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Phase behaviour of coarse-grained fluids

V. P. Sokhan, * M. A. Seaton * and I. T. Todorov

Soft condensed matter structures often challenge us with complex many-body phenomena governed

by collective modes spanning wide spatial and temporal domains. In order to successfully tackle such

problems, mesoscopic coarse-grained (CG) statistical models are being developed, providing a dramatic

reduction in computational complexity. CG models provide an intermediate step in the complex

statistical framework of linking the thermodynamics of condensed phases with the properties of their

constituent atoms and molecules. These allow us to offload part of the problem to the CG model itself

and reformulate the remainder in terms of reduced CG phase space. However, such exchange of pawns

to chess pieces, or ‘Hamiltonian renormalization’, is a radical step and the thermodynamics of the

primary atomic and CG models could be quite distinct. Here, we present a comprehensive study of the

phase diagram including binodal and interfacial properties of a dissipative particle dynamics (DPD) model,

extended to include finite-range attraction to support the liquid–gas equilibrium. Despite the similarities with

the atomic model potentials, its phase envelope is markedly different featuring several anomalies such as an

unusually broad liquid range, change in concavity of the liquid coexistence branch with variation of the

model parameters, volume contraction on fusion, temperature of maximum density in the liquid phase and

negative thermal expansion in the solid phase. These results provide new insight into the connection

between simple potential models and complex emergent condensed matter phenomena.

Introduction

Coarse-graining (CG) is now well established as an essential
ingredient of multiscale modelling frameworks1 and provides
accelerated pathways to characterizing soft condensed matter2

including complex fluids,3 biological membranes4 and ionic
solutions.5 Despite the inevitable loss in structural detail at
the CG level, its enormous potential in expanding the length
and time scales to address large collective phenomena drives
current advances in complex condensed phases characteriza-
tion. Soft matter often contains colloids and polymer solutions6

and in order to achieve the desired speedup in computer
simulation of such systems both the solutes and solvents need
to be coarse-grained congruently. Most forthrightly, CG can be
carried out in biological and polymer systems by mapping
(macro-)molecular fragments and moieties of chemically con-
nected atomic fragments to ‘beads’ interacting via CG forces.7,8

Here, CG methods have scored rapid successes from their
arrival in the late 1960s, culminating in the 2013 Nobel Prize
in Chemistry awarded to Martin Karplus, Michael Levitt and
Arieh Warshel ‘for the development of multiscale models for

complex chemical systems’.9 Their ideas on simplified protein
structures10 are now broadly adopted in biomolecular simula-
tion and software, e.g., in the Martini force field.11

Conversely, CG mapping of solvents, and fluid phases in
general, is a less clear-cut problem12–14 apparently due to the
very problem of consistent definition of a fluid element (aka
‘blob’) in statistical mechanics. Unrestricted motion of atoms
in the fluid phases stipulates an open system view of CG
particles15 and approaches based on Voronoi tessellation,14,16,17

iterative k-means clustering of MacQueen,18,19 ghost ‘blob’
microprobes,20 and Brownian Quasiparticles21 have been put
forward to tackle this matter, although the problem of an ‘inter-
blob’ potential still remains largely open and no closed form
solution exists so far.13 Crucially, although CG interactions can
be cast in the form of an effective pair potential, its functional
form is likely to be different from that of atomistic systems.6,22

Accuracy of CG mapping depends critically on the functional
form of the ansatz, which could only be hypothesised. This
already poses a problem with bonded interactions,6,22,23 but
presents a fairly non-trivial problem for non-bonded interac-
tions that involves genuine perception.13 Existing methods
provide the means to optimise the parameters of the model,
but not its functional form. Common ansätze validated at the
atomic scale, such as the omnipresent Lennard-Jones (LJ)
potential, are not necessarily the best choices for generic
effective CG potentials,24 where a soft Gaussian would be the
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likely candidate. In fact, the utility of the LJ potential has been
recently questioned even at the atomic scale.25 Furthermore,
although it usually goes unquestioned in coarse-graining,
various bottom-up approaches26,27 hold the underlying atomic
representation as a ground-truth structure. It is important to
realise, however, that the atomic data are themselves based on
effective empirical pair potentials, liable to be inaccurate away
from their training sets.

For large-scale fluid dynamics problems dissipative particle
dynamics (DPD)28 is arguably the most widely used particle-
based method describing various aspects of multiphase flow at
the mesoscale.13 Being generic, fast and simple to implement,
DPD expands the range of accessible time and spatial scales by
several orders of magnitude.29 DPD introduces a remarkably
simple, albeit fundamentally challengeable ansatz: harmonic
repulsion between the beads representing fluid elements. The
model has been instructive in broad range of applications
including colloids, polymers, fluid mixture and amphiphilic
systems.13 However, employing only soft repulsive forces has a
serious drawback – DPD covers both fluid and solid phases, but
misses gas–liquid coexistence.30 In other words, it is incapable
of capturing such vital liquid surface phenomena as wetting,
spreading, and many important capillary effects.31,32 Attraction
is a prerequisite for a stable liquid–gas interface,33 with different
requirements for systems of different dimensionality. The relative
range of attraction in CG potentials is likely be reduced,34 though
it is believed that for 3D systems any finite-range attraction
guarantees a first-order liquid–gas transition.35

A currently adopted way to remedy this serious drawback
in the DPD model is to add attraction to its conservative
forces by including many-body interactions through an ad hoc
density-dependent term, as done in many-body DPD (MB-
DPD),36 with a caveat of thermodynamic inconsistency.37

However, explicit many-body terms are not strictly necessary
for gas–liquid coexistence, and simple fluid models that include
many-body terms only effectively are able to capture a wealth
of capillary phenomena within the pairwise approximation.31

In a more straightforward approach the attraction can be
included by extending the DPD model beyond the harmonic
approximation and combining two terms of different powers:
a positive term of higher power would give an anharmonic
repulsion, and a lower-power term taken with a negative sign
would provide the attraction. For example, Groot and Stoyanov30

used a quadratic force in their sticky elastic sphere model to
study colloidal dispersions. The standard DPD model speci-
fies the sign of the weight function but not its functional
form,28 and lifting the requirement of nonnegativity one can
explore this freedom in full. Thus, combining two terms with
opposite signs is equivalent to a single term with a weight
function that is negative within a certain domain. Furthermore,
since the conservative and Langevin weight functions of the
model are not generally correlated, the latter can be preserved,
retaining the hydrodynamics of the original DPD. Here, we
explore this approach to extend the DPD model to all three
phases of matter and relate the corresponding thermodynamics
at meso- and nanoscales.

In the van der Waals (vdW) picture of simple liquids, the
short-range structure and correlations are defined primarily by
inter-particle repulsion, while attraction plays only a minor
role.38 However, when it comes to thermodynamic properties,
both attraction and repulsion actively shape the phase
diagram,39 which is liable to differ for the CG system as the
result of entropy loss. Even for ‘bottom-up’ derived CG poten-
tials for bonded species,40 isomorphism between atomic and
CG phase envelopes is not guaranteed. To establish a corres-
ponding connection for systems with coarse-grained fluid
particles reliable effective potentials are required. Although
their rigorous form is not available, a clue may be found from
polymer solutions by taking the view of a fluid blob as a
limiting case of a star or ring polymer with the force constant
between the monomers k - 0. Both theory23 and simulation6

provide evidence that the effective potential between the polymers
is soft, repulsive and short-ranged. Thus, it is well known that the
interactions between the polymer chains in solution can be
described by a Gaussian.23 Similarly, ring polymers are coarse-
grained to ultrasoft bounded potentials.41 Star polymers are also
shown to be exponentially decaying outside their corona
diameter.42 Thus one could conclude that the effective potential
between the fluid blobs is also bounded and short-ranged. Soft-
ness of the CG potential for non-bonded interactions has also
been demonstrated from the atomistic perspective,43 and more-
over, the DPD method is entirely hinged on this approach.

Simple potentials do not necessarily lead to simple thermo-
dynamics, which could be rich in unusual and anomalous
features.44 There are several soft potentials including the
Stell–Hemmer33,35 and Jagla models45 which are known for
several anomalies.46–48 Their anomalies are ascribed to the
presence of regions with negative curvature in the potentials
(‘core-softened’ potentials). On the other hand, our extension of
the DPD model eschews core-softening and its analytic potential
remains convex throughout its entire range, being likely the first
of this type to exhibit a full set of anomalies.

The principal objective of the present paper is to examine
the phase behaviour of a generic model for the coarse-grained
solvent, contrasting it with that of a fully fledged atomistic
solvent. Often, the origins of complex thermodynamic phenom-
ena are subtly encoded in the details of interparticle interac-
tions. However, a simple general model could help revealing
the underlying physical mechanisms. In the next section we
outline the generalised potential, termed nDPD, and provide
details of simulations. We then present the results of con-
densed phase simulations using nDPD potentials, demonstrat-
ing stable liquid and solid phases for all three studied orders,
n = 2, 3, 4. We further discuss the observed anomalies in the
thermodynamic properties and outline our conclusions.

Simulation methods
DPD interactions with attraction

In classical statistical simulations an interaction between
spherically-symmetric species is well described by the Mie49
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potential, which in the current notation is written as

Uðn;mÞðrijÞ ¼
n

n�m

� � n

m

� � m

n�me
s
rij

� �n

� s
rij

� �m� �
; (1)

where e and s are the parameters defining the energy and
length scales correspondingly, and n and m (n 4 m 4 3) are the
exponents defining together the potential well width and
the steepness of the potential at short range. The case n = 12,
m = 6 is the archetypal Lennard-Jones (LJ) potential,7 illustrated
in the inset to Fig. 1. Although this generic potential is able to
describe quantitatively a wide range of classical atomistic
systems including their liquid phases and critical phenomena,
its use in CG modelling is hindered by several factors. Firstly, it
is too steep at short range6 and diverges at the origin. Further-
more, as a potential of infinite range, it requires truncation in
numerical schemes,25 and the thermodynamics of a truncated
potential are sensitive to the details of truncation.50 The last
two issues have been recently discussed from the atomic
perspective25 but the proposed solution, based on potentials
diverging at the origin, is again aimed at atomistic modelling or
coarse-graining bonded potentials.

Unlike CG potentials for chemically bonded species, diver-
ging at the origin, coarse-grained non-bonded interactions in
complex fluids are likely to be ‘soft’, i.e., bound everywhere,6,22,42

which is a consequence of intra-particle motion.42,43 Perhaps the
most general form of the soft ‘overlap’ potential is the Gaussian
potential, which has re-appeared in classical statistical studies
many times in different guises.23,24,42,51,52 However, its usage
has one serious shortcoming: a vanishing force at the origin.
A bounded potential is also at the crux of the DPD model – there,
the force is at its maximum at the origin, and its softness and
continuity enables fast local equilibration and exploration of
phase space.

A possible way to include both repulsion and attraction in
the DPD framework is based on the cubic spline weight func-
tions of smoothed particle hydrodynamics (SPH).53 Such ad hoc
solutions would nevertheless provide little generality and

insight, and as with the case of Gaussian potential, would lead
to a vanishing force at the origin. Instead, we put forward a new
potential class for CG simulations building on the DPD model
as the lowest term in a series expansion, and construct the CG
potential by combining two different-order terms: the higher
order, n, describing the repulsion and the lower order, m,
describing the attraction and taken with the negative sign.
We conjecture that by augmenting the DPD potential with a
short-ranged attractive part we retain the DPD advantages of
accurately describing the collective dynamics of fluid phases,
adding the benefit of including the rich world of capillary
phenomena due to integrated positive surface tension. We start
from the DPD model, where there are two types of forces
between the particles (beads): the conservative (potential) force,
which defines the thermodynamic state of the substance
(fluid), and the Langevin (dissipative and random) forces,
which are responsible for its hydrodynamic behaviour.
Here, we focus on the first type, Fc(rij), which in the standard
DPD model decreases linearly with the interparticle separation
rij � |rij|,

FcðrijÞ ¼ Aij 1� rij

rc

� �
eij ; (2)

giving rise to a quadratic potential

UðrijÞ ¼
1

2
Aijrc 1� rij

rc

� �2

: (3)

Here, eij � rij/rij is the unit vector in the interparticle direction
and rc is the cutoff distance beyond which both the force and
potential vanish. It defines a characteristic length for the DPD
model and our extension, which can be used as a basis for
comparison with other interaction models, particularly those
that make use of a cutoff distance primarily for computational
convenience rather than as a material-defining parameter.

We generalize the conservative force in eqn (2) to arbitrary
powers n, m,

Fðn;mÞc ðrijÞ ¼ Aij bij 1� rij

rc

� �n

� 1� rij

rc

� �m� �
rij

rij
; (4)

where the repulsive exponent, n, represents the force order,
which together with the attractive term exponent, 1 r m r n,
and two other parameters of the model, Aij and bij, completely
define the interactions. Aij is the repulsive parameter with the
unit of force, and bij is a scaling factor defining the magnitude
of repulsion relative to attractive interactions. Here, we con-
sider only the case of m = 1, and in the following we omit m
completely for brevity, denoting the potential as nDPD. The
corresponding energy term is, therefore,

UðnÞc ðrijÞ ¼
Aijbijrc

nþ 1
1� rij

rc

� �nþ1
�Aijrc

2
1� rij

rc

� �2

: (5)

From this expression it is clear that bij 4 0.5(n + 1) is required
for U(n)

c (rij) = 0 to have a root s (0 o s o rc), which from now on
we identify as the nDPD particle size in a similar manner to the
same parameter in the Mie and LJ potentials. Also, the energy at
origin, U(n)

c (0), depends on both Aij and bij. Finally, setting also

Fig. 1 Standard DPD (orange line) and proposed nDPD interaction model
(green, red, and blue lines for n = 2, 3, and 4, respectively) showing the
attractive region in r from s (B0.5rc) up to the characteristic length scale
(cutoff distance) rc. In the inset, the standard Lennard-Jones potential is
shown in the LJ reduced units, e = s = 1.
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n = 1 and bij = 2 would recover the standard DPD potential. We
re-emphasise that the modification affects only the conserva-
tive interactions, preserving the Langevin part (the ‘DPD
thermostat’).

We restrict our consideration here to the first three low-
order cases only, n = 2, 3, 4, for a single component (A � Aij,
b � bij), leaving higher powers for subsequent publication. The
cases are sketched in Fig. 1, where they are contrasted with
the standard DPD potential and LJ potential (inset) used in
atomistic simulations. With the selected parameters given in
Table 1, the location of the first zero of the potential, sij, is
B0.5rc, decreasing somewhat for higher values of n. By contrast,
the standard DPD potential decays monotonically to zero at rc.
A common peculiarity of both DPD and nDPD potentials,
distinguishing them from conventional inverse-power ones, is
the relationship between the force and the potential exponents:
whereas in the former the exponent in the force is lower by one
from the potential power, in the latter it is higher by one.

DPD simulations and units

All nDPD calculations were performed using a modified version
of the DL_MESO mesoscopic simulation package54,55 to accom-
modate the new potential type. We also implemented this
potential in the DL_POLY molecular simulation package56

and used it to independently verify the obtained pressure in a
microcanonical ensemble (leaving Langevin forces out) in
certain cases. We used nDPD units throughout, which are the
DPD reduced units,7 with the following exception: we define the
length scale in terms of s, the shortest distance at which
the interparticle potential reaches zero, as is established, e.g.,
for the LJ potential. We take it as the particle size, as shown in
the last column in Table 1. When the properties are expressed
in terms of the critical parameters (Table 2), they are denoted
by the asterisk superscript (e.g. T* = T/Tc) and referred to as
scaled reduced properties.

Integration of the Langevin equations of motion stipulates
isothermal conditions. In setting the system and during the
NVT simulations we used the standard velocity Verlet integrator
with the DPD thermostat,55 and in DL_POLY calculations
with the Nosé–Hoover thermostat, while for NpT calculations
Langevin pistons were used for both thermostat and barostat.57

Since nDPD interactions are smooth, bounded and of finite
range, no special numerical treatment is required to deal with
their calculation for large inter-particle distances as for
Lennard-Jones interactions. Such treatments can involve trun-
cation of the potential within a cutoff distance with tapering of
forces and energies to zero at the cutoff to prevent energy
fluctuations and estimation of long-range tail corrections for

contributions to energies and pressure.58 These approaches
need special care and are prone to introducing errors in
calculations of thermodynamic properties59 that can only be
eliminated by using more accurate and expensive computa-
tional methods for long-range interactions60 to account cor-
rectly for inhomogeneous phase formation and interfacial
phenomena.61

Without the need to account for long-range effects, the only
controllable sources of systematic errors in the results are thus
due to the finite timestep and the system size. Both factors were
evaluated and in the simulations we used a dimensionless
timestep of 0.005. Due to the finite time step, the system
temperature estimated from the ensemble-averaged kinetic
energy increases quadratically from the thermostat tempera-
ture, typically by 0.1% with the selected timestep. However, by
extrapolating to an infinitesimal limit the thermostat tempera-
ture is recovered. In the fluid part of the nDPD phase diagram
the pressure is dominated by the kinetic contribution, and
finite time steps therefore lead to a quadratic rise in pressure,
which amounted to an increase of one half percent near the
critical point. To alleviate this effect we used the same timestep
in all calculations, and for low-temperature coexistence simula-
tions extrapolated pressure to zero timestep. With regard to the
system size, we used between 8000 and 64 000 particles depend-
ing on the estimated property to make the error due to system
size of the order of statistical uncertainty in the results or even
smaller.

Simulation of orthobaric densities and the solid phase

Coexistence curves were estimated from the series of two-phase
calculations performed in slab geometry (see Fig. 2) using
rectangular elongated prism-shaped simulation boxes contain-
ing between 20 000 and 64 000 particles. Such a setup allows us
to simultaneously estimate both the coexisting pressure and
densities at a given temperature, and also the surface tension
from the difference in the diagonal pressure components.7

Closer to the critical point the coexisting densities can no
longer be reliably determined using this setup due to increased
fluctuations and spontaneous creation and destruction of
interfaces. The coexisting pressure can still, however, be reli-
ably estimated as the normal pressure component along the
long axis in a rectangular prism of a high aspect ratio, given
that the liquid/gas interfaces have insignificant curvature. This
is expected in the proximity of the critical point where the
correlation length rapidly grows and the surface tension
decreases. We estimated therefore the coexisting densities
using a set of isotherms in the subcritical region, as illustrated
in Fig. 3. The isotherms were constructed from a set of
isochoric calculations of cubic boxes with N = 8000 particles

Table 1 Parameters of the nDPD potential in DPD reduced units. Particle
size, sij, is given as a fraction of rc

n Aij bij sij/rc

2 25.0 3.02 0.5033
3 15.0 7.2 0.4730
4 10.0 15.0 0.4497

Table 2 Critical parameters of the model in nDPD units (see text)

n Tc pc rc

2 1.025 0.2951 0.519
3 1.283 0.3979 0.504
4 1.290 0.4095 0.484

Paper Soft Matter

O
pe

n 
A

cc
es

s 
A

rt
ic

le
. P

ub
lis

he
d 

on
 1

1 
Ju

ly
 2

02
3.

 D
ow

nl
oa

de
d 

on
 1

/1
6/

20
26

 8
:0

0:
34

 P
M

. 
 T

hi
s 

ar
tic

le
 is

 li
ce

ns
ed

 u
nd

er
 a

 C
re

at
iv

e 
C

om
m

on
s 

A
ttr

ib
ut

io
n 

3.
0 

U
np

or
te

d 
L

ic
en

ce
.

View Article Online

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
https://doi.org/10.1039/d3sm00835e


5828 |  Soft Matter, 2023, 19, 5824–5834 This journal is © The Royal Society of Chemistry 2023

of progressively larger sizes. Below the critical temperature they
include the van der Waals (wdW) loop as illustrated in the
Figure for the T = 1.27 and 1.28 cases. Although for finite
volumes all states along the isotherms are thermodynamically
stable,62 the regions marked by the dashed lines in two lower
curves may or may not phase separate inside the boxes.62 These
regions, of course, are metastable or completely unstable in the
thermodynamic limit, which precludes us from using the
Maxwell construction.63 Instead, we used the pressure values
obtained in two-phase simulations (the horizontal dashed lines
in the Figure) and estimated the coexisting densities from the
crossing points with the isotherm where it has a negative slope,
as marked by the vertical dashed lines in the Figure. In this way
our estimates are based only on thermodynamically safe data
from the regions covered by the full lines in the Figure and
allowed us to obtain the densities for temperatures as close
as T = 0.99Tc.

We determined the type of the solid structure by annealing
the systems, each containing 4N3 and 2N3 particles (where N is

an integer, we used between 12 and 20) and thus promoting
formation of BCC and FCC solids correspondingly, and allow-
ing the solid phases to form. We subsequently used common
neighbour analysis (CNA), as implemented in the Open Visua-
lization Tool OVITO,64 to analyse the particle trajectories and
determine the preferred type of the cubic cell. The ratio of FCC
to BCC local structures was more than 20 in all cases, from
which we concluded that the equilibrium structure is FCC.

In order to determine the ground state (zero temperature)
energy and structure we calculated the energy of the FCC lattice
as a function of the nearest-neighbour distance r0, the results
are shown in Fig. 4. Thermodynamic stability requires the
condition that the total configurational energy of a system of
N particles is bounded from below,65 i.e., that UN(rN) Z �NB,
where B is a fixed number. This condition is controlled by the
nDPD parameter bij, which for a single-component system with
this pairwise potential resolves to66

b4
ðnþ 1Þðnþ 2Þðnþ 3Þðnþ 4Þ

120
; (6)

and the values in Table 1 were selected to satisfy it. The limiting
values of b in the 2DPD (n = 2), 3DPD (n = 3) and 4DPD (n = 4)
cases are thus 3, 7 and 14 respectively.

The oscillations in energy, well resolved for the n = 2
potential (Fig. 4A), result from new members of the lattice
entering the range of attractive potential forces as the system
compresses. The oscillations indicate an intriguing possibility
of different polymorphs in the solid state, something to be
looked into in the future. The inset shows the energy per
particle density dependence in the FCC and BCC lattices,
indicating a series of FCC 2 BCC transitions as the pressure
increases. Choosing a parameter b below the stability limit will
lead to a system collapse akin to gravitational collapse in
neutron stars, as seen from the cases of b = 2.98 for 2DPD
(Fig. 4A) and b = 14.0 for 4DPD (Fig. 4B); it is also supported by
our simulation tests.

Critical point and critical constants estimation

We determined the location of the critical point from a set of
isotherms at progressively increased temperatures. The first

Fig. 2 A sketch of the system in slab geometry used to estimate the
coexisting densities. The graph presents the density profile of the DPD
particles (green line) giving the values of two coexisting densities, where
the profile is flat, and showing two liquid–vapour interfaces at z E �10rc.

Fig. 3 Pressure as a function of volume per particle in terms of particle
size, s, for several near-critical isotherms for n = 4 potential. Horizontal
dash-dotted lines denote coexisting pressure from the two-phase simula-
tion; vertical dashed lines denote the positions of coexisting volumes;
black dot marks the critical point. See text for details of estimating the
coexisting densities.

Fig. 4 Zero-temperature energy per particle as a function of interparticle
nearest-neighbour separation. (A) FCC lattice with nDPD potential n = 2
for three values of the repulsion parameter; inset – comparison of FCC
and BCC energies for b = 3.02. (B) energies for n = 4 potential for four
values of the repulsion parameter.
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isotherm that does not contain the vdW loop, here the T = 1.29
isotherm, is deemed to be the critical one. To estimate the
critical density of the model we fit the Wegner expansion,67

rl(t) �rv(t) = Atb + Btb+D, where t = 1 � T/Tc, to our coexistence
data, with b = 0.32653 and D = 0.5 assuming the commonly
accepted 3D Ising universality class68 and using the fact that
the lattice gas model and the Ising model are isomorphic.69

Solid–liquid phase transition

In order to locate the solid–liquid transition control parameters
(transition temperature in the T-scan and transition pressure
for pressure-induced melting) we initially established the
approximate area of transition by scanning the control para-
meters and monitoring the density (volume) for a system of N =
32 000 particles. This gave us roughly �20% margins in the
control parameters around the transition. To solve the nuclea-
tion problem, we then prepared an initial two-phase state by
equilibrating separately bulk liquid and bulk solid samples
using the parameters outside of the transition margins and
then bringing the two systems in contact, watching for the
absence of significant overlaps at the flat boundary. Using a
sample of N = 64 000 particles with one half in a typical liquid
configuration and the other in a typical solid one, we conducted a
series of short NpT simulations at progressively higher values of
the control parameter, monitoring the kinetics of the interphase
boundary. The direction of the boundary motion (towards freez-
ing or melting of the whole sample) appears to be a sensitive
indicator of the ensuing phase, insensible to the initial config-
urations, and we were able to locate the transition within a �1%
margin for the temperature and within �10% for the pressure.

Results
Properties along the liquid–gas coexistence curve

Using the nDPD potential with n = 2, 3, 4, we explored both
branches of the binodal of their fluid phases from the triple
point to the critical point. The binodal curves presented in
Fig. 5 in scaled reduced units (with respect to the corres-
ponding critical density and critical temperature, see Table 2)
demonstrate several unusual features. First, the liquid phase in
the nDPD model has a much wider extent than simple atomic
liquids and water. For example, for the n = 4 (4DPD) potential
the liquid phase extends down to T* = 0.0709 (T = 0.0915),
whereas argon has its triple point at T* = 0.556, and water at
T* = 0.422. Second, while the gas branch in all three cases falls on
the same curve on the scale of the figure, the liquid branches are
markedly different outside of the scaling region. Even the con-
cavity of the liquid branch varies with the parameter b of the
potential: with the selected parameters the liquid branch is
concave for n = 4, a straight line for n = 3, and a convex curve
for n = 2, challenging the law of corresponding states. We have
verified that the n = 2 branch becomes concave when b increases
from 3.02 to 3.1. The straight line appears to be the limiting case
for n Z 3. In the scaling region near the critical point all liquid
branches collapse onto a single universal curve.

The insets to the Figure illustrate the radial distribution
functions (RDF) for both branches at a representative temperature.
For the gas branch all cases display a typical low-density atomic
(e.g., LJ fluid) RDF, with its height increasing with the potential well
depth: more so for lower powers of potential (n). Conversely, the
liquid RDFs show a transition from the typical for simple fluids
liquid-density RDFs for the two higher powers to an unusual case
for the 2DPD potential with the second minimum more pro-
nounced than the first, where the positions of the first and the
third solvation shells are also shifted to shorter distances but the
position of the second one remains unchanged. We have found
these features of the liquid-density RDF to be sensitive to the value
of b – they disappear when b is increased from 3.02 to 3.10 – and
are not unique to 2DPD: the second minimum becomes similarly
pronounced when b o 7 for 3DPD and b o 14.5 for 4DPD.

We calculated the surface tension g as a function of tem-
perature and, by fitting the data to a power law g p (Tc � T)m,
we obtained an independent estimate of the critical tempera-
ture. For the 4DPD potential, illustrated in Fig. 6A, Tc = 1.28(2),
in excellent accordance with the value obtained from the
binodal data (Tc = 1.29). The second parameter of the fit, the
critical exponent m, has a converged value of 1.38, deviating
somewhat from the accepted value for fluids, m = 1.28(6).70 In
the Figure we expressed the surface tension in the standard
DPD units (length in units of potential range a). This facilitates
the comparison with experimental data for key solvents. For
example, water modelled as a DPD fluid, with an a = 8.52 Å
(7 : 1) mapping would have a surface tension of g = 12.7 at T* =
0.46 (based on 72.0 mN m�1 at T = 298 K71).

Contraction on fusion, temperature of maximum density, and
negative thermal expansion in the solid

At low temperatures, an nDPD fluid freezes for all three studied
classes, which is where it exposes another unusual behaviour.

Fig. 5 Coexistence curves for the nDPD potential, calculated for quad-
ratic, cubic, and quartic repulsive forces with parameters given in Table 1.
The blue line denotes the gas branch (common for all powers) and the
green, orange, and red lines are for the liquid branches. The black dot
denotes the critical point (T* = 1). Reduced units have been used with
critical values defining the scales. (Insets) Radial distribution functions at
the coexistence densities: left – gas branch, right – liquid branch, at T* =
0.4 for the three potential classes.

Paper Soft Matter

O
pe

n 
A

cc
es

s 
A

rt
ic

le
. P

ub
lis

he
d 

on
 1

1 
Ju

ly
 2

02
3.

 D
ow

nl
oa

de
d 

on
 1

/1
6/

20
26

 8
:0

0:
34

 P
M

. 
 T

hi
s 

ar
tic

le
 is

 li
ce

ns
ed

 u
nd

er
 a

 C
re

at
iv

e 
C

om
m

on
s 

A
ttr

ib
ut

io
n 

3.
0 

U
np

or
te

d 
L

ic
en

ce
.

View Article Online

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
https://doi.org/10.1039/d3sm00835e


5830 |  Soft Matter, 2023, 19, 5824–5834 This journal is © The Royal Society of Chemistry 2023

Whereas most substances expand when heated, there is a
compelling group of materials that contract upon heating
within a certain temperature range. Classic textbook examples
include liquid water below 4 1C (277 K) and ice below 63 K.72

This phenomenon, termed Negative Thermal Expansion (NTE),73

occurs when materials contract in volume upon heating and is
characterised by the negative value of the bulk thermal expansion
coefficient, a = (q ln V/qT)p o 0. NTE in complex materials with
directional bonding, where it is more often found,73,74 received
much attention in recent years due to its industrial applications.
Molecular mechanisms explaining NTE in these systems include,
inter alia, Grüneisen vibrational theory of thermal expansion,73,75

special phonon properties,74 and rigid unit modes.74 At the same
time, there are a few pure elements where the NTE and contrac-
tion of fusion have been found, neither of which can be explained
by the above mechanisms. These elements include the semi-metal
bismuth, the metals gallium and plutonium, and the metalloids
antimony, germanium, and silicon. They crystallise into different
crystal structures,76 belong to different groups in the periodic
table, and exhibit markedly different NTE ranges: it is thus
unlikely that their behaviour can be attributed to unique electro-
nic properties alone. There is no clear understanding of the
underlying mechanisms in these systems. Furthermore, several
classical single-component model systems with isotropic
pair potentials, such as the purely repulsive Gaussian core
model,51,77 as well as the ad hoc devised potentials with a
softened interior of their basins of attraction,78 also feature
NTE. However, finding a simple model with an isotropic
potential, which reproduces the anomalous behaviour of
water—contraction on melting with an immediate negative
expansion region in the liquid phase—is known to be a
challenging open problem.78 Here, we demonstrate that the
nDPD model includes all of the essential ingredients required
to capture this complex phenomenon.

In order to locate the solid–liquid phase transition we
calculated the isobaric density of nDPD at low temperatures.
The results for the n = 4 potential at zero external pressure
are presented in Fig. 6B. The freezing transition occurs at

T = 0.0779 (T* = 0.0760) for the 2DPD potential, at T = 0.0873
(T* = 0.0680) for the 3DPD potential, and at T = 0.0915 (T* =
0.0709) for the 4DPD potential. The system freezes into an FCC
solid with an expansion in volume of ca. 5.5% in all three cases.
Just before freezing a density maximum is observed at T = 0.11
(T* = 0.0852) for the 4DPD case. On the liquid side, it qualita-
tively describes water, which has a temperature of maximum
density (TMD) of 4 1C (277 K) or, in reduced units, T* E 0.4283.
Even taking into account that water expands by 9% upon
freezing, nDPD presents alternatives to hydrogen bonding
mechanisms that lead to the qualitatively same effect, which
could be explored further when developing accurate CG water
models.

Pressure-induced melting

If the liquid phase of a substance is more dense than its solid
phase, the melting temperature decreases with increased pres-
sure. This general result, which follows from the Clausius-
Clapeyron equation, is well known for water, where a regelation
occurs for up to 20 K below the normal freezing point. A similar
phenomenon is also observed for the chemical elements men-
tioned in the previous section that feature NTE, as well as in
alkali metals. Using the two-phase setup to study the solid–
liquid transitions, we observed a monotonous decrease in
transition temperature from T* = 0.0709 at effectively zero
pressure down to T* E 0.03 at p = 10 for a 4DPD potential.
As a consequence of this, there is a maximum temperature for
which the solid phase exists for the nDPD model: T* = 0.0709
for 4DPD. For temperatures below this maximum value, the
system melts when pressurised. It should be noted that other
models also feature pressure-induced melting. For example,
in the Gaussian core model51 reentrant melting has been
reported.79

Parameterisation of nDPD and thermodynamic consistency

In order to relate thermodynamic properties at CG and atomis-
tic levels a mapping between corresponding units is needed.
At equilibrium, this includes at least energy and length scales.
In the DPD model the link to a specific chemistry requires a
mean-field approximation.28 With only one parameter in the
model, Aij, it is sufficient to fix it by matching the isothermal
compressibility of DPD fluid and that of a given material,
e.g. water.28 This is justified by the fundamental connection
between DPD and fluctuating Landau–Lifshitz Navier–Stokes
hydrodynamics.80

The elastic responses of a nDPD liquid are richer and also
include tensile stresses with the tensile strength controlled by
the parameter bij. In addition, the liquid–gas coexistence pre-
sent in the nDPD model with its associated critical point can fix
the temperature scale. Thus, Aij can be fixed from the condition
Tc = 1, and bij by mapping the surface tension of the nDPD
model and the target fluid. The value of bij is limited by the
need for thermodynamic stability,65,66 which is satisfied for a
given value of n by eqn (6).

The length scale for the nDPD model can be fixed by relating
liquid coexisting densities between simulation and physical

Fig. 6 (A) Calculated surface tension of 4DPD liquid in DPD units as a
function of temperature up to the critical point. Solid line is a power law fit
(see text). (B) Temperature dependence of density around the solid–liquid
phase transition. Red diamonds – liquid phase, blue diamonds – solid
phase, and the temperature of transition is marked by the green dashed
line. The large blue dot indicate the position of the temperature of
maximum density (TMD).
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representations. Although we did not aim for a specific system
here, a relation to ambient water can be made as follows.
The length scale in DPD is usually fixed by mapping 3 water
molecules to one bead.29 There is no compelling reason for this
choice, and due to tetrahedral ordering of liquid water at
ambient conditions a 5 : 1 mapping, i.e., a bead representing
a water molecule together with its first coordination shell,
seems equally sensible. Since the liquid density of water is
1/30 Å�3,29 and the corresponding 4DPD density is 1.62s�3,
both taken at 0.4608Tc (298 K), the length scale using this
mapping is s = 6.24 Å, and the cutoff distance rc = 13.88 Å.

With these parameters we can link the liquid phases of
water and nDPD. Most conveniently, this could be done using a
linear transformation T0 = (T � T0)/(Tc � T0), where the scaled
temperature T0 is set to zero at the zero-pressure melting point
(triple point for water), T0, and increases linearly with T reach-
ing a value of 1 at the critical temperature Tc. We have found
that a 4DPD liquid with a b parameter in the range 15.0 r b r
16.5 accurately describes the saturation pressure of water
across a wide range of temperatures, as illustrated in Fig. 7
with a comparison between our results and the reference
equation of state given by the International Association for
the Properties of Water and Steam (IAPWS).81

The surface tension of the nDPD liquid is obtained as a by-
product from the difference between normal and lateral pres-
sure components in a coexistence simulation using a slab
geometry.7 Since the nDPD potential is of finite range, no
long-range corrections are required. An inset to Fig. 7 shows
the temperature dependence of the surface tension of the 4DPD
case for three values of b. The surface tension, given in the
Figure in DPD scaled units (Tc = 1), markedly depends on b,
which provides a suitable method of tuning it to a specific
target. Although the surface tension is not reproduced over the

entire temperature range by a single set of parameters, it can be
tuned around a particular temperature. Thus, b = 15.0 seems a
reasonable choice for ambient water, T0 = 0.0668 (298 K).

Discussion and conclusions

In his milestone paper discussing the hierarchical structure of
science, ‘More is different’, Phillip Anderson argued that beha-
viour of complex systems cannot be entirely ‘understood in
terms of a simple extrapolation of the properties of a few
particles’, and that ‘at each level of complexity entirely new
properties appear’.82 As we dial down the magnification moving
to larger scales, we would find the new phenomena in focus,
and these phenomena might or might not be present at finer
resolutions. Liquid structure is defined by correlations between
the density fluctuations, which includes both short-range order
and long-range hydrodynamic fluctuations. However, short-
range and long-range hydrodynamic fluctuations are coupled,
and coarse-graining the short-range interactions only will
inevitably disrupt the balance. In designing a coarse-grained
model there are a couple of specific points that needs to be
taken into account.

It is well-known that coarse-graining of any set of degrees of
freedom results in changes to the governing equations of
motion from the Newtonian form to generalised Langevin
dynamics (GLE),83 i.e., to the dynamics of interacting Brownian
particles. Thus, the structure and dynamics of a CG fluid are
coupled: a part of the (conservative) chemically-specific inter-
atomic interactions, not captured by the inter-particle inter-
actions at the CG level, is reinstated in the form of
non-conservative generic interactions with the ‘bath’, i.e., in
the form of viscous and stochastic forces coupled via the
fluctuation–dissipation theorem.84 We note in passing that,
strictly, even atomic-level dynamics are also of the GLE type
since empirical interatomic potentials effectively include
averaged-out electronic degrees of freedom. While the neglected
forces are likely to be insignificant at the atomic level, this is not so
at the mesoscopic scale. Incorporating memory effects is a challen-
ging problem and is the focus of current research,85,86 although no
viable scheme for integration of GLE exists as yet. Existing models
are usually based on a Markovian (memoryless) approximation,
which enormously simplifies the equations of motion but requires
effective (mean-field) friction coefficients though obtainable, as has
been demonstrated recently,21 by direct ensemble averaging of
an atomistic simulation. In the CG process it is the short-range
correlations that are suffer most.

Another moot point is related to generating adequate repre-
sentations of many-body interactions using pairwise CG poten-
tials. In other words, whether it is possible to retain long-range
correlations in liquid with depleted short-range ones, since
they are related via the Ornstein-Zernike (OZ) equation?87

In general, any adjustment in the Hamiltonian alters the
thermodynamic phase behaviour.50 This is true even if the
CG Hamiltonian is obtained using the rigorous Mori-Zwanzig
projection operator formalism83—the intrinsic reduction in

Fig. 7 Saturation pressure in scaled reduced units of a 4DPD liquid with
three values of the b parameter (symbols), and the water using the
reference IAPWS equation of state81 (full line). The standard error in our
data is of the order of symbol size. In the inset, the surface tension for
these three cases is compared with the IAPWS reference. The temperature
scales from the triple point for IAPWS or zero pressure melting point for
4DPD (T0 = 0), to the critical temperature (T 0 = 1).

Paper Soft Matter

O
pe

n 
A

cc
es

s 
A

rt
ic

le
. P

ub
lis

he
d 

on
 1

1 
Ju

ly
 2

02
3.

 D
ow

nl
oa

de
d 

on
 1

/1
6/

20
26

 8
:0

0:
34

 P
M

. 
 T

hi
s 

ar
tic

le
 is

 li
ce

ns
ed

 u
nd

er
 a

 C
re

at
iv

e 
C

om
m

on
s 

A
ttr

ib
ut

io
n 

3.
0 

U
np

or
te

d 
L

ic
en

ce
.

View Article Online

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
https://doi.org/10.1039/d3sm00835e


5832 |  Soft Matter, 2023, 19, 5824–5834 This journal is © The Royal Society of Chemistry 2023

entropy will affect the thermodynamic functions of the CG
system.88 With the reduced set of effective degrees of freedom
certain correlations are lost and, with them, all related phe-
nomena can be missed. This problem of representability, which
has been often skirted in previous CG studies, is now receiving
much attention.40,88,89 The development of rigorous bottom-up
approaches with chemical accuracy is further hampered by the
limited transferability of CG models and economic factors,
which need to be taken into account: honing the CG model
to specific chemistry may require more effort than solving the
problem in question at the atomistic level. At the same time,
there is always great demand for finding models that would
provide greatly simplified points of view, and as such there is a
continuous quest for simple generic models with extended
representability. Simple intermolecular interactions do not
necessarily entail simple thermodynamics,44 and analytically
simple soft potentials may conceal unexpected macroscopic
phenomena.34,45,51,90 In order to shed more light on the impact
of CG of a system on its thermodynamics we study the phase
diagram of a simple soft pair potential that is a generaliza-
tion of the standard potential used in dissipative particle
dynamics (DPD).

Despite the wide popularity of the DPD model,13 little
justification has been provided for its harmonic repulsion
potential.28 It might therefore be surprising that a simple
repulsive force of the DPD model can provide a working
solution for many cases.13 To qualitatively understand this
success, imagine a coarse-graining process with progressively
larger scaling factors. The liquid structure is defined in terms
of density correlations, which includes—according to the OZ
approach87—a short-ranged component referred to as a direct
correlation function. In the OZ picture the total correlation
between two particles is composed of the direct correlation and
an indirect part, which is longer-ranged and composed of all
possible particle chains of direct correlation in the fluid.87 In
the CG process the direct correlations are averaged out, which
leaves just indirect correlations to be reproduced by a suitable
ansatz. At this level of CG the interactions are much softer, and
we argue that they are captured by the nDPD model. Since
much of the chemical specificity is absorbed within the short
range, the longer-range correlations are of a more generic
nature. At even higher CG scaling most of the correlation is
averaged out, leaving only the soft elastic repulsion between the
beads due to the finite compressibility of the fluid. The inter-
actions emerging at this scale are therefore of the DPD type.

As we have demonstrated, the nDPD potential with appro-
priate choices for its three parameters is able to produce stable
liquid and solid phases. At the same time, the phase diagram
of nDPD matter is topologically different from that of simple
atomic systems, with the solid phase occupying a narrow
density region at low temperatures. The thermodynamics of
its condensed phases are rich with anomalous features, usually
attributed to complex molecular systems. They include expan-
sion on freezing, temperature of maximum density, negative
thermal expansion in the solid phase, an unusual liquid–
vapour phase envelope and pressure-induced melting. In this

work, we have not explored in full the model parameter space,
particularly the relative range of the attraction, which is likely
to conceal additional anomalies. However, the fact that the
anomalies are found in systems with soft coarse-grained iso-
tropic pair potentials indicates that they likely to originate in
the medium-range structure, i.e., beyond the first neighbours
in the underlying atomistic system. The complex phase behaviours
have also been found in models with coarse-grained bonded
interactions34,44 and were observed in colloidal suspensions.91

Clearly, no CG model can reproduce the whole spectrum
of observables of the underlying atomistic model, in the same
way as no atomistic model can reproduce the entire set of
experimental observables. This is a manifestation of the repre-
sentability problem,89 which arises due to the resolution
change at the mean-field level: certain correlations are missing.
Thus, a CG model cannot describe the processes of self-
assembly or gelation, which involve changes in fine-level mole-
cular topology. However, this is not the purpose of the model.
Rather, each model level in the hierarchy defines its own
classes of compatible observables that reproduce the experi-
mental observables within the model constraints.89 A good
model goes beyond this and has predictive power. Paraphrasing
the famous designer Yves Saint-Laurent, one can say that a
good model can advance the field by ten years.92
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22 J.-P. Hansen and H. Löwen, Bridging Time Scales: Molecular

Simulations for the Next Decade, Springer-Verlag, Berlin,
2002, pp. 167–196.

23 P. J. Flory and W. R. Krigbaum, J. Chem. Phys., 1950, 18,
1086–1094.

24 B. J. Berne and P. Pechukas, J. Chem. Phys., 1972, 56,
4213–4216.

25 X. Wang, S. Ramrez-Hinestrosa, J. Dobnikar and D. Frenkel,
Phys. Chem. Chem. Phys., 2020, 22, 10624–10633.

26 S. Izvekov and G. A. Voth, J. Phys. Chem. B, 2005, 109,
2469–2473.

27 M. S. Shell, J. Chem. Phys., 2008, 129, 144108.
28 R. D. Groot and P. B. Warren, J. Chem. Phys., 1997, 107,

4423–4435.
29 R. Groot and K. Rabone, Biophys. J., 2001, 81, 725–736.
30 R. D. Groot and S. D. Stoyanov, Phys. Rev. E: Stat., Nonlinear,

Soft Matter Phys., 2008, 78, 051403.
31 J. S. Rowlinson and B. Widom, Molecular theory of capillar-

ity, Clarendon Press, Oxford, 1982.
32 A. Ghoufi, P. Malfreyt and D. J. Tildesley, Chem. Soc. Rev.,

2016, 45, 1387–1409.
33 P. C. Hemmer and J. L. Lebowitz, Phase transitions and

critical phenomena, Academic Press, London, 1976, vol. 5b,
pp. 107–203.

34 C. F. Tejero, A. Daanoun, H. N. W. Lekkerkerker and
M. Baus, Phys. Rev. Lett., 1994, 73, 752–755.

35 P. C. Hemmer and G. Stell, Phys. Rev. Lett., 1970, 24,
1284–1287.

36 P. B. Warren, Phys. Rev. E: Stat., Nonlinear, Soft Matter Phys.,
2003, 68, 066702.

37 A. A. Louis, J. Phys.: Condens. Matter, 2002, 14, 9187–9206.
38 J. D. Weeks, D. Chandler and H. C. Andersen, J. Chem. Phys.,

1971, 54, 5237–5247.
39 B. Smit and D. Frenkel, J. Chem. Phys., 1991, 94, 5663–5668.
40 W. G. Noid, J. Chem. Phys., 2013, 139, 090901.
41 A. Narros, A. J. Moreno and C. N. Likos, Soft Matter, 2010, 6,

2435–2441.
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