o e o 1 is the amplitude of the
modulation from a circular shape, n = 1, 2, . . . is an integer that
counts the number of lobes of the shape, and �p/nr ck r p/n
gives the orientation of inclusion k. Note that for n = 1, although
at lowest order in e { 1 the shape (23) corresponds to a simple

translation of a circular contour, for a finite moderate e the
contour is flattened around fk = ck + p.

To study the interaction between the two inclusions, we
analyze, for a fixed distance %d between the centers of the two
inclusions, the behavior of the interaction energy �E ¼ E=ðka2Þ
as a function of the two orientation angles c1 and c2. Note that,
rotating by p the system in the reference plane about the
midpoint between the two inclusions corresponds to the inter-
change c1 2 c2, implying the symmetry �Eðc1;c2Þ ¼ �Eðc2;c1Þ.
Furthermore, turning the membrane upside-down with respect
to the direction normal to the reference plane corresponds to
the transformation ck 2 �ck, a 2 �a. Since the energy is
invariant with respect to the sign of a, this implies the sym-
metry �Eðc1;c2Þ ¼ �Eð�c2;�c1Þ. Taking into account these
symmetries and the polar angle periodicity 2p/n of the shapes
(23), we represent all the non equivalent angular configurations

of the two inclusions by the combinations s ¼ 1

2
c1 þ c2ð Þ and

d ¼ 1

2
c1 � c2ð Þ, with 0 r s, d r p/n and s + d r p/n. Note that

the points (s = p/n, d = 0) and (s = 0, d = p/n) are the only two
points that actually correspond to the same configuration.

5.1 One lobe

We start by considering the slightly flattened shapes (23) for n =
1 and e = 0.4. Fig. 8 shows the contour plot of the interaction
energy �E as a function of the angles s and d for the normalized

Fig. 6 Same as Fig. 5 but for six inclusions on a regular polygon. The total
normalized six-body interaction is �Eð6Þ (turquoise dashed-spaced line). The

analytical asymptotic expression (black dotted curve) is �E ¼ 25p=ð6 �d4Þ (see
Table 1).

Fig. 7 Local coordinates used to describe the geometry of two noncir-
cular inclusions. The angular coordinate f1 (resp. f2) is counted counter-
clockwise from the x1 (resp. x2) axis.

Fig. 8 Contour plot of the normalized interaction energy �E of two

noncircular inclusions, for n = 1, e = 0.4 and %d = 4, as a function of the

rotation angles s ¼ 1

2
ðc1 þ c2Þ and d ¼ 1

2
ðc1 � c2Þ. The inset shows the

rotation angle d minimizing the interaction energy as a function of

the normalized distance %d (black solid line and left vertical scale), along

with the corresponding normalized interaction energy �E (red dashed line
and right vertical scale). The shapes and orientations of the two inclusions
at the absolute (resp. relative) minimum for %d = 4 are shown in yellow (resp.
gray). The orientations ci (i = 1, 2) of the inclusions are indicated by arrows
centered on the inclusions.
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distance %d = 4. Here and in the following Fig. 9–12, we set the
maximum multipolar order M to 40, such that the numerical
errors are negligible with respect to the used scales. The energy
landscape presents two relative minima on the axes s = 0 and
d = 0, with the first one corresponding to the absolute minimum.
The configurations of the two inclusions at the two minima are
shown in the figure. As the inclusions move farther apart, the
two minima remain on the axes s = 0 and d = 0, continuously

shifting towards the positions d = p/2 and s = p/2, respectively.
For closer distances, the positions of the minima remain on the
same axes and tend to d = p and s = p, reaching the limiting
values at a finite short distance %d I 2.1. These two corner
points of the contour plot, as we pointed out before, actually
correspond to the same configuration, having the flattened
sides of the inclusions facing each other. Note that, in this
configuration, the normalized contact distance is %d = 2(1 � e),
corresponding to %d = 1.2 in Fig. 8.

The inset of Fig. 8 shows the angle d of the absolute
minimum as a function of the distance %d and the corres-
ponding interaction energy �E. At large distances, the inter-
action is weakly attractive and decays as 1/d2, as we checked
numerically. This asymptotic attractive behavior holds for any
value of e. As e - 0, the position of the energy minimum shifts
toward %d -N and, correspondingly, its depth tends to zero. At
short separations, the interaction becomes repulsive.

5.2 Two lobes

For n = 2 and moderate values of e, the shapes (23) are
elongated as a capsule in the two opposite directions fk = ck

and fk = ck + p (see inset of Fig. 9). Taking e = 0.2, we find that
at all distances there is only a single minimum at s = d = 0 (see
Fig. 9), corresponding to the configuration in which the tips of
the two inclusions face each other. Again, at large distances the
interaction is asymptotically attractive as d�2, behaving simi-
larly for e - 0, and it becomes repulsive at short separations.

5.3 Three lobes

For n = 3 and the same value e = 0.2, we find again that the
configuration minimizing the free energy corresponds to
the tips of the inclusions facing each other (see Fig. 10). The
interaction energy as a function of the distance %d and of
the modulation amplitude e has the same qualitative behavior
as for n = 2.

5.4 Four lobes

A qualitatively different behavior appears for n = 4 and small e
deformations. Indeed, as shown in Fig. (11) for e = 0.1, while the
configuration minimizing the free energy still corresponds to
the tips of the inclusions facing each other, the interaction is
now always repulsive. We check that the interaction �E decays at
large distances as d�4, as for circular contours, by verifying

numerically that �E �d4 tends to a constant value c4 for large %d.
Then, to find the next to leading asymptotic contribution to the

free energy, we plot in log–log scale the difference c4 � �E �d4 as a
function of the distance %d. As shown in Fig. 12, the latter

difference scales as %d�2, showing that �E ¼ c4= �d4 þ c6= �d6 þ . . ..
Thus, at variance with perfect circular inclusions,7,9 a non-
zero %d�6 asymptotic contribution is now present. Increasing

e, at e I 0.15 an inflection point in the �Eð �dÞ graph appears at
%d I 5, that splits, as e further increases, into a pair of relative
extrema: a minimum followed at a larger distance by a max-
imum. At even larger values of e, the maximum disappears,

Fig. 9 Contour plot of the normalized interaction energy �E of two

noncircular inclusions, for n = 2, e = 0.2 and %d = 3, as a function of the

rotation angles s ¼ 1

2
ðc1 þ c2Þ and d ¼ 1

2
ðc1 � c2Þ. The red continuous line

in the inset shows the normalized interaction energy �E as a function of the
normalized distance %d for the orientation c1 = c2 = 0 corresponding to the
minimum interaction energy. The latter orientation is shown inside the
inset. The black dashed line in the inset is the normalized interaction
energy for two circular inclusions with the same average radius (e = 0).

Fig. 10 Same as Fig. 9 but for n = 3.
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leaving an asymptotic attractive behavior separated from a
short distance repulsion by a minimum, as for n r 3.

5.5 Convergence of the numerical algorithm

As we discussed in Sec. 3, we throughout check the convergence
of our numerical algorithm by increasing the maximum order
M of the multipoles (along with the maximum order P of the
Fourier harmonics). Usually, as we increase M, the interaction
energy first tends to stabilize toward a plateau, allowing to
estimate the numerical error. By further increasing M (above a
few hundreds for two circular inclusions), the numerical error
tends to increase again for numerical stability reasons, as is
usually the case.

However, for a given number of lobes n, we find that when
increasing the amplitude e, the algorithm does not converge

anymore: as we increase M, the absolute value of the interaction
energy �E continuously increases. The maximum amplitude emax

for which the algorithm converges decreases as n increases and
also slightly decreases as the distance %d decreases. For instance,
close to contact, emax I 0.25 for n = 2, while emax I 0.1 for n = 6.
Indeed, when the inclusions shape presents pronounced lobes,
more multipolar expansions inside each inclusions might be
necessary to match the boundary conditions on the corrugated
contour.

6. Conclusions

In this article, using the disk with detachment angle model of
curvature-inducing proteins and the multipolar expansion
method originally introduced by Goulian et al.,4 valid in the
limit of small detachment angles, we have studied the inter-
action between multiple proteins of arbitrary contours and
fixed detachment angle in a tensionless membrane. For two
identical proteins with circular contour, we have shown
numerically, by taking a very large number of multipoles, that
the analytical asymptotic interaction of Goulian et al.4,6 repro-
duces quite well the exact result up to center-to-center distances
of the order of 2.5 times the contour radius, and differs by up to
a factor of order 3 at contact.

For N = 3–6 proteins with circular contours arranged at the
vertices of a regular polygon, we have obtained analytical
asymptotic interaction energies. For all values of N but N = 5,
we have found that the interaction decays as the inverse fourth
power of the distance d between nearest neighbor inclusions, as
originally found by Goulian et al.4 for two inclusions. For N = 5
proteins, instead, we found that the asymptotic interaction
decays as d�6. This result is at variance with the null result of
ref. 15, but it is compatible with the findings of Yolcu et al.8

that the approximation of ref. 15 only takes into account two
and three bodies interactions up to the order d�4. We checked
numerically these results, using the multipolar technique trun-
cated at an arbitrary high number of contributions up to
convergence.

We also computed numerically the different multi-body
contributions to the total interaction energy, verifying that
the nonpairwise multi-body interactions are indeed generally
comparable to the pairwise ones. Apart possibly very close to
contact, the multi-body contributions are all attractive, thus
reducing the contribution coming from the sum of the two-
body terms.

Finally, in the case of two identical proteins, we have
numerically studied the effect of a departure of the contour
from the circular shape. For the sake of simplicity, we have
considered contour shapes that contain a single Fourier har-
monic n = 1, 2, . . . of relative amplitude e in their polar
coordinate equation, thus consisting of n identical lobes. For
a small number of lobes (n = 1–3), we found that, whatever the
amplitude of the modulation, the interaction becomes asymp-
totically attractive, decaying as d�2. This is in agreement with
previous models of conical transmembrane proteins with

Fig. 12 Asymptotic interaction energy for n = 4 and e = 0.1 as a function of
the normalized distance %d. Black solid line: c4 � �E �d4 with c4= 6.819842.

Red dashed line: �c6 %d
2, with c6 = �3.44. The %d�2 asymptotic behavior of

c4 � �E �d4 shows that �E ¼ c4= �d4 þ c6= �d6 þ . . . for large %d.

Fig. 11 Same as Fig. 9 but for n = 4, e = 0.1 and M = 40.
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effective non-circular sections,17 or effective nonuniform
detachment angles.18,19 Note that for distances comparable to
the size of the contours, the interaction remains repulsive.
Therefore, contrary to the case of two circular inclusions, for
such inclusions the asymptotic interaction does not hold at
intermediate distances.

For a larger number of lobes nZ 4 and a small modulation
amplitude e, we recovered, on the other hand, the asymptotic
repulsive d�4 character of the interaction. Above a threshold
value of e (I0.16 for n = 4), the large distance behavior becomes
attractive, with, as for n o 4, a repulsion for short distances.

For all but the n = 1 case, we found that the interaction, at
fixed distance, is minimized when the lobes of the two inclu-
sions are facing each other. In the n = 1 case, on the other hand,
the minimum configuration remains symmetric with respect to
the mid-plane, but the orientation angle depends on the
distance. Up to a given distance close to contact, the facing
sides of the inclusions are the flattest parts. Then, on increas-
ing the distance, a second-order orientation transition occurs,
with the orientation angles of the two lobes with respect to the
line joining the two inclusions centers continuously decreasing
from p to p/2 (see Fig. 8). These results are not incompatible
with the cases n a 1, since for n = 1 the protein contour has a
maximum curvature not on the tip of the lobe, but on two
symmetric points close to the flat side. Therefore, it seems that
the configurations that are favored correspond to having the
contours maximum curvatures close to each other. This could
also explain why, for n = 1, an antisymmetric metastable
configuration, having an interaction energy only slightly larger
than the absolute minimum, is present.

Finally, note that the next to leading order of the asymptotic
interaction for two perfectly circular inclusions scales as d�8,
the d�6 contribution being exactly zero. Numerically, we found
that this anomaly is due to the perfect rotational symmetry of
the inclusions and is lost when the rotational symmetry is
broken.
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A Appendix

The variation dF of the free energy (1) with respect to arbitrary
infinitesimal variations dh of the height of the membrane that
respect the boundary conditions on the inclusions is

dF ¼
ð
r4h
� �

dh dxdy�
X
k

Fz
kdzk þ C

k
k � dxk

� �
; (24)

with

Fz
k ¼ �k

I
Ck

@

@nk
r2h
� �

dsk (25)

and

C
k
k ¼ k

I
Ck

@

@nk
r2h
� �

rk � r2h
� �@rk

@nk

� 	
dsk


 

� ẑ: (26)

Here rx = xkx̂k + ykŷk is the vector that locates the points of the
reference plane with respect to the local coordinate frame
associated to inclusion k and dxk, is the infinitesimal rotation,
parallel to the reference plane, of inclusion k.

By the principle of virtual works, Fz
k (resp. C8

k) is the force
(resp. torque) normal (resp. parallel) to the reference plane
acting on inclusion k. At equilibrium (dF = 0), the forces Fz

k and
the torques C8

k must vanish.
Let us first consider the force (25). We decompose the total

height field h in two terms: the contribution hk coming from the
multipoles centered on the same inclusion k and the contribu-
tion ĥk that is the sum of the multipoles centered on all the
other inclusions. Then Fz

k = F̃z
k + F̂z

k, with

~Fz
k ¼ �k

I
Ck

@

@nk
r2hk
� �

dsk; (27)

F̂
z

k ¼ �k
I
Ck

@

@nk
r2ĥk

� �
dsk: (28)

Now, given a membrane height field h satisfying the equili-
brium condition (2) and an arbitrary contour C on the reference
plane, having outward normal n̂ and enclosing a surface S
within which h is regular, using the Green theorem, we haveI

C

@

@n
r2h
� �

ds ¼
I
C

n̂ � = r2h
� �

ds ¼
ð
S

= � = r2h
� �

dxdy

¼
ð
S

r4hdxdy ¼ 0; (29)

reflecting the fact that the stress tensor is divergenceless.20 If
the contour C encloses singularities of the height field h, the
line integral at the left-hand side of eqn (29) will be in general
different from zero. However, eqn (29) implies that, if such a
contour is continuously deformed without crossing any singu-
larity, the value of the line integral will not change. Therefore, if
we take as the contour in eqn (27) a circle of any radius r and
center on the center of the inclusion, we have

~Fz
k ¼ �k

ð2p
0

@

@r
r2hk
� �

rdf; (30)

where (r,f) are polar coordinates centered on the inclusion.
Now, according to the multipolar expansion (10),

@

@r
r2hk
� �

¼
X1
m¼2

4mðm� 1ÞLm�1

rmþ1
Bc
k;m cosðmfÞ þ Bs

k;m sinðmfÞ
� �� 	

(31)

and, therefore, the integral in the right-hand side of eqn (30)
identically vanishes. Finally, since ĥk is regular inside inclusion
k, according to eqn (29) F̂z

k = 0.
To conclude, whatever the constant coefficients Ac

k,m, As
k,m,

Bc
k,m and Bs

k,m, the membrane profile (10) does not exerce on the
inclusions any force normal to the reference plane.
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Let us now consider the torque (26). The vector in curly
braces in eqn (26) is proportional to

L ¼
X2
i¼1

Lix̂
ðiÞ; (32)

Li ¼
I
C

@

@n
r2h
� �

xðiÞ � r2h
� �@xðiÞ

@n

� 	
ds; (33)

where x(1) = x, x(2) = y, x̂(1) = x̂, x̂(2) = ŷ, and the contour C
coincides with the contour Ck of inclusion k. Let us now show
that, similarly to eqn (29), the line integrals (33) are zero if the
height field h satisfies the equilibrium condition (2) and is
regular inside C. To this aim, let us first note that

@xðiÞ

@n
¼ n̂ � =xðiÞ ¼ n̂ � x̂ðiÞ: (34)

Then, using the identity,

@

@n
r2h
� �

xðiÞ � r2h
� �@xðiÞ

@n
¼ @

@n
xðiÞr2h
� �

� 2n̂ � x̂ðiÞr2h (35)

and the Green theorem, to convert the line integral along C of
the first term on the right-hand side of eqn (35) to a surface
integral over the enclosing surface S, we get

Li ¼
ð
S

= � = xðiÞr2h
� �

dxdy� 2

I
C

n̂ � x̂ðiÞr2h ds: (36)

We note that

=�=(x(i)r2h) = r2x(i)r2h + 2=x(i)�=(r2h) + x(i)=4h.
(37)

Since r2x( i) = 0, =x( i) = x̂(i), r4h = 0, and, being =�x̂(i) = 0, x̂(i)�
=(r2h) = =�(x(i)r2h), using the Green theorem we then obtainð

S

= � = xðiÞr2h
� �

dxdy ¼ 2

I
C

n̂ � x̂ir2h ds: (38)

Inserting this latter equation in the first term on the right-
hand side of eqn (36), finally proves that the torque (26) is
zero for any height field h satisfying the equilibrium condition
(2) and regular inside the contour Ck. Using now the same
decomposition as in eqn (27) and (28) and the same steps, one

can readily see that, whatever the constant coefficients Ac
k,m,

As
k,m, Bc

k,m and Bs
k,m, the membrane profile (10) does not either

exerce on the inclusions any torque parallel to the reference plane.
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