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The necessity to improve magnetic building blocks in magnetic nano-structured soft materials stems

from a fascinating potential these materials have in bio-medical applications and nanofluidics. Along

with practical reasons, the interplay of magnetic and steric interactions on one hand, and entropy, on

the other, makes magnetic soft matter fundamentally challenging. Recently, in order to tailor magnetic

response of the magnetic particle suspensions, the idea arose to replace standard single-core

nanoparticles with nano-sized clusters of single-domain nanoparticles (grains) rigidly bound together by

solid polymer matrix – multicore magnetic nanoparticles (MMNPs). To pursue this idea, a profound

understanding of the MMNP interactions and self-assembly is required. In this work we present a

computational study of the MMNP suspensions and elucidate their self-assembly and magnetic

susceptibility. We show that depending on the magnetic moment of individual grains the suspensions

exhibit qualitatively distinct regimes. Firstly, if the grains are moderately interacting, they contribute to a

significant decrease of the remanent magnetisation of MMNPs and as such to a decrease of the

magnetic susceptibility, this way confirming previous findings. If the grains are strongly interacting,

instead, they serve as anchor points and support formation of grain clusters that span through several

MMNPs, leading to MMNP cluster formation and a drastic increase of the initial magnetic response. Both

the topology of the clusters and their size distribution in MMNP suspensions is found to be notably

different from those formed in conventional magnetic fluids or magnetorheological suspensions.

1 Introduction

Nowadays, the idea of using smart nano-textured materials that we
can thoroughly control and manipulate with external stimuli forms
the basics for novel medical applications. In particular, when it
comes to magnetic fields that are not interfering with any biological
or physiological processes,1 magnetic soft matter systems have
gained a lot of attention for their potential in drug targeting2–8

and magnetic hyperthermia.9–12 The beginning of the magnetic soft
matter field can be associated with the synthesis of ferrofluids back
in the middle of the twentieth century.13 Today they are regarded
as, probably, the simplest, albeit not fully understood and
exploited, example of magneto-controllable material. Ferrofluids
(or magnetic fluids) consist of two components: magnetic single-
domain nanoparticles suspended in liquid magneto-passive

carriers. It is the polydispersity of magnetic nanoparticles, peculia-
rities of their colloidal stabilisation and the resulting span of time-,
length- and energy-scales that make ferrofluids difficult to mani-
pulate in a highly controlled manner. In fact, any structures that
nanoparticles form in ferrofluids are very sensitive to thermal noise
and mechanical perturbations. Instead, it was recently suggested to
replace single-domain magnetic particles by preassembled complex
objects such as supramolecular polymer-like structures made of
magnetic monomers,14–24 magnetic nano- and micro-gels,4,25,26 or
magnetic multicore nanoparticles (MMNPs).27–30 The suspensions
of the latter were recently even addressed as ‘‘bio-ferrofluids’’.31

This name is not just metaphoric, as MMNPs already gave rise
to innovations in drug delivery,32,33 magnetic particle imaging,27,34

magnetic hyperthermia cancer treatment35–38 and immuno-
assays.39,40 Along with biomedical applications MMNPs have been
used in nanorheology.41–46 In all these works, one can think of a
single MMNP as of a cluster of single-domain magnetic nanocrystals
(below in this work addressed as ‘‘grains’’) embedded in a polymer or
other non-magnetic rigid matrix.47,48 While the grains typically have a
characteristic linear size of the order of 10 nm, the size of MMNPs
can range from tens to a few hundred nanometers.
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Despite such a wide range of promising applications, the
underlying mechanisms, intrinsic and field-induced interactions
of the MMNPs in suspensions are far from being understood.
There are several theoretical works elucidating the impact of
magnetic interactions (dipole–dipole and/or exchange ones)
between grains on equilibrium49–52 and magnetodynamic53–55

response of a MMNP to an applied field. These works indicated
fundamental similarities and profound differences between
MMNPs and droplets in ferrofluid emulsions.56–58 The similarities
stem from the demagnetising effects, while the differences arise
due to the spatial constraints. The latter is related to the fact that
the MMNP grains are fixed in space and can only move together
with the MMNP in contrast to ferroparticles in droplets that can
freely diffuse inside. What remains unclear up to now is how the
MMNPs self-assemble and what are the main parameters to alter,
if one aims to control the clustering in these systems.

In this work, we will employ Langevin dynamics simulations
and analytical theory in order to elucidate (i) MMNPs self-
assembly in a wide range of magnetic interactions; (ii) the
impact of MMNP self-assembly on the static magnetic suscepti-
bility; in thermodynamic equilibrium.

Both questions raised above are particularly interesting as
multicore magnetic particles appear to be similar to colloids with
multiple patches,59–63 but due to the possibility of the granular
dipoles to reorient, multicores might exhibit a certain proximity to
particles with mobile patches.64–66 Moreover, recent experimental
studies revealed a difference in self-assembly of magnetic nano-
particles and complex multicore colloids obtained by oil phase
evaporation-induced self-assembly of hydrophobic nanoparticles.67

The manuscript is organised as follows. Firstly, we analyse the
initial susceptibility and find that, depending on the magnetic
interactions between the grains, there are two distinct regimes: the
system is dominated by demagnitising effects within individual
MMNPs and remains very weakly susceptible; the system exhibits a
steep increase in the initial susceptibility. Secondly, we show that
this steep increase is caused by the MMNPs self-assembly. Within
the clusters, MMNPs magnetise each other and become more
correlated, albeit not as much as one could expect if the MMNPs
were forming chains similar to their single-domain counterparts.
Finally, we show that the reason for the grains to not form linear
highly correlated structures is the formation of bridges between
the MMNPs – clusters of correlated grains that go cross neigh-
bouring MMNPs. Through bridges a MMNP might connect to
more than two nearest neighbours. As a result, the clusters
formed in the suspensions of MMNPs are more compact than
those made by single-domain nanoparticles on the one hand,
but, on the other, they are less compact than the bundle-like
structures formed by magnetisable non-composite micron-sized
magnetic particles.

2 Model of a multicore-based ferrofluid

We consider the system of N spherical MMNPs with the dia-
meter D and volume v = pD3/6, dispersed in a three-dimensional
nonmagnetic liquid medium with volume V.

Their volume fraction in the dispersion is

F ¼ N
v

V
; (1)

Each MMNP is filled with ng spherical magnetic grains of
diameter d (see Fig. 1). Positions of grains inside MMNPs are
rigidly fixed. Grains are placed randomly and uniformly, without
overlapping. Volume fraction of grains within each MMNP is

jg ¼ ng
vg

v
¼ ng

d

D

� �3

; (2)

where vg = pd3/6 is the grain volume. MMNPs in the medium are
subject to both translational and rotational Brownian motion.

The system is thermostated and has a constant temperature T,
the external magnetic field is absent.

Grains are assumed to be single-domain. Each grain carries
a magnetic moment ~m of constant magnitude. We will make a
simplifying assumption that the internal magnetic anisotropy
energy of grains is negligible compared to thermal energy kBT
(kB is the Boltzmann constant), and that magnetic moments can
freely rotate under a combined effect of thermal fluctuations and
a total dipolar field created by all other grains in the system.
However, it is important to note that zero-field equilibrium
properties of immobilized single-domain particles do not
depend on the anisotropy energy, if the orientation distribution
of their easy axes is random and uniform.68–70 Such superpar-
amagnetic systems sometimes referred to as ‘‘non-textured’’.71

Therefore, the results obtained here for isotropic grains can also
be extrapolated to non-textured MMNPs with anisotropic grains.

We account for the magnetic intergrain interactions by
means of the conventional dipole–dipole pair potential

Uddði; jÞ ¼
m0
4p

~mi �~mj
� �

rij3
�
3 ~mi �~rij
� �

~mj �~rij
� �

rij5

" #
; (3)

where ~mi and ~mj are the dipole moments of grains i and j, -
rij =

-
ri �

-
rj is the displacement vector connecting their centers and

rij = |-rij|, m0 is the magnetic permeability of vacuum. For
characterizing magnetic interactions in our system we use the
grain–grain dipolar coupling parameter

l ¼ m0
4p

m2

d3kBT
; (4)

Fig. 1 Sketch of the investigated system.
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that is the characteristic energy scale of two adjacent grains
with dipole moments, divided by kBT.

In experiment, the number of grains per MMNP can vary
from tens to hundreds.48 In this work we will consider ng = 20.
This specific value was chosen as a practical compromise. On
the one hand, it is big enough so that ensemble-averaged
properties of the system can be analysed within a continuum-
like approach.51 On the other, it is small enough so that we can
simulate a suspension within a reasonable time frame. The
grain packing fraction within MMNPs will be fixed to jg = 0.2.
According to our packing fraction definition, eqn(2), it corre-
sponds to a MMNP diameter of D C 4.64d. For a typical value of
d = 10 nm, D C 46 nm. Thus, both the number of grains and
the nanoparticle linear size lie within experimentally realistic
ranges.72 It is worth noting, that for such MMNP configuration
the majority of grains are actually positioned close to the
nanoparticle surface. The fraction of near-surface grains can
roughly be estimated as vsurf/v = 1 � (1 � 2d/D)3 C 0.8, where
vsurf is the volume of an MMNP outermost spherical shell of
thickness d. This fact further strengthens the analogy between
our system and patchy colloids pointed out in Section 1. An
additional discussion on the potential importance of ng and jg

will be given in Section 3.2.2.
Notice, that in our model the grains are basically close-packed

inside the multicore colloid and are not separated by any sig-
nificant steric layers, similarly to the experimental realisation in
ref. 73. In general the presence of the layers between the grains
can lead to a decrease of the integrain interactions and as a result
affect strongly the magnetic response of such particles to an
applied magnetic field, as reported in the experimental study.74

The main variables of the work are dipolar coupling con-
stant 0 r l r 10 and MMNP concentration 0.02 r F r 0.2.
Langevin dynamics simulations will be used to determine
equilibrium properties of MMNP suspensions within these
parameter ranges. All the technical details of the method are
given in Appendix A.

3 Results and discussion
3.1 Initial magnetic susceptibility

The key quantity that characterizes equilibrium zero-field properties
of ferrofluids is the initial magnetic susceptibility w (i.e., the initial
slope of the magnetization curve). It can be calculated as75

w ¼ wL

~M2
D E

� ~M
D E2

m2ntot
¼ wL

~M2
D E
m2ntot

: (5)

Here, ntot = ng�N is the total number of dipoles (grains),
-

M is the
total magnetic moment of the system,

~M ¼
Xntot
i¼1

~mi; (6)

h� � �i denotes an ensemble average, h -Mi is zero for our system in
thermodynamic equilibrium due to symmetry consideration (there
are no special directions in our system and all orientations are

equally probable), wL is the so-called Langevin susceptibility,

wL ¼
m0m

2

3kBT

ntot

V
¼ 8ljgF: (7)

Langevin susceptibility characterizes the initial magnetostatic
response of an ensemble of non-interacting dipoles (i.e., of an ideal
superparamagnetic gas). Recently, we have suggested two simple
analytical estimations for the susceptibility of MMNP ensembles.52

The first one takes into account dipole–dipole interactions between
grains within individual MMNPs (including demagnetization
effect), but neglects interactions between different MMNPs:

w ¼ wL
1þ wgL

�
3

1þ wgL 1þ wgL
�
3

� ��
3
: (8)

Here, wg
L is the Langevin susceptibility, corresponding to a MMNP

interior,

wgL ¼
m0m

2

3kBT

ng

v
¼ 8ljg: (9)

eqn (8) was derived within the so-called modified mean-field
theory.76 The second equation adds a correction to take into
account MMNPs’ mutual magnetization (similarly to how it was
done for ferroemulsions in ref. 56):

w ¼ wL
1þ wgL

�
3

1þ wgL 1þ wgL
�
3

� �
ð1� FÞ=3

: (10)

Simulation results for susceptibilities at different ferrofluid
concentrations F are shown in Fig. 2. Values of w are plotted
against corresponding Langevin values wL (note the logarithmic
scales). Using this representation it is easy to demonstrate the
qualitative effect of dipole–dipole interactions on the system. If

Fig. 2 Initial magnetic susceptibility of a multicore-based ferrofluid vs. the
corresponding Langevin susceptibility wL. Different colors correspond to
different volume fractions of MMNPs (see colorbar). Circles show simula-
tion results for ng = 20 and jg = 0.2 (filled regions indicate 95% confidence
intervals), dotted lines – theoretical predictions from eqn (8), Theory I,
solid lines – theoretical predictions from eqn (10), Theory II. The dashed
line corresponds to the susceptibility of an ideal superparamagnet with w =
wL. In the inset the same susceptibility values are plotted against the grain–
grain dipolar coupling parameter l.
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the susceptibility lies below the diagonal w = wL, then the
dipoles on average will try to prevent each other from aligning
with an applied field, the overall magnetic response of the
system will decrease. On the contrary, susceptibility values w 4
wL indicate a reinforcing role of dipolar interactions. From this
standpoint, simulation susceptibility curves in Fig. 2 demon-
strate a non-trivial behaviour. In general, the Langevin ideal gas
approximation only works in the limit wL { 1 for all investi-
gated samples. After that the susceptibility growth slows down
and all the simulation curves fall below the diagonal. This
behaviour is well captured by eqn (8) and (10). The predictions
from two equations are close, the difference only becomes
noticeable for the most concentrated samples. For F = 0.2,
eqn (10) gives 25% larger susceptibilities than eqn (8), and it is
actually much closer to simulation data up to wL B 1. It
indicates that at least for intermediate wL values the interac-
tions between MMNPs are being taken into account correctly by
eqn (10). However, both theories predict the susceptibility
saturation at wL c 1, which is mainly due to demagnetization
effect within individual MMNPs.51,52 Simulation curves, instead
of reaching saturation, demonstrate a steep increase. This
rapid change is happening at different wL for different samples.
The inset in Fig. 2 shows the same susceptibility data plotted
against dipolar coupling parameter l. From these plots it is
clear that the susceptibility increase is almost exclusively
governed by an increase in l. For our systems, it is always
happening at l \ 6, regardless the concentration value. The last
important observation from Fig. 2 is that at l B 10 the suscepti-
bility of concentrated samples with F Z 0.1 can actually reach
values above Langevin ones. It means that the overall influence of

magnetic interactions can switch from the suppression of the
effective field–dipole coupling to its amplification.

We already know that at least in the presence of a strong
applied field an anomalous increase in the magnetic response
of MMNP ensembles is accompanied by a pronounced self-
assembly.52 To understand whether the same is true in a zero-
field case, a detailed cluster analysis was performed for one of
the investigated concentration values, namely for a ferrofluid
with F = 0.02. As the increase in susceptibility is mainly related
to the change of l, it is more important to vary the latter, rather
than unnecessarily increase the set of sampling parameters by
considering multiple concentrations and multiple magnetic
coupling parameters at the same time.

3.2 Microstructure of a multicore-based ferrofluid

Looking at the upper row in Fig. 3, where the characteristic
snapshots of the MMNP systems are presented, one can see
how from an almost uniformly distributed in space (Fig. 3(a))
the dispersion exhibits a clear structural transformation if the
value of l increases and quite large clusters of MMNP are
formed (Fig. 3(d)). Here, subfigures (a) and (e) are for l =
6.25; (b) and (f) for l = 7.5; (c) and (g) for l = 8.75; and (d)
and (h) for l = 10. Even at the first glance one can notice that
the topology of the clusters in Fig. 3 is notably different from
those formed by dipolar hard or soft spheres. Compare, for
example snapshots from works77,78 to those in Fig. 3. Single-
core magnetic particles mainly form structures with long linear
segments and only few junctions. MMNPs, instead, seem to
form more compact aggregates. If we zoom in the clusters, see
the lower row of Fig. 3(e)–(h), some alignment of the dipoles in

Fig. 3 Representative simulation snapshots of the investigated systems for various values of dipole–dipole interactions: (a) and (e) l = 6.25; (b) and (f) l =
7.5; (c) and (g) l = 8.75, (d) and (h) l = 10. The bottom row is zoom in the clusters found in the dispersions from the upper row.
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the granules of adjacent MNNPs can be observed. Thus, it is
clear that the clustering in such system is occurring on two
different spatial resolutions: MNNPs and individual granules.
Below, as a consequence, we consider two different length-
scales in order to explain equilibrium self-assembly of MMNPs.

First, assuming each MMNP centre of mass to be a vertex of
a graph, we identify the graph of connected components,
meaning the clusters of MMNPs. The choice of a connected
component is based on the definition of the edge connecting
the two vertices in the graph. We consider two MMNPs as
connected by an edge if the distance between their centres does
not exceed 21/6D, and the total magnetic interaction between
the two MMNPs is attractive, Udd r 0.

Second, we increase the resolution and look at the arrange-
ment of individual grains in the previously defined clusters. We
analyse how the grains of two adjacent MMNPs orient their
magnetic dipoles in order to form the bond.

3.2.1 Clusters of MMNPs. In Fig. 4 we plot the cluster-size
distributions. The vertical axis shows the probability of finding
a cluster of a size shown along the horizontal axis. Each colour
corresponds to a certain value of the magnetic coupling, as
shown in the legend. This probability in case of single-core
dipolar hard or soft spheres has an exponential form and
should be linear if a log-scale is applied along the vertical axis
as it is done in Fig. 4. However, as fits plotted with dotted lines
show, only the decay l = 6.25 might have been exponential
(the third point should be taken with caution as there are very
few clusters of the size three), all others are not. One can see
that for the smallest value of l, only about one per cent of
dimers are there in the systems and the probability of finding a
three particle cluster is negligible. For l = 10, instead, only 60
per cent of MNNPs remain non-aggregated, while the rest of the
system forms relatively large clusters.

As previously mentioned, not only the cluster size distributions,
but also the topology of clusters formed by MMNPs seems to
deviate from that of the dipolar hard or soft sphere particles. In
order to verify this, for each MMNP, we calculate the number of
nearest neighbours, i.e. the degree of each graph vertex. The
histogram of MMNP degrees is shown in Fig. 5.

Here, the same colour code as in Fig. 4 is used, although the
results for l = 6.25 are not provided as the majority of MMNPs

are non-clustered. For l = 7.5, only one per cent of MMNPs has
two and more neighbours, meaning that only dimers form. For
l = 10, instead, more than 35 per cent of MMNPs have two and
more neighbours, 30 per cent are having no neighbours. The
remaining 35 per cent have one neighbour. The latter value
shows that the number of open ends (vertices with degree one)
typical for chain-like structures, or linear segments of branched
clusters increases with magnetic interaction energy.

Even clearer picture of the cluster distribution and their
topology can be obtained looking at Fig. 6. Here, typical graph
representations of two simulation snapshots in equilibrium are
presented. If l = 6.25, Fig. 6(a), we observe one trimer, and
seven dimers, all other MMNPs are nonaggregated. The system
looks very different for l = 10, Fig. 6(b). Here, we find several big
connected components with vertices in them with degree two
and higher. One should not be confused by stretched systems,
as the representation of the graphs is simply optimised to
occupy as few space as possible. In reality, those large clusters
are 3D and rather compact, as the snapshot in Fig. 6(c)
indicates. Here, for l = 10, we show representative 3D structures
of large clusters together with their graph representations, in
order to avoid being confused by seemingly linear graphs.

Previously, it was shown that the chain formation in single-core
systems leads to the increase of the system magnetic response,79

while the formation of rings reduces the susceptibility.80 Below, we
investigate how the new cluster topologies manifest themselves in
the MMNP suspension magnetic properties.

3.2.2 Contribution of clusters into magnetostatic response.
Combining the knowledge obtained form the inset of Fig. 2 and 4
it is obvious that the clustering of MMNPs and a susceptibility
steep increase are happening at l\ 6, so they must be correlated.
To quantify the connection between two phenomena the following
procedure was employed. Using the cluster analysis results, we
were able to divide all MMNPs into two subgroups at each
simulation step. The first subgroup contains non-clustered (single)
MMNPs, let us denote their number as Ns. The second subgroup
contains all MMNPs with non-zero degree and their number is
denoted by Nc. Considering that the suspension is in a dynamic
equilibrium, the values of Nc and Ns will fluctuate in time, but
the sum of two numbers is fixed (Ns + Nc = N). We denote the
total magnetic moment of all single MMNPs as

-

Ms, and the total
magnetic moment of all clustered MMNPs as

-

Mc. Evidently,
the total magnetisation of the suspension is the sum of the two,

Fig. 4 Cluster size distribution of a multicore-based ferrofluid. Values of
dipole–dipole interactions are given in the legend. Dotted lines are guide
for an eye to appreciate the deviations from the exponential decay
observed for high values of l.

Fig. 5 Fraction of MMNPs having 0, 1, 2, 3, 4 or 5 neighbours. Values of
dipole–dipole interactions are given in the legend.
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-

M =
-

Ms +
-

Mc. Using these definitions, we can rewrite the initial
susceptibility eqn (5) as

w = ws + wc + Dw. (11)

Here, the expressions for the subgroups are:

ws ¼ wL

~Ms
2

D E
m2ntot

; (12)

wc ¼ wL

~Mc
2

D E
m2ntot

: (13)

The last term in eqn (11) takes into account correlations
between single particles and clusters:

Dw ¼ wL
2 ~Ms � ~Mc

D E
m2ntot

: (14)

Of course, from the very nature of single particles, one can
reasonably expect Dw to be small.

Fig. 7(a) shows how ws and wc change with growing l for
F = 0.02. For reference, in the same figure we also provide the
total susceptibility w – both numerical and analytical – repeat-
ing the data from the inset of Fig. 2. Values of the correlation
term are of the order of |Dw| B 10�3–10�2 and are not shown.
It is seen that up to the point where eqn (10) is still working, the
susceptibility is mostly determined by single MMNPs, while the
contribution of clusters is negligible (as well as their fraction
in the system). After that, as the dipolar coupling parameter l
increases from 6.25 to 10, ws drops approximately by the factor
of two and a half, that agrees well with Fig. 4, where the actual
number of single particles drops from almost 200 at l = 6.25 to
approximately 80 at l = 10.

In contrast to the susceptibility of single particles, the value
of wc grows rapidly and at l = 10 is twice as high as the
theoretical saturation value w C 0.061 (as predicted by
eqn (10)).

Fig. 6 Typical graphs of the investigated MMNP dispersions for various values of dipole–dipole interactions: (a) l = 6.25; (b) l = 10. (c) Correspondence
between graph representations and real clusters for l = 10.
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Another quantity that, along with susceptibility, can provide
insights into magnetic properties of our system is the average
magnetic moment of a MMNP. We calculate it as

m ¼ 1

mng

PN
i¼1

~Mi

��� ���� 	
N

; (15)

where ~Mi is the total instantaneous magnetic moment of the
ith MMNP,

~Mi ¼
Xng
j¼1

~mðiÞj ; (16)

Vectors ~m(i)
j are the magnetic moments of the grains in the ith

MMNP. The average magnetic moment m is normalized, its
maximal value m = 1 corresponds to the magnetic saturation. If
interactions between magnetic moments of grains are weak, m
must be close to ng

�1/2 C 0.22. We can also calculate average
magnetic moments separately for two particle subgroups:

ms ¼
1

mng

PðsÞ
i

~Mi

��� ���
Ns

* +
; (17)

mc ¼
1

mng

PðcÞ
i

~Mi

��� ���
Nc

* +
; (18)

where
PðsÞ
i

and
PðcÞ
i

denote summation over single and clustered

MMNPs, respectively.
In Fig. 7(b) we plot dependencies of magnetic moments m,

ms and mc on l. Considering that the MMNPs form a statistically
relevant number of clusters only for l Z 5, at lower coupling
constants the number of clustered particles Nc is too small to
reliably estimate mc from eqn (18). Initially, magnetic moments
are decreasing with l. This is the result of the demagnetisation
effect – for a localised collection of interacting dipoles surrounded
by a non-magnetic medium it is always energetically more favor-
able to minimise its total magnetic moment.81 However, while for

single particles this decrease continues up to l = 10, the depen-
dence of m is found to be non-monotonic. At l\ 6, as the fraction
and the average size of clusters start to grow, the magnetic
moment of clustered particles turns into an increasing function
as well. MMNPs within clusters, therefore, help each other to
overcome the demagnetisation effect and become more suscep-
tible to the applied field.

Finally, knowing numerical values for MMNPs magnetic
moments, we can draw a comparison with dipolar spheres,
which are used for modelling of traditional single-core-based
ferrofluids. For each value of l, instead of an ensemble of
MMNPs, let us consider an equivalent ensemble of dipolar
spheres of diameter D with a point-like dipole in its center. The
magnitude of this magnetic moment is constant and equals to
Me ¼ mngm; where m is calculated from eqn (15). Then similarly
to eqn (4) we can introduce an effective dipolar coupling
parameter for a pair of MMNPs as

L ¼ m0
4p

Me
2

D3kBT
¼ lngjgm

2: (19)

A notable thing in eqn (19) is that it suggests that interactions
between MMNPs must strongly depend on both number of
grains ng and their packing fraction jg. We expect that chan-
ging these parameters can change a critical value of l, at which
the self-assembly starts to influence system magnetic response
(in our case, this is l C 6). A detailed inquiry into the
importance of ng and jg is left for future studies.

Values of L for ng = 20 and jg = 0.02 are shown in Fig. 7(c).
We can see that it actually remains quite low, L o 1. If we
estimate the coupling parameter independently for two particle
subgroups (Ls = lngjgms

2 and Lc = lngjgmc
2), it will be some-

what larger for clustered particles and can reach Lc = 1.2. But we
know that for real dipolar spheres a pronounced self-assembly in
the absence of a field only takes place at L Z 477,82! Therefore,
the crude analogy with dipolar spheres is insufficient to explain
the self-assembly mechanism in multicore-based ferrofluids.
An obvious difference between two systems is that the total
magnetic moment of a multicore particle is not point-like, it is
distributed across the particle volume. Presumably, correlations

Fig. 7 Zero-field magnetic characteristics of a multicore-based ferrofluid versus grain–grain dipolar coupling parameter l. F = 0.02. Circles are
simulation results averaged over the whole system, triangles correspond only to non-clustered (soliraty) MMNPs and squares correspond to clustered
MMNPs. (a) Initial magnetic susceptibility, solid line is from eqn (10); (b) average normalized magnetic moment of a MMNP; (c) effective parameter of
dipolar coupling between a pair of MMNPs.
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between individual grains within interacting MMNPs must be
explicitly taken into account in order to explain the observed
behavior. In fact, below we reveal the mechanism that keeps
MMNPs together even though the effective L between them is
very low.

3.2.3 Bridges between multicore nanoparticles. Increasing
the resolution of the analysis, in this subsection, we study
the internal structure of clusters, namely, the correla-
tions between the grains inside MMNPs. Looking closer at
Fig. 3(e)–(h), one can notice that individual grains from differ-
ent MMNPs cooperate and form their own internal clusters.
Such type of clusters, consisting of grains belonging to different
MMNPs, we call bridges and provide a more detailed snapshot
in Fig. 8.

In order to analyze the structure and number of bridges, we
once again carried out a cluster analysis. Firstly, we localize all
MMNP clusters as connected components (see, explanations
above) and sort them into groups according to the number of
MMNPs in them. Secondly, for each such element of each
subgroup, we construct a graph whose vertices are the individual
grains and find connected components within these new struc-
tures using two conditions (i) two grains are connected if the
distance between them is smaller than 21/6d and the dipolar
interaction between them is negative; (ii) the connected compo-
nent is a cluster of interest if it contains vertices from different

MMNPs. Finally, any property of bridges that is calculated is
averaged over the MMNP clusters of a given size.

In Fig. 9, we present the probability of finding a certain
number of bridges within the cluster of two (a), three (b) and
four (c) MMNPs. If l = 7.5 the only reliable statistics can be
obtained for dimers. Here, half of the clusters have at least one
bridge, approximately 12 per cent have two bridges holding the
particles together. We believe, that 35 per cent of clusters
without bridges is related to a very restrictive distance criteria
that we apply to detect clusters. In fact, with growing dipolar
coupling one sees that the number of dimers without connecting
bridges vanishes, while the probability of finding two bridges is
increasing. Three particle clusters are normally connected with
two-three bridges. Four-particle clusters are forming frequently
enough only for l = 10. Here within the 10 per cent margin one
can find up to five bridges.

In Fig. 10 one can see that the bridges are rather long. With
only slightly decreasing probability, one can find bridges with
length from two to seven particles in dimers Fig. 10(a). Inter-
estingly enough, comparing Fig. 10(b) and (c), where the bridge
length distributions are plotted for three- and four-particle
clusters respectively, to the histogram for dimers in (a), one
concludes that the difference is barely to be found. In other
words, the length of the bridges is cluster-size independent and
it is only weakly affected by l. This suggests that the bridges
that we find reach their limiting length determined by spatial
constraints of the MMNP size. In fact, if grains follow MMNP
diameter, only 4 of them can fit inside. Taking this into
account, it is particularly curious to elucidate what is a typical
bridge topology and if it depends on the bridge length.

The first step to define the topology of the bridges is to
calculate the degree of the grains in bridges. The results are
collected in Fig. 11. Had the bridges been chains, there would
have been only grains with degrees one and two. If, for example,
the chain-like bridge was built of six grains, roughly 33 per cent
would have degree one and 67 per cent degree two. The longer
the chain, the lower the fraction of free ends in comparison to
the grains with degree two. Here, however independently from
the values of l and the cluster size, 35–40 per cent of grains
have degree one, 40–45 per cent degree two, around 15 per cent
of grains in bridges have degree of three and five per cent of
grains have four different neighbours.

Fig. 8 Snapshot of a MMNP cluster. Grains on the borders between
different MMNPs, forming bridges, are encircled.

Fig. 9 Number of bridges in MMNP clusters of different sizes: (a) cluster size equals 2, (b) cluster size equals 3, (c) cluster size equals 4. Values of dipole–
dipole interactions are given in the legend.
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Fig. 12(a)–(c) show the total magnetic moment of the bridge,
normalized by the magnitude of the grain magnetic moment
and bridge length. It can be seen that for all values of l and

cluster sizes, there is a bimodal distribution of the magnetic
moment: the first peak in the region of 0.2–0.3 and there is a
main maximum near unity. The latter corresponds to the linear

Fig. 10 Bridge size in MMNP clusters of different values: (a) cluster size equals 2, (b) cluster size equals 3, (c) cluster size equals 4. Values of dipole–dipole
interactions are given in the legend.

Fig. 11 Fraction of grains having a given number of neighbours in bridges for various dipole–dipole interactions: (a) l = 7.5, (b) l = 8.75, (c) l = 10. The
averaging is performed among MMNP clusters of different sizes as shown in the legend.

Fig. 12 Average magnetic moment of bridges in MMNP clusters of different sizes: (a) cluster size equals 2, (b) cluster size equals 3, (c) cluster size equals
4. (d) The magnetic moment of bridges depending on the bridge size. Values of dipole–dipole interactions are given in the legend.
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structure of the bridge, whereas the peak at 0.2 indicates some
bend, possibly branched or closed, configuration. Importantly,
the bend structures are not ideal rings, as the magnetisation is
not that low as one would expect for a mildly perturbed ring.
Fig. 12(d) shows the dependence of the average bridge mag-
netic moment on the bridge length. It confirms the presence of
long banded or nearly closed structures: short bridges have a
very high magnetic moment, while the second histogram max-
imum in Fig. 12(a)–(c), shown by a vertical line, corresponds to
the bridges longer than 10. It means that grains with degrees
three and four are the bending points. Long banded bridges
often start and end in the same MMNP, while the part in the
fold belongs to the neighbouring MMNP in the cluster. Only
few very long non-banded bridges were found in simulations
that would percolate through three or more grains.

The formation of various bridges allows to increase the
number of nearest neighbours a MMNP can have, making it
similar to colloids with mobile multiple patches.83

4 Conclusions

In this work, using Langevin dynamics computer simulations
accompanied by analytical calculations, we investigated diluted
suspensions of multicore magnetic nanosized particles (MMNPs)
composed by grains, whose positions are fixed within the particle
body, but their magnetic moments are free to rotate, corres-
ponding to the grains with negligibly low magnetic anisotropy.

Self-assembly of MMNPs and its impact on the zero-field
magnetostatic response of the MMNPs suspensions were
addressed at two different scales.

Firstly, it was shown that MMNPs started forming clusters at
the values of saturation magnetisation much higher than their
point-dipolar counterparts. Instead of forming inherent to
dipolar spheres chains or rings whose size distribution decays
exponentially with the cluster size, for higher interaction
strength, the clusters formed by MMNPs are more compact,
and their sizes are not distributed exponentially. In fact, the
total average magnetic moment of a particle is rather small,
and for the conditions in which self-assembly does not take
place, the static susceptibility of MMNP suspensions is found
to be below Langevin one and to increase only slightly with
growing magnetic coupling parameter. At the value of l at
which the self-assembly ushers in, the susceptibility of the
system qualitatively changes, starting growing very fast and
going above the susceptibility of an ideal superparamagnetic
gas predicted by Langevin theory.

Secondly, in order to understand the structure of the clus-
ters formed by MMNPs, we looked at the interactions of the
individual grains in neighbouring MMNPs. We discovered that
clustering occurs by means of building grain bridges: grains of
kissing MMNPs reorient so that they can form clusters. The
length of those clusters (bridges) is found to be only weakly
dependent on the magnetic interaction strength if the latter is
high enough. One can find bridges whose length varies
between 3–4 grains to 7–11 of them. Short bridges are mainly

linear and have a relatively large magnetic moment. Long
bridges instead have banded, u-like shape that is nearly closed
with rather small total magnetic moment compensated by their
folded structure.

Bridge formations is responsible for the multiple bonds that
MMNPs can form, attaching more than two nearest neighbours.

This study reveals a mechanism of MMNPs self-assembly
that makes this system clearly different from both single-
domain nanoparticles and magnetisable micron-sized colloids.
As the next step, we would address the dynamics of MMNPs.

Even though, the direct discussion of the dynamical properties
of multicore suspensions cannot be based on the results presented
in this paper, we cannot but mention the potential impact of
structural transitions on the dynamic susceptibility of these sys-
tems. We assume that the formation of bridges as a mean for
multicore particles to self-assemble will lead to a significant broad-
ening of the dynamic spectra. At the moment we are working on the
generalisation of our approach to capture off-equilibrium dynamics.
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Appendices

A simulation details

All the results reported here are from molecular dynamics
simulations performed in the software package ESPResSo
4.1.4.84 The ‘‘virtual sites’’ feature of ESPResSo is used to take
into account the granular nature of MMNPs.85 Each magnetic
grain is treated as a virtual site, connected to the center of the
corresponding ‘‘host’’ MMNP. The position of each virtual site
is rigidly fixed within the body reference frame of the host. All
forces and torques acting on virtual sites are propagated back
to the host on every simulation time step. Langevin thermostat
technique is used to achieve thermodynamic equilibrium.
Formally, Langevin equations for translation and rotational
motion of a given MMNP can be written as

P�
d~v�

dt�
¼ ~f � � G�T~v

� þ~z�T; (20)

J�
d~o�

dt�
¼~t� � G�R~o

� þ~z�R; (21)

where asterisk denotes reduced quantities, d is used as a unit of
length, grain mass p is used as a unit of mass and kBT is used as

a unit of energy. Thus, ~v� ¼~v
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p=kBT

p
and ~o� ¼ ~o

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
pd2=kBT

p
are the reduced linear and angular velocities of a MMNP,
respectively, P* = P/p is the reduced MMNP mass, J* = J/pd2 is

its reduced moment of inertia, ~f � ¼ ~f C þ
PNg

j¼1
~f gj

 !
d

,
kBT is

the total reduced force acting on a given MMNP,
-

f C is the

central force acting on a MMNP due to steric interactions,
-

f g
j is
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the total force acting on the jth virtual site within MMNP,

~t� ¼
PNg

j¼1
~r C
j � ~f

g
j þ~t

g
j

� �.
kBT , -

rC
j is the virtual site position

relative to the MMNP center of mass, ~tg
j is the total torque on

the jth virtual site, G�T ¼ GT

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
d2=pkBT

p
and G�R ¼

GR

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1=d2pkBT

p
are the reduced translational and rotational

friction coefficients, ~z�T and ~z�R are the random thermal force
and torque on a MMNP, respectively. They have zero mean
values and are connected to G�T and G�R via standard
fluctuation-dissipation relationships.86 The reduced time is

t� ¼ t
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
kBT=pd2

p
.

While the ‘‘virtual sites’’ feature is used to calculate the
positions of superparamagnetic grains, the equilibrium orien-
tations of their magnetic moments are determined indepen-
dently from Langevin equations identical in form to eqn (21):

J�g
d~o�g
dt�
¼~t�dd � G�g~o

�
g þ~z

�
g;

d~m
dt�
¼ ~o�g �~m: (22)

Here, ~t�dd ¼ m0 ~m� ~Hdd

h i.
kBT is the reduced magnetic torque

acting on a given grain,
-

Hdd is the sum all dipolar fields in the

grain centre, dimensionless quantities J�g , ~o�g, G�g and ~z�g have

the same meaning as their counterparts from eqn (21).
To simulate the steric repulsion between MMNPs, the

Weeks–Chandler–Andersen (WCA) pair potential is used:87

UWCAðRÞ
kBT

¼
4 ðD=RÞ12 � ðD=RÞ6
 �

þ 1; R � 21=6D

0; R4 21=6D

8<
: ; (23)

where R is the distance between centers of two MMNPs.
Additionally, a similar potential is imposed between each pair
of grains in the system:

u
g
WCAðrÞ
kBT

¼
4 ðd=rÞ12 � ðd=rÞ6
 �

þ 1; r � 21=6d

0; r4 21=6d

8<
: : (24)

Introduction of this potential was required to avoid numerical
instabilities arising in rare cases when the dipole–dipole inter-
action between two grains from two different MMNPs was large
enough to overcome a soft core repulsion modelled by eqn (23)
(at l B 10). This approach allowed us to use a larger time step.

All simulations are performed for N = 200 MMNPs placed

inside a cubic box with a side length of l ¼ D
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðp=6ÞN=F3

p
. 3D

periodic boundary conditions are imposed on a box. The
torques due to long-range dipole–dipole interactions are com-
puted using the dipolar P3M algorithm.88 Other simulation
parameters are P* = Ng = 20, J* = 0.1P*(D/d)2 C 43,
J�g ¼ G�T ¼ G�R ¼ G�g ¼ 1. The simulation time step is Dt* =

0.002. Typically, the first 5 � 105 time steps are used for the
system equilibration, and the subsequent production run lasts
for at least another 10 � 105 time steps. For every combination
of F and l at least five independent runs are performed.

Albeit high efficiency, the choice of such dimensionless
parameters imposes a certain ‘‘limitation’’: the dynamics
of our system is not realistic, and we cannot extract any

off-equilibrium properties of the system. Although very inter-
esting, the life-time of the clusters and dynamic response of the
multicores lay beyond the scope of this study and require more
frequent sampling with a smaller time-step, not compatible
with reaching equilibrium in a feasible time.
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A. Hütten, J. Magn. Magn. Mater., 2010, 322, 643–646.
54 N. A. Usov, O. N. Serebryakova and V. P. Tarasov, Nanoscale

Res. Lett., 2017, 12, 489.
55 P. Ilg, Phys. Rev. B, 2017, 95, 214427.
56 A. O. Ivanov and O. B. Kuznetsova, Phys. Rev. E: Stat.,

Nonlinear, Soft Matter Phys., 2012, 85, 041405.
57 I. M. Subbotin, Magnetohydrodynamics, 2018, 54, 131–136.
58 I. M. Subbotin, J. Magn. Magn. Mater., 2020, 502, 166524.
59 A. B. Pawar and I. Kretzschmar, Macromol. Rapid Commun.,

2010, 31, 150–168.
60 H. Zhang and M. Widom, Phys. Rev. B: Condens. Matter

Mater. Phys., 1995, 51, 8951.
61 Z. Gong, T. Hueckel, G.-R. Yi and S. Sacanna, Nature, 2017,

550, 234–238.
62 F. Sciortino and E. Zaccarelli, Curr. Opin. Solid State Mater.

Sci., 2011, 15, 246–253.
63 E. Bianchi, R. Blaak and C. N. Likos, Phys. Chem. Chem.

Phys., 2011, 13, 6397–6410.
64 S. Angioletti-Uberti, P. Varilly, B. M. Mognetti and

D. Frenkel, Phys. Rev. Lett., 2014, 113, 128303.
65 A. McMullen, M. Holmes-Cerfon, F. Sciortino, A. Y. Grosberg

and J. Brujic, Phys. Rev. Lett., 2018, 121, 138002.
66 P. A. Sánchez, A. Caciagli, S. S. Kantorovich and E. Eiser,

J. Mol. Liq., 2023, 382, 121895.
67 P. Qiu, C. Jensen, N. Charity, R. Towner and C. Mao, J. Am.

Chem. Soc., 2010, 132, 17724–17732.
68 C. P. Bean and J. D. Livingston, J. Appl. Phys., 1959, 30, S120–S129.
69 E. A. Elfimova, A. O. Ivanov and P. J. Camp, Nanoscale, 2019,

11, 21834–21846.
70 A. O. Ivanov and F. Ludwig, Phys. Rev. E, 2020, 102,

032603.
71 F. G. Silva, R. Aquino, F. A. Tourinho, V. Stepanov, Y. L. Raikher,

R. Perzynski and J. Depeyrot, J. Phys. D: Appl. Phys., 2013, 46, 285003.
72 S. Dutz, IEEE Trans. Magn., 2016, 52, 1–3.
73 A. Bunge, A. S. Porav, G. Borodi, T. Radu, A. Pı̂rnau, C. Berghian-

Grosan and R. Turcu, J. Mater. Sci., 2019, 54, 2853–2875.

Paper Soft Matter

O
pe

n 
A

cc
es

s 
A

rt
ic

le
. P

ub
lis

he
d 

on
 0

7 
Ju

ne
 2

02
3.

 D
ow

nl
oa

de
d 

on
 1

1/
14

/2
02

4 
2:

36
:1

6 
A

M
. 

 T
hi

s 
ar

tic
le

 is
 li

ce
ns

ed
 u

nd
er

 a
 C

re
at

iv
e 

C
om

m
on

s 
A

ttr
ib

ut
io

n 
3.

0 
U

np
or

te
d 

L
ic

en
ce

.
View Article Online

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
https://doi.org/10.1039/d3sm00440f


This journal is © The Royal Society of Chemistry 2023 Soft Matter, 2023, 19, 4549–4561 |  4561

74 C. L. Dennis, K. L. Krycka, J. A. Borchers, R. D.
Desautels, J. Van Lierop, N. F. Huls, A. J. Jackson,
C. Gruettner and R. Ivkov, Adv. Funct. Mater., 2015, 25,
4300–4311.

75 S. W. De Leeuw, J. W. Perram and E. R. Smith, Annu. Rev.
Phys. Chem., 1986, 37, 245–270.

76 A. O. Ivanov and O. B. Kuznetsova, Phys. Rev. E: Stat.,
Nonlinear, Soft Matter Phys., 2001, 64, 041405.

77 L. Rovigatti, J. Russo and F. Sciortino, Soft Matter, 2012, 8,
6310–6319.

78 L. Rovigatti, J. Russo and F. Sciortino, Phys. Rev. Lett., 2011,
107, 237801.

79 V. Mendelev and A. Ivanov, J. Magn. Magn. Mater., 2005, 289,
211–214.

80 S. Kantorovich, A. O. Ivanov, L. Rovigatti, J. M. Tavares and
F. Sciortino, Phys. Rev. Lett., 2013, 110, 148306.

81 C. Kittel, Introduction to solid state physics, Wiley, 2004.

82 A. O. Ivanov, Z. Wang and C. Holm, Phys. Rev. E: Stat.,
Nonlinear, Soft Matter Phys., 2004, 69, 031206.

83 S. Angioletti-Uberti, P. Varilly, B. M. Mognetti and
D. Frenkel, Phys. Rev. Lett., 2014, 113, 128303.

84 F. Weik, R. Weeber, K. Szuttor, K. Breitsprecher, J. de Graaf,
M. Kuron, J. Landsgesell, H. Menke, D. Sean and C. Holm,
Eur. Phys. J.: Spec. Top., 2019, 227, 1789–1816.

85 A. Arnold, O. Lenz, S. Kesselheim, R. Weeber, F. Fahrenberger,
D. Roehm, P. Košovan and C. Holm, Meshfree methods for
partial differential equations VI, Springer, 2013, pp. 1–23.

86 W. T. Coffey, Y. P. Kalmykov and J. T. Waldron, The Langevin
equation: with applications to stochastic problems in physics, chem-
istry and electrical engineering, World Scientific, Singapore, 2004.

87 J. D. Weeks, D. Chandler and H. C. Andersen, J. Chem. Phys.,
1971, 54, 5237–5247.
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