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Dynamics of bubbles spontaneously entering into
a tube†

Alexis Commereuc, Manon Marchand, Emmanuelle Rio and
François Boulogne *

When an open tube of small diameter touches a bubble of a larger diameter, the bubble spontaneously

shrinks and pushes a soap film into the tube. We characterize the dynamics for different bubble sizes

and number of soap films in the tube. We rationalize this observation from a mechanical force balance

involving the Laplace pressure of the bubble and the viscous force from the advancing soap lamellae in

the tube. We propose a numerical resolution of this model, and an analytical solution in an asymptotic

regime. These predictions are then compared to the experiments. The emptying duration is primarily

affected by the initial bubble to tube diameter ratio and by the number of soap films in the tube.

1 Introduction

Spontaneous entrance of a liquid in capillary tubes is a well
studied problem. The equilibrium solution of capillary rise is
the well known Jurin’s law and was derived in the 18th century.1

It is then two centuries later that the pioneering work by Bell,
Lucas and Washburn allowed the understanding of the dynamics
of this problem. They considered the viscous dissipation in the
liquid flow driven by the capillary suction.2–4 More recently, this
problem has been revisited to provide a finer description of the
role of inertia and the possibility of interfacial oscillations for
fluids of extremely low viscosity was revealed.5,6

Liquid invading capillary tubes has been extended also to
drops. Wang et al. performed numerical simulations on the
penetration of drop in non-wetting capillaries7 that has been
studied experimentally by Willmott et al. highlighting the effect
of the wetting conditions and the drop size to tube ratio.8 For
drops, the dynamics is dominated by inertia and capillarity,
with a noticeable correction due to viscous forces.9

Besides drops, bubbles are also prone to shrinkage due to
the Laplace pressure for which Leidenfrost wrote observations
in a monograph entitled De aquae communis nonnullis qualitatibus
tractatus published in 1756.10 Leidenfrost is renowned for
describing a phenomenon where a liquid drop is placed on a
hot surface whose temperature is larger than the boiling tem-
perature of the liquid. This Treatise on the Properties of Common
Water not only contains a text on levitating drops, but also a less
known part on soap films and bubbles. Leidenfrost commented

on the soap film thickness, colored fringes, and also on surface
tension and induced dynamics. Notably, Leidenfrost reports
observations in paragraph 46 on the bubble shrinkage when
placed at the extremity of a tube.

A well known configuration where bubble shrinkage is
encountered is foam aging, in which the smaller bubbles tend
to empty into the larger ones because of their higher Laplace
pressure. In such a situation, the motor, which is the pressure
difference between the bubbles is balanced by the gas diffusion
in the liquid film.11

Another situation where a bubble shrinkage dynamics is
observed has been reported recently by Clerget et al. who
studied experimentally and theoretically the emptying of a
hemispherical bubble through a pierced surface.12 The air
motion is driven by the Laplace pressure in the bubble limited
by the air flow through the orifice and eventually by the friction
of the bubble on the surface.

In this article, we propose to investigate the situation closely
related to the observations made by Leidenfrost: the shrinkage
of a bubble placed at the end of a tube of a smaller diameter. A
careful observation reveals that the entering motion shows a
characteristic pattern of acceleration–deceleration, as the bub-
ble shrinks. This scenario can be repeated by bringing addi-
tional bubbles to the tube extremity or even more simply by
dipping the tube in foam. The successive bubble draining leads
to the formation of the so-called bamboo foam as shown in
Fig. 1.

These observations are quantified and rationalized through
experimental measurements in which bubbles are manually
brought in contact with the tube, described in Section 2.
A simple model for the dynamics of the soap lamellae formed
in the tube is presented in Section 3. This model is solved
numerically, and with some approximations analytically.
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France

† Electronic supplementary information (ESI) available. See DOI: https://doi.org/

10.1039/d3sm00677h

Received 25th May 2023,
Accepted 6th July 2023

DOI: 10.1039/d3sm00677h

rsc.li/soft-matter-journal

Soft Matter

PAPER

O
pe

n 
A

cc
es

s 
A

rt
ic

le
. P

ub
lis

he
d 

on
 0

6 
Ju

ly
 2

02
3.

 D
ow

nl
oa

de
d 

on
 7

/1
9/

20
25

 4
:0

4:
56

 A
M

. 
 T

hi
s 

ar
tic

le
 is

 li
ce

ns
ed

 u
nd

er
 a

 C
re

at
iv

e 
C

om
m

on
s 

A
ttr

ib
ut

io
n-

N
on

C
om

m
er

ci
al

 3
.0

 U
np

or
te

d 
L

ic
en

ce
.

View Article Online
View Journal  | View Issue

https://orcid.org/0000-0001-5713-0998
https://orcid.org/0000-0002-3201-6811
https://orcid.org/0000-0003-2617-4554
http://crossmark.crossref.org/dialog/?doi=10.1039/d3sm00677h&domain=pdf&date_stamp=2023-07-19
https://doi.org/10.1039/d3sm00677h
https://doi.org/10.1039/d3sm00677h
https://rsc.li/soft-matter-journal
http://creativecommons.org/licenses/by-nc/3.0/
http://creativecommons.org/licenses/by-nc/3.0/
https://doi.org/10.1039/d3sm00677h
https://pubs.rsc.org/en/journals/journal/SM
https://pubs.rsc.org/en/journals/journal/SM?issueid=SM019030


This journal is © The Royal Society of Chemistry 2023 Soft Matter, 2023, 19, 5758–5762 |  5759

We show that the problem differs from the one of the sponta-
neous entrance of a drop in a capillary tube8,9 because first,
inertia is negligible for bubbles and second, viscous dissipation
is due to the motion of the lamellae.

2 Experimental protocol and
qualitative observations

We prepare a soap solution by diluting a commercial dish
washing soap (Fairy purchased at a concentration in anionic
surfactant of 5–15%) at a concentration of 10 wt% in pure water.
The liquid-vapor surface tension is g = 24.5 � 0.1 mN m�1 and
the viscosity is mc = 1.0 � 0.2 mPa s�1.

A glass tube (Jeulin) of inner radius a = 3.1 mm and length
L = 0.75 m is pre-wetted with the soap solution and held
horizontally. Then, a bubble produced with a syringe of con-
trolled initial volume Obubble is placed at one extremity of the
tube as shown in Fig. 2. We consider the situation of an initial

radius R0, associated with an initial volume Obubble ¼
4

3
pR0

3,

larger than the tube radius a. The bubble empties in the tube
such that a soap lamella enters into the tube. This lamella stops
when the bubble has fully entered into the tube. A movie from
which this time series has been extracted is available in the
ESI.†

When the motion is completed, a new bubble of the same
volume is placed following the same procedure. A new lamella
is produced and the one originally present in the tube is
pushed forward. The Mach number, defined as ratio of the
lamellar velocity and the speed of sound in air, is between 10�6

and 10�5, which is much smaller than unity. Thus, the air flow
is at a very good approximation incompressible such that both
lamellae move at the same velocity and the distance between
them is set by conservation of the initial bubble air volume as
shown in the space–time diagram in Fig. 2.

The addition of bubbles is repeated until most of the tube is
filled with soap lamellae. The dynamics is recorded on a DSLR
camera (Nikon D750 with a 50 mm objective) at 60 fps. We
denote as z the position of the nearest soap film from the tube
entrance. We measure the time evolution of this position as a
function of the number n of soap films in the tube. In Fig. 3, we
plot the experimental position z(t) where color corresponds to
different n values and for R0/aC 1.5.

By experimental design, all the bubbles have the same
volume. Consequently, the same final z positions are reached
once the bubbles are totally inside the tube. A contrario, the
time taken to reach this final position increases as the number
of preceding bubbles – and thus of soap lamellae contributing
to friction – increases. We observe two regimes: the soap film
moves with a slight acceleration in the first regime and decele-
rates in a second regime to reach the final position.

Fig. 1 Bamboo foam in capillary tubes placed in contact with the
surface of a glass containing a monodisperse foam. The tube diameter is
1 mm.

Fig. 2 Bubble approached at the extremity of a tube where a bamboo foam is already made from previous bubbles. The plot is a space–time diagram
along the red line shown on the photograph that illustrates the dynamics of soap films inside the tube when a bubble empties. The constant distance
between soap films is experimental evidence of the incompressible air flow. The scale bar represents 1 cm. See video in the ESI.†
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3 Model

We propose the rationalization of these observations using a
simple model. Then, the predictions of this model will be
compared quantitatively to the experiments.

3.1 Volume conservation

During the emptying dynamics, the bubble shape is modeled at
any time as a portion of sphere, as depicted in Fig. 4, because
this shape results from the minimization of surface tension
energy. Initially, the bubble volume can be decomposed as

Obubble ¼
4

3
pR0

3 ¼ Ooutðt ¼ 0Þ þ Ocapðt ¼ 0Þ where Oout is the

volume outside the tube and Ocap is the complementary part
in the tube. The volume of the cap is defined as

OcapðtÞ ¼
pRðtÞ3

3
ð1� GÞ2ð2þ GÞ; (1)

with Gða;RðtÞÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� a2=RðtÞ2

p
.

From geometrical considerations (Fig. 4), the time evolution
of the volume Oout(t) outside the tube follows two regimes.13

The bubble radius of curvature first decreases until R = a during
the first regime, and then increases toward a zero curvature in
the second regime. We denote t* the switching time between
Regimes 1 and 2 correspond to R(t*) = a. In Regime 1, we have

ORegime1
out ðtÞ ¼ 4

3
pRðtÞ3 � OcapðtÞ; (2)

and thereafter, in Regime 2,

ORegime2
out (t) = Ocap (t). (3)

Since the Laplace pressure in the bubble is negligible compared
to the atmospheric pressure, the expansion of air due to
the pressure variation is also negligible. Thus, the volume
conservation satisfies

Oout(t) + z(t) pa2 = Oout(0), (4)

where z(t) is the position of the soap film with an origin at the
entrance of the tube. The initial condition is z(0) = 0. Eqn (4)
provides a relation between the bubble radius R(t) and the
lamellar position z(t).

3.2 Force balance

Due to the bubble curvature, the pressure difference between
the enclosed air and the atmospheric pressure is given by the
Laplace pressure

Pcap ¼
4g
RðtÞ; (5)

where R(t) is the bubble radius. This Laplace pressure pushes
one lamella in the tube or several lamellae, if some were
initially present (see Fig. 2).

The motion of a lamella is associated with a viscous stress
dissipation14–18

sfilm ¼ 2x
g
a

m‘ _z

g

� �2=3

; (6)

where x is a numerical prefactor varying quite significantly with
the geometry, the quantity of liquid and the physical-chemistry
of the soap films.17,18

Therefore, the stress balance between the Laplace pressure
and the opposing dissipation writes Pcap = nsfilm where n Z 1 is
the number of lamellae.

We define two characteristic parameters: the traveling dis-
tance zr = Obubble/pa2 and the timescale t = mczrx

3/2/g. Then, the
stress balance in a dimensionless form is

n

2
~R~_z2=3 ¼ 1; (7)

where R̃ = R/a and ~_z ¼ _zt=zr.
The volume conservation defined in eqn (4) becomes

~z ¼ 1�
~Ooutð~tÞ
~Ooutð0Þ

; (8)

with ~Oout = Oout/a
3.

Fig. 3 Dynamics for different numbers n of soap lamellae in the tube for
bubbles of initial volume Obubble = 0.42 � 0.03 mL. Experimental mea-
surements are represented by colored dots and the numerical solutions
are the black solid lines for x = 32.

Fig. 4 Schematics of the vanishing bubble in a tube at t = 0, in Regime 1,
and in Regime 2.
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The differential eqn (7) can be solved numerically with
eqn (8). We obtain the solution z(t) by using the function odeint
implemented in scipy,19,20 from which we also compute the
numerical traveling duration Tnum. The resulting dynamics z(t)
is plotted in black in Fig. 3. The fitting parameter x = 32 is used
to describe all the experiments. To circumvent the small
experimental variations of the initial experimental volume,
the volume for the numerical resolution is chosen to match
each experiment that is precisely determined from the final z
position. Fig. 3 shows that the numerical solution is in good
agreement with the experimental measurements.

3.3 Approximated analytical solution

To get a better insight into the effect of the physical parameters,
we derive an analytical solution of eqn (7). To do so, we make
two approximations for which the validity will be checked both
against the numerical solution and the experimental results.

First, in Regime 1, we neglect the contribution of Ocap in
eqn (2). This approximation is found to be lower than 10% on
the total volume for R/a 4 1.25 as shown in Section 1.1 of the
ESI.† In addition, we assume that the contribution of Regime 2
on the total duration of the dynamics is small. This assumption
is also expected to be realistic for an initial bubble radius R0

much larger than the tube radius a.
Under these conditions, we have OoutðtÞ ’ ObubbleðtÞ ¼

4

3
pRðtÞ3,

which simplifies the volume conservation from eqn (8) and
reads z̃ = 1 � R̃(t̃)3/R̃0

3. Thus, the differential eqn (7) reduces to

23=2 ~R0
3 ¼ �3n3=2 ~R7=2 ~_R; (9)

which leads after integration to ~R9=2 ¼ ~R0
9=2 � 3

ffiffiffi
2
p

n�3=2 ~R0
3~t,

with the initial condition R̃(0) = R̃0.
In this limit, the emptying duration Tapprox has an analytical

form that writes

Tapprox ¼
2
ffiffiffi
2
p

9

m‘n
3=2x3=2a
g

R0

a

� �9=2

: (10)

Eqn (10) indicates that the predicted timescale evolves with the
number of films in the tube as n3/2 and also as (R0/a)9/2. There-
fore, we expect a significant effect of these two parameters.

In Fig. 5, we analyze the impact of the approximations by
comparing the numerical and the analytical durations. The
numerical solution provides a timescale that is always larger
than Tapprox. The typical dynamics z(t) is illustrated in the inset
of Fig. 5, where we observe that the approximated model stops
near the inflection point (t*, z*) of the numerical solution.
Thus, the approximated model predicts a shorter duration than
the full resolution. Nevertheless, we observe that the approxi-
mated duration converges rapidly toward Tnum as the dimen-
sionless radius R0/a increases. In particular, the difference
becomes less than 10% above R0/a E 1.7 and is independent
of the number of lamellae as shown in Section 1 of the ESI.† As
a consequence, the timescale associated with the numerical
resolution also scales as n3/2.

3.4 Discussion

To validate the model, we repeated the experiments described
in Section 2 for bubble sizes R0/a A [1.5, 1.9, 2.2, 2.5] with a
total number of bubbles varying between 20 and 43. The
dynamics of the positions for all these experiments are well
fitted for x = 32 (See Section 2 of the ESI†). We report in Fig. 6
the emptying duration Texp of each bubble as a function of both
our prediction from the approximated model and the traveling
duration Tnum. The equality between those times, represented
by the black line, slightly underestimates most of the data
especially the first bubbles (in red) and the last ones (squares in
purple) for the approximated time (Fig. 6(a) and Section 2 of the

Fig. 5 Ratio between the numerical traveling duration Tnum and the
approximated time Tapprox as a function of the dimensionless initial bubble
size R0/a for n = 5 for x = 32. We show in Section 1.2 of the ESI† that this
ratio is independent of n. In the inset, both numerical and approximated
position of the lamella are plotted against the numerical time for R0/a = 2
and n = 5. The inflection point (t*, z*) of the curve obtained from numerics
is marked with a filled circle.

Fig. 6 (a) Experimental emptying duration Texp of a bubble as the function
of Tapprox from eqn 10 for x = 32. (b) Experimental emptying duration Texp

of a bubble as the function of Tnum from the numerical resolution for x =
32. On both plots, the solid black lines represent the equality between axes
and each point corresponds to a bubble where the color indicates the
number of lamellae in the tube from n = 1 to n = 43.
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ESI†). On the other hand, only the traveling durations Tnum of
the first bubbles are underestimated (Fig. 6(b)).

The first bubbles have a Texp comparable to the time needed
to put the bubble in contact with the tube. Thus, a significant
part of the dynamics is not captured by the model because the
initial conditions are not matching the experimental ones. This
leads to a larger Texp than both Tapprox and Tnum. Additionally,
for data at R0/a = 1.5 (squares) there is 20% of discrepancy
between the numerical and approximated solutions compared
to less than 5% for the other experiments (see Fig. 5). In
Fig. 6(a), the purple dots come from experiments with this
aspect ratio, explaining why these measurements are more
underestimated by the approximated model than the others.

In Fig. 6(b), we show the comparison with the numerical
prediction, which is in even better agreement for the purple
points but not especially for the first ones in red, supporting
our argumentation. Nevertheless, the analytical prediction
correctly estimates the trend and the emptying timescales.

4 Conclusions

In this paper, we investigated the emptying of a bubble placed
at the extremity of a tube. We have shown that the bubble
Laplace pressure is responsible for this motion and pushes a
soap film into the tube. This film motion dissipates energy
through the liquid viscosity with a Bretherton-like behavior. The
proposed model, balancing these two forces and solved numeri-
cally, successfully describes the dynamics of this system. Under
some additional hypothesis, we obtained an analytical predic-
tion of the emptying duration that scales with the initial bubble
radius as R0

9/2 and with the number of soap films as n3/2. The
model is validated with a unique fitting parameter value x = 32,
which is a dimensionless prefactor of the viscous friction force,
whose physical origin remains to be elucidated.17,18,21

The present study focused on single bubbles deposited at
the extremity of a tube. For tubes plunged in foam, we expect
that additional parameters can affect the dynamics such as the
foam rheology at play in the necessary bubble rearrangements
in the foam. Describing these dynamics will require extending
the model that we proposed, which will be the purpose of
future studies.
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