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The structure of disintegrating defect clusters in
smectic C freely suspended films

Ralf Stannarius (2 *® and Kirsten Harth (2 *°

Disclinations or disclination clusters in smectic C freely suspended films with topological charges larger
than one are unstable. They disintegrate, preferably in a spatially symmetric fashion, into single defects
with individual charges of +1, which is the smallest positive topological charge allowed in polar vector
fields. While the opposite process of defect annihilation is well-defined by the initial defect positions,
disintegration starts from a singular state and the following scenario including the emerging regular
defect patterns must be selected by specific mechanisms. We analyze experimental data and compare
them with a simple model where the defect clusters adiabatically pass quasi-equilibrium solutions in
one-constant approximation. It is found that the defects arrange in geometrical patterns that
correspond very closely to superimposed singular defect solutions, without additional director
distortions. The patterns expand by affine transformations where all distances between individual defects
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1 Introduction

Topological defects play a significant role in a huge variety of
physical systems, including for example anisotropic soft matter,'
biological ~matter,"®™*  superfluidic  liquids,">™” quantum
systems,"®*° or even cosmology.*** The close resemblance of
topological defects in biological systems and in active nematics
has been emphasized.'®**** Coarsening of defect patterns is a
common feature in the initial evolution of dynamic systems after
symmetry-breaking phase transitions. The elementary processes of
such coarsening scenarios are mutual annihilations of topological
defect pairs with opposite charges, a scenario that has been
considered in a variety of studies in different fields. It shall be
mentioned that in liquid-crystalline systems in general, disclina-
tions are quite easily prepared and observed in experiments, and
the annihilation of point defects in particular has been studied
extensively. A recent review of this field can be found in ref. 24.
In a previous experiment with smectic C freely suspended
films, the annihilation of oppositely charged defects was
studied experimentally, and the role of the anisotropy of
elastic constants and of macroscopic material flow in the films
was demonstrated.>® The elastic anisotropy mainly manifests
itself in a preferential pinning of the director near the defect
cores. A model developed earlier for nematic systems®®?” was
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scale with the same time-dependent scaling factor proportional to the square-root of time.

employed and extended to describe the experimentally
observed effects of mutual defect orientation on the annihilation
dynamics. One key ingredient of this model is the fixed orienta-
tion of defects with topological strength S = +1 in such films,
mentioned above as a consequence of the elastic anisotropy.

The motivation to study this particular system and geometry
is that the smectic freely suspended liquid-crystalline films
offer clear advantages for systematic studies of defect interac-
tions: first, the films allow to investigate defect dynamics in a
quasi two-dimensional (2D) geometry. The air above and below the
films does not affect local orientations and has only little influence
on flow in the film plane. In addition, the observation of defect
motions and orientations is straightforward by means of polarizing
microscopy. The timescales of defect dynamics in the range of
seconds are convenient for video recording, and the continuum
equations governing the film dynamics are well developed. Several,
but not all involved material parameters are known from other
experiments. Simple methods for the experimental preparation of
defect patterns in such films have been established.>>*5-3

The present study does not deal with the annihilation
dynamics but focuses on the opposite scenario, the decomposi-
tion of high-strength point defects. The basis of the following
theoretical analysis is an earlier experimental investigation of
smectic C freely suspended films with mutually repelling
topological defects of equal charges.”® The emerging single
defects arrange in certain characteristic, highly symmetric
patterns. The structure of these patterns has no obvious rela-
tion to the initial state. We derive a model for the pattern
selection and explain why some typical patterns are found
experimentally while others are avoided.

This journal is © The Royal Society of Chemistry 2023
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2 Experimental observations

In the smectic C phase, the mesogens are on average tilted with
respect to the smectic layer plane. The molecular layers in
smectic free-standing films are in the film plane, perfectly
stacked. The local mesogen orientation is described by the
c-director field, which points in the direction of the local tilt.
Because ¢ is a true vector, defects with half-integer topological
strength are forbidden and the defects with the lowest elastic
energy are those with topological strengths S = +1 and —1. The
energy of each defect is proportional to the square of its
topological charge,®?* thus defects with higher topological
charges |Sy| > 1 have higher elastic energies than the sum of
N = |So| defects of charges S =+ 1 or —1, resp., with the same
total topological charge. As a consequence, defects with
strength S, > 1 (S, = 2, 3, 4,...) will decompose into N defects
of topological charges +1, under conservation of the total charge.

When N defects of equal topological strength +1 are initially
trapped within a narrow region, and then are released from this
trap, they behave analogously to a decomposing single defect of
topological charge S,. Such an experiment was performed ear-
lier, and an experimental technique to prepare a restricted
region where the director field has a total topological charge
So > 1 was introduced.?” The technique basically exploits the
fact that film regions with a reduced number of smectic layers
(so-called ‘holes’) can trap defects. The defect energy depends
linearly upon the local film thickness, thus defects in thinner
film regions are caged there. When one is able to produce a
local area of reduced film thickness that contains a number of
topological defects of the c-director field, this will often lead to
a stable configuration where the line tension of the dislocations
surrounding the hole is balanced by the defect repulsion. The
mutually repelling defects cannot leave the hole into the thicker
surrounding film regions, so they distribute themselves along
the perimeter of the hole. This arrangement prevents the hole
itself from shrinking and vanishing.

The material used in the experiment was a non-chiral room-
temperature SmC binary (50 vol%:50 vol%) mixture of 5-n-
octyl-2-[4-(n-octyloxy)phenyl]|pyrimidine and 5-n-octyl-2-[4-(n-
hexyloxy)phenyl]pyrimidine.** All experiments were performed
at room temperature. Thin films were drawn across a frame
with one moveable edge inside a THMS 400 hot stage. The
width of the films was approximately 4 mm. The defect textures
were observed using a Carl Zeiss AxiolmagerPol polarizing
microscope under crossed polarizers (horizontal and vertical
in the images). In most of the experiments, a diagonal A =
550 nm phase plate was inserted to distinguish the two
diagonal c-director orientations in the textures. The films
around the trap had uniform thicknesses roughly in the range
from 300 nm to 3000 nm. After quenching the hole containing
the defects, the film thicknesses were homogeneous in the
observation area.

Using the preparation method described above, we were
able to create structures with total defect strengths S, between
+4 and +12 (Fig. 1) in experiments, and there seems to be no
principal limit to trap more defects.>” The technique to release
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Fig. 1 Example of the c-director texture around a hole in the smectic film
(hole diameter approximately 7.5 um) that contains 12 defects of topolo-
gical strength S = +1 each. The defects decorate the border of the hole and
they prevent the hole from shrinking to extinction. The image was taken
under crossed polarizers, each individual defect creates four bright and
four dark stripes in this sunray pattern. Image size 74.5 x 74.5 pm?>.

the defects from their cage involves a quick in-plane compres-
sion of the film so that the hole is quenched and the trap is
eliminated.

The unleashed identical defects repel each other, and the
local cluster will thus spread rapidly. The initial state is a
cluster of defects uniformly distributed on the periphery of a
tiny circular region. Thus, one might naturally expect from
symmetry considerations, that after the release of these defects,
they all move away radially from the cluster center, uniformly
distributed on a circle. This scenario was surprisingly never
observed in our experiments.

Instead, in the majority of experiments, the initial cluster
decomposed with one defect remaining in the center and all
others moving away radially [Fig. 2(a and b)]. In few cases, other
scenarios were found like an S, = 6 cluster consisting of two
inner and four outer, nearly symmetrically arranged defects
that all moved radially away from the cluster center [Fig. 2(c)].
Also, a cluster of two inner and six outer defects was found for
So = 8 as shown below. The reason for the preference of these
structures, and the absence of others, will be given in the
following. We note that the absolute thickness of the homo-
geneous film itself after extinction of the hole does not influ-
ence the structure and dynamics of the decomposition process:
the relevant quantities, e.g. the dissipation in the film and the
elastic energies, both scale linearly with the film thickness.

The result of the previous experimental study®” was that the
pinning of the c-director field in the vicinity of the core of a +1
defect is an essential feature that determines the disintegration
process. In a strict one-constant elastic approximation, the
director is not restricted to a tangential orientation near the
defect core, it may have any offset angle, the defect can have a
tangential or radial director field or any other phase. However,
the elastic constant for bend of the c-director field, Ky is
actually considerably smaller than the constant for splay, K.
The experimentally determined ratio®® is Kg/Kz ~ 2.2. As a
consequence, a defect with a radial orientation of the c-director
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Fig. 2

(a)—(c) Examples of typical disintegration scenarios of defect clusters: (a) and (b) one central defect at rest and N — 1 nearly symmetrically

departing defects for (a) So = 4 and (b) Sp = 7. (c) shows a rare scenario of an Sg = 6 cluster decomposing into four outer and two inner defects, all moving
radially outward. The experimental images were taken with crossed polarizers and a 4 wave plate inserted diagonally. Blueish and reddish colors indicate
regions where the c-director is along one of the diagonals, respectively. Defects are marked by white circles. The color bar to the right is a rough sketch
of the relation between c-director orientation and film reflection color. Details of the texture colors depend on the film thickness, which increases from

(a)—(c).

around its core would have a substantially larger elastic energy
than a defect with purely tangential anchoring of the ¢-director
around the core. It would thus change to tangential orientation.
The tangential defects represent the lowest energy configuration,
and in fact, all +1 defects in the experiments had a tangentially
pinned c-director (¢f. Fig. 2). Such defects can either have a
clockwise or counterclockwise orientation of the c-director, with
equal elastic energies. In ferroelectric smectic C* phases, this
symmetry may be broken®® and there may be a preference for
one of the two winding senses, but not in the smectic C material
used here. In Fig. 2(a and b), the outer defects have the same
winding sense, opposite to that of the central one.

3 Model for the defect configurations

It was argued in ref. 32 that a construction of a cluster of three
tangential +1 defects by simple superposition of the single
defect solutions is possible only if they are arranged along a
straight line. Otherwise, one has to introduce additional dis-
tortions of the director field to satisfy the tangential anchoring
conditions near the defect cores. In contrast, when more than
three defects are involved, there are arrangements of super-
imposed single-defect solutions that fulfill the anchoring con-
ditions without the necessity to add further distortions. For
example, a symmetric arrangement of four defects as observed
experimentally [Fig. 2(a)] can be constructed by a mere super-
position of four individual +1 defects even if the defects are not
lined up. Fig. 3 sketches the c-director field for the case S, = 4,
constructed as a linear superposition of the solutions for the
director deflection angles obtained from four individual
defects. Superficially, it might appear as if the inversion walls
between the outer defects have been additionally included, but
they are actually the result of the superposition of the analytical
single-defect solutions. In absence of other director distortions,
one can find simple analytical solutions for static defect con-
figurations (i.e. assuming fixed defect positions) of this type in
elastic one-constant approximation. During the actual cluster
disintegration, the central defect remains in the original

6110 | Soft Matter, 2023, 19, 6108-6115

Fig. 3 Sketch of the c-director field for the disintegrating Sg = 4 cluster.
The c-director is assumed counterclockwise around the central defect
core and clockwise around the other three (color-coded in the sketch).
The same configuration can also exist with the arrows reversed. Note the
three inversion walls that necessarily form between the outer defects,
indicated by the bent flow lines of the director field.

position, the other three move radially outward. Because of
the spatial and temporal scaling characteristics of the involved
dynamic equations for the c-director and flow fields, the solu-
tions are self-similar when all spatial dimensions are
scaled with ¢*/2, provided that the mutual defect distances are
large compared to the defect core radii (This is in contrast to
ref. 36 where the defects with overlapping cores were very close
to each other and therefore different scaling factors were
obtained.). This scaling behavior is fully confirmed in our
experiments.

We suggest a model for the pattern selection based on the
following simplifying assumptions:

1. The defect patterns evolve quasi-adiabatically, i.e. they
pass through states equivalent to static equilibrium solutions
of the director field with fixed positions of all defects. This
assumption was also made for the description of annihilation
dynamics.****

This journal is © The Royal Society of Chemistry 2023
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2. The director fields for individual defects can be described
in first approximation by the analytical one-constant solutions.
We disregard the fact that splayed regions are expanded and
bent regions are actually quenched in our material. The only
effect of elastic anisotropy is the tangential pinning of the
director at the core.

3. After decomposition of the initial cluster, the disclina-
tions are arranged in such a way that additional distortions are
avoided, and they choose patterns where the tangential pinning
at each defect core is fulfilled by a mere superposition of single
defect solutions.

4. Once these patterns have formed, they expand in a self-
similar way. The scaling factor of all distances is proportional
to {/?), where ¢ is the time from the begin of the disintegration
process.

The close resemblance of the experimentally observed tex-
tures with those obtained from superimposed single-defect
solutions will serve as the main argument to justify this model.
As explained above, Fig. 2(a) and 3 represent a structure that
meets our conditions. Other such solutions for higher S, are
shown in Fig. 2(b and c), as will be demonstrated below.

In our ‘quasi-one-constant’ elastic model, we assume that
the director field far from the defect core can still be described
satisfactorily by the one-constant approximation, but the actu-
ally existing elastic anisotropy leads to the tangential pinning of
the director at the cores of the +1 disclinations. There are
reasonable arguments for this: at the core, the elastic energy
diverges and the difference between splay and bend plays a
decisive role, while outside the cores, the elastic anisotropy will
merely lead to certain local corrections but not to qualitatively
new solutions.

4 Disintegration dynamics

The simplest model for defect interactions®® assumes that the
elastic constants for splay and bend of the c-director are equal,
flow is neglected, and the orientational deformations are
assumed as a linear superposition of isolated defects. The force
between two such defects separated by a distance ry, is:***”

ﬁz = ZTCKSlSZ/I‘lZ. (1)

It acts along the separation vector 7;,. K is a mean elastic
constant, and S, , are the defect strengths. Disclinations of the
same sign, such as considered in our study, repel each other.
This equation was derived for nematics, but it can be used for
the smectic C films as well with a proper redefinition of K.
A defect motion with velocity V relative to the film material is
counteracted by a drag force fyrag = 2yVIn(3.6/Er), where Er =
wr/K is the Ericksen number, y the rotational viscosity, v a
characteristic velocity scale, and 7. the defect core radius.?” This
adjusts the defect velocities in this overdamped system to
12 K D,

= SmG.6/EDr @

In this simplified model without flow, the absolute defect
velocity does not depend on the sign of S. It is inversely

This journal is © The Royal Society of Chemistry 2023
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proportional to the separating distance ry, (disregarding the
slight velocity dependence in the logarithm). For the simple
case of S; =S, = +1, an integration of the velocity i, = 2V leads
to the square-root law

)’12([) =2v/D (l — 10)7 (3)

where ¢, is the time when an initial +2 defect decomposes to
generate the pair. The ‘diffusion coefficient’ D, is defined by
eqn (2). One may expand this simple model to groups of
multiple defects assuming a linear combination of the indivi-
dual forces f; between defects i and j. In the case of N defects
arranged with one central defect at rest and N — 1 defects
moving outward, the radial force on each outer defect would
amount to Nfi»/2,>**® with ry, being its distance from the
central defect. It was shown that this is in contrast to the
experimental findings.**> There may be several reasons, some of
which we will discuss below.

It should be noted that Radzihovsky®® raised the objection
that a moving defect may not necessarily have the same
structure as a defect at rest relative to the film material.
Experimentally, such effects have not been detected, presum-
ably they are too small in the present experiments.

Finally, one also has to consider the effects of material flow
on the defect dynamics: it is well known that the motion of a
disclination in the film plane causes material flow, in particular
in the vicinity of defects with topological charge +1.>° This flow
field has several consequences: first, it speeds up the motion of
the +1 defect because the material locally flows in the same
direction as the defect core is displaced relative to the film.
Second, it leads to an asymmetry in the annihilation of defect
pairs.*® In experiments, flow generated in the annihilation
process of defect pairs in freely suspended Smectic C films
has been demonstrated using fluorescence microscopy and a
photo-bleaching technique.*® In the present cluster disintegra-
tion scenario, however, an experimental confirmation of back-
flow has not been tackled yet. Nevertheless, we hypothesize that
near the positions of the outer +1 defects, the flow field is
directed outward, with the defect motion, thus increasing the
defect speed. A compensating flow directed inward is expected
in the inversion wall regions between the outer defects, in order
to fulfill the continuity equation. When more defects are on the
periphery, the distance between these defects becomes smaller
and shear forces will dampen the supporting flow field, there-
fore, it can be expected that the acceleration of the defects by
flow will be particularly effective for small S,, whereas it will
rapidly decrease with larger S,.

5 Geometrical analysis of groups of
tangential +1 defects

In the following geometrical considerations, we will neglect
flow and consider the static solutions in one-constant approxi-
mation. The advantage of the one-constant model without flow
is that it yields a crude but analytical approximation for the
patterns and their dynamics. A square-root law, similar to

Soft Matter, 2023,19, 6108-6115 | 6111
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eqn (3), will remain effective even when the neglected terms
related to material flow and elastic anisotropy are included.

The experiments show that the geometry of the growing
defect pattern, once it has formed, remains constant. Thus, it is
sufficient for the following discussion to consider an arbitrarily
chosen snapshot of the video sequences and discuss the defect
arrangement in order to obtain the full description of the
spatio-temporal behavior.

We will discuss, which types of defect configurations can be
constructed under the model assumptions given above, as
superpositions of single-defect equilibrium solutions. For the ana-
lysis of these configurations, a 2D vector field ny(x, y) =[x, y),
n,(x, y)] is considered in the (x, y) plane, and the azimuthal angle 0
is defined such that n, = |rio|cos 0(x, y), n, = |rio|sin 0(x, ). N defects
of identical topological charges S; = +1 (i = 1, 2, 3,...N) are
distributed in the plane. In the vicinity of the core of the i-th defect,
0 = ¢, + 0;, where ¢; is the azimuthal angle of the spatial vector from
the defect center and 0; is a phase angle. Tangential orientation
means that 0; = (n; + 1/2)r, (integer n;). For even n;, the rotation of
the director around the core is counterclockwise, and for odd #; this
rotation is clockwise. In the system considered here, all defects have
a tangential orientation of the director near the core as a result of
the minimization of the free energy when bend is favored over
splay. In a material where splay deformations are energetically
favored, an analogous treatment is possible. The solutions are the
same except that an offset of 7/2 has to be added to 0(x, ).

In absence of other director distortions, the c-director angle
0(x, y) in the film plane is additively composed of the sum of N
contributions ¢; and a constant offset 0,,. The phase angle 0, of
a given defect k thus results from the contributions of the other
N — 1 defects and the offset:

O :90+Z¢’i~ (4)

i#k

The offset 6, can be used to adjust the tangential anchoring for
all defects. We can therefore limit the analysis to the search for
configurations where all 0; are equal modulo n, and reserve
the offset to make them equal to (n; + 1/2)n. In general, the
superimposed director fields of N defects at arbitrary positions
will not meet this condition. Yet, there are exceptions, and we
will demonstrate a few of them next. Since the experimental
patterns are highly symmetric, we will consider only symmetric
cases here. Three +1 defects in a line are such a special

a) 5 b) 0=, +21/5 //(P'5=(P5+271/5

View Article Online

Paper

solution. The rotation sense of the central defect is opposite
to that of the outer two. In any other constellation of the three
defects, the phases cannot be matched to be equal modulo .

Let us now analyze configurations without central defect,
where the outer N defects are arranged symmetrically in a
distance R from the center in angular directions 2n(i — 1)/N
(Fig. 4a and b).

In that case, a superposition of the distortions yields differ-
ent phases for all five defects according to eqn (4). This can be
derived straightforwardly. We demonstrate it for the example
N =5, shown in Fig. 4a: the sum of the four contributions to
defect 1is 0; = @5 + @5 + @3 + @4 = 0,, because symmetry requires
¢4 = —@3 and @5 = —@, when defect 1 is located in x direction
from the center. For the second defect, k = 2, it is easiest to find
the phase by rotating the coordinate system by 2n/N and re-
labeling the defects as shown in Fig. 4b. Now, each of the four
(.e. N — 1) azimuth angles ¢;, (i # k) is increased by the
rotation angle 2n/N, yielding the total phase 2n(N — 1)/N + 0, for
defect 2. In the same way, one finds that all defects k=1, 2, 3, 4,
5 obtain the phases

0 = 2n(k — 1)(N — 1)/N + 0.

Thus, all five phases 0, differ by values that are not integer
multiples of m, and an all-tangential alignment is impossible.
This applies for arbitrary N > 2.

One can nevertheless force configurations as solutions of
the director field where all N defects in such an arrangement
become tangential, but this would require the introduction of
additional deformations of the director field, and thus additional
elastic energy. It should be noted that in the experiments,* we
have never found this type of configurations after the disintegra-
tion of the central defect cluster. This is a strong indication that
the system tries to avoid the additional elastic distortions. It
applies even though the system is naturally not in equilibrium
when the defect cluster spreads.

When one analyzes the second case, with a symmetric
arrangement of N — 1 defects outside and one central defect,
the situation changes completely. For N = 3, these are the trivial
three lined-up defects. The case N = 6 is shown in Fig. 4c. The
outer defects 2, 3, 4 and 5 contribute a total phase of zero to 6,
as indicated in the figure. On the other hand, these defects k =
2, 3, 4, 5, as in the previous case, gain the contributions 2n(k — 1)
(N — 1)/N to 6, from the other outer defects. However, the central

{\ | ¥ 2 (p2=0 R 1
3 o = . \\/ 0, ]— i 3
] ¥s N x
o \\\. b ’ (P“j/)&ﬂ}
=0 —;// 1 4250y
.- Ps=-Py 7 L
4 VA s=-0,
v “‘(p % ! (pﬁ\\ (M
) 5 d) 6 a 5

Fig. 4 Sketches of symmetric arrangements of +1 defects. (a) Five outer defects, no central defect. The contributions of the defects to the phase 0, are
sketched by arrows. (b) Same for the defect at position 2. Note the rotation of the coordinate system in this sketch. (c) Central defect added, (d) six
defects, two of them in central position, four outer defects. The contributions to 6; are indicated by arrows.
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defect additionally contributes a phase 2n(k — 1)/N to each of
them so that the outer defects obtain the phases 0; = 2n(k — 1) +
0,. Thus, the 0 are integer multiples of 2r plus the offset. For the
central defect, the sum of all outer defects yields n, because
contributions of defects 2...N — 1 cancel each other for sym-
metry reasons. Only the contribution of the first defect, ¢, = =,
remains besides 0,. As a consequence, the arrangement shown
in Fig. 4 and all structurally similar arrangements for N > 3 can
be constructed by the superposition of the individual single-
defect solutions without adding other deformations. With a
proper choice of 0, (depending on the orientation of the coordi-
nate system) one can make all defects tangential.

Another configuration that was also observed in the experiment
[Fig. 2(c)] is that of two inner defects and a group of outer defects,
shown exemplarily for six defects in Fig. 4d. It is easy to see that
defects 3 and 4 have phases 0; = 0, and 0, = n + 0, (the
contributions of the four outer defects to the phase angles cancel
each other pairwise). The phases of the two inner defects thus differ
by m, so when one of them is tangential clockwise, the other one
is anticlockwise. The phase 0, is composed of the contributions 0,
@5 = 7/2, ¢, = 0 and the sum @3 + ¢, + @ The latter three angles
can be expressed by the ratios of the sides a, b, ¢ as ¢ = arctan(b/a),
@3 =arctan[b/(a — ¢)], and ¢, = arctan[b/(a + ¢)] (see Fig. 4d). In order
to bring the phase 0, to some nr + 0, with an integer n, one needs
to solve the transcendental equation

e b
— -+ nnt = arctan — 4 arctan
2 a a—c

b
+ arctan . (5)
a-+c
This equation can be simplified using the addition theorem
for the arctan function,
arctan X + arctan Y = arctan[(X + Y)/(1 — XY)]

to

—b)a —*b/a* +3bja w
1 —c%/a® — 3b% ) a? =yt (6)

arctan

. . T
Since the arctan yields -+ nn for the argument +oo, the
denominator in the argument must vanish. The solution is
obviously

c=Va? —3b2. (7)

Using simple symmetry arguments, one can find the same
condition for the adjustment of phases 0,, 05 and 0. When
the distances a, b, ¢ between the defects fulfill this equation,
then one can achieve tangential anchoring for the six defects by
a simple superposition of single defect solutions plus offset.
Note that for b — 0, the defects 1, 3, and 5 come very close to
each other and the elastic energy of such a configuration will
naturally become very large. For the other limit, b — a/v/3, ¢
goes to zero and the two inner defects approach each other very
closely, with the same effect. The system obviously chooses a
configuration of ¢/b where the total potential energy is near an
optimum. This is the case in the experiment. Fig. 5 shows the
experimental observation again (a) and the simulated texture
(b) for the experimentally determined ratio a/b ~ 1.83 and ¢
determined from eqn (7), ¢/b ~ 0.6. Instead of the director
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Fig. 5 Comparison of a 2 + 4 cluster in experiment and simulation. (a) is
the experimental texture. (b) was simulated to roughly represent the model
texture. The outer defects were placed in positions (+a/2,£b/2) as in the
experiment, and the two inner defects at (+c/2,0) with ¢ computed from
egn (7). The colors were chosen as a crude approximation to the optics
under crossed polarizers and a diagonal phase plate (see text).

field, we show a color presentation where the intensity of the
red channel of the image was set proportional to 1 + sin 0, the
blue channel to 1 — sin 6, the green channel to 0.4(1 + sin 6).
The color scale at the right of Fig. 5 visualizes the relation
between the director and the simulated texture color. This
reproduces the positions of the diagonal (blueish and reddish
arms in the experimental textures. Evidently, not only the defect
positions but also the distortions that were generated by linear
superposition of the six individual solutions are in satisfactory
agreement. One has to keep in mind that we made two simplify-
ing assumptions here: first, we assumed that the director field
for a given defect arrangement is an equilibrium solution, and
second, we used the solutions for one-constant approximation
which we know is not exact here because Kg > Kg. The sense of
rotation of the c-director is the same for defects 1, 4 and 5 in
Fig. 4d, and opposite for the other three defects 2, 3 and 6.

The arrangement for six defects shown in Fig. 5 can thus be
explained easily by purely geometrical considerations, except
for the experimentally selected ratio a/b which is presumably
related to a local minimum of the elastic energy.

Another structure that also lacks a central defect but fulfills
the requirements to be a mere superposition of single defect
solutions was found coincidentally in the experiment for S, = 8.
It is shown in Fig. 6. The experimental pattern suggested that
one should seek for a superposition with four defects 1, 2, 3, 4
distributed equidistantly on a straight line (distance /), and an
appropriate addition of defect pairs 5, 6 and 7, 8 on each side of
the central line. We found that defects 5 and 6 have to have a
separation 2/ and form two equilateral triangles 1, 2, 5 and 3, 4,
6 with side length /, respectively. At the opposite side of the
central line, 7, 1, 2 and 8, 3, 4 in a similar arrangement form
another two equilateral triangles. The comparison with the
experiment shows that the two configurations are nearly iden-
tical. Small deviations may occur as a consequence of the
elastic anisotropy which was disregarded in the simulated
pattern. One can calculate the phases 0; (i = 1, 2,...8) using
the positions described above in a one-constant model to
confirm the correctness. We did not search for further geome-
trical solutions but we hypothesize that other special config-
urations may exist, particularly for larger S,, which also meet
the requirements listed above.
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Fig. 6 Comparison of a 2-4-2 cluster of eight defects in experiment and
simulation. (a) is the experimental texture. (b) was simulated to roughly
represent the texture. Four defects were distributed equidistantly on a
straight line. The other four defects were placed such that they formed
equilateral triangles with the first two and with the last two defects on the
straight line, respectively. All direct neighbors thus have the same mutual
distances. Colors as in Fig. 5.

In all cases described above, the experimentally observed
dynamic defect patterns simply expanded self-similarly with a
scaling factor proportional to the square-root of time, until the
defects approached the film boundaries or layer steps or other
disclinations that might coincidentally be present in the film.
Thus, the snapshots shown are representative for the complete
cluster disintegration process. The square-root law evidences
that the elastic energies decrease inversely proportional to the
length scale / of the pattern.

6 Discussion and summary

It has been demonstrated that the textures observed during the
disintegration of defect clusters with topological charges S, > 4
can be described satisfactorily by a sequence of quasi-static
equilibrium configurations that are passed in an adiabatic way.
Even though the elastic anisotropy was disregarded in our analy-
tical model, and used only for the tangential director pinning near
the cores, the resemblance of analytically derived and experimen-
tally observed textures is convincing. The total defect strength S,
of the cluster determines the geometry of the created pattern that
expands continuously in a congruent, self-similar fashion. The c-
director field can be described in reasonably good approximation
by the superposition of the individual point defects without
addition of surplus director deflections. The particular geometri-
cal arrangements of the defects are enforced by the condition that
the director is pinned tangentially near the defect cores. In a one-
constant approximation, the configurations as well as their tex-
tures are obtained analytically. When the two elastic constants for
splay and bend differ, then details of the texture differ but the
global structure is the same. Apart from the forced pinning of the
director near the defect cores, the actual elastic anisotropy has no
qualitative consequences for the observed patterns. This is evi-
dent, e.g., in the satisfactory agreement between the experimental
and calculated images in Fig. 5 and 6.

In the experiments, almost all disintegrating clusters formed
patterns with a single defect remaining at the original cluster
position and N — 1 symmetrically departing defects around.
The winding sense of all peripheral defects is the same,
opposite to that of the central one.
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Defect configurations where all single defects were distrib-
uted uniformly on a circle without a central defect cannot be
constructed under the condition of tangential pinning, and
they were never observed in our experiments.

In some cases, the disintegration led to two inner and N — 2
outer defects in the experiment. The two inner defects have
opposite winding sense and the director field has mirror
symmetry with respect to a line perpendicular to the connec-
tion of the two inner defects. An example was shown in Fig. 5.
An initial S, = 6 cluster could also decay theoretically into one
central and five peripheral defects according to our model, even
though we could not obtain experimental evidence for this type.

In Fig. 6, a similar structure was shown for S, = 8. In this
figure, defects with odd/even numbers have the same winding
sense, respectively. This special arrangement also fulfills our
conditions for the superposition model, provided that the
required geometric ratios are obeyed. Note that, because of the
symmetry properties of the latter two patterns without a single
central defect, these solutions exist only for even values of S,.

In the experiments, we did not find any other arrangements
than the two principal types with one or two inner defects, and
thus we have not searched for other analytical defect configura-
tions that might meet our conditions. Yet it cannot be excluded
that such solutions exist, in particular when more than 12
defects are involved. Since all experiments started with a cluster
where the individual defects were arranged at the periphery of a
small circular hole, all patterns break the initial symmetry of the
cluster. The reason for that must be sought in the avoidance of
energetically costly additional director distortions.

The present model is by far not complete. In a more realistic
dynamic model, one has to consider the induction of flow fields
by the moving defects, and also the anisotropy of the elastic
constants. This task was not tackled here, and is presumably
not achievable analytically. It will not lead to qualitative
changes of the model. One has to start with the known
continuum equations for the c-director field. In the 2D film
geometry, these can be directly derived from the nematic
Leslie-Ericksen equations. Then, one can adopt the ideas of
Svensek and Zumer*! for that purpose, and use the projection
fig = (ny, ny) = (sin f cos 0, sin fsin 0) of the director 7 onto the
xy-layer plane instead of the c-director. This vector is in the
same direction as ¢ but has a length that varies with the sine of
the local smectic tilt angle f. The latter serves as an order
parameter variable. This tilt angle and thereby the length of 7,)
can deviate locally from its equilibrium value in the vicinity of
the defect cores. This task is in progress.*?
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