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Wrinkling composite sheets

Marc Suñé, *a Cristóbal Arratia, a A. F. Bonfils,a Dominic Vella b and
J. S. Wettlaufer ac

We examine the buckling shape and critical compression of confined inhomogeneous composite sheets

lying on a liquid foundation. The buckling modes are controlled by the bending stiffness of the sheet,

the density of the substrate, and the size and the spatially dependent elastic coefficients of the sheet.

We solve the beam equation describing the mechanical equilibrium of a sheet when its bending stiffness

varies parallel to the direction of confinement. The case of a homogeneous bending stiffness exhibits a

degeneracy of wrinkled states for certain lengths of the confined sheet; we explain this degeneracy

using an asymptotic analysis valid for long sheets, and show that it corresponds to the switching of the

sheet between symmetric and antisymmetric buckling modes. This degeneracy disappears for spatially

dependent elastic coefficients. Medium length sheets buckle similarly to their homogeneous

counterparts, whereas the wrinkled states in large length sheets concentrate the bending energy

towards the soft regions of the sheet.

1 Introduction

From surfactant monolayers to tectonic plates, the deformation
of elastic sheets underlies a vast landscape of problems in
science and engineering. Not only do their patterns evoke a
great aesthetic appeal, but they underlie both function and
form in the world around us.1–4

The buckling of a homogeneous sheet on top of a supporting
foundation has been the object of soft matter studies for
decades see e.g. ref. 5–7 and references therein. In a free-
standing confined sheet (Euler’s elastica), the compressive load
(which we refer to as ‘‘compression’’ throughout the paper) at
which buckling occurs, and the scale of this buckling, are set by
the length L� of the confined sheet. However, in the presence of
a supporting foundation, an intrinsic length scale ‘� is set by
the mismatch between the elasticity of the sheet and that of the
foundation. When a resting sheet with clamped ends is con-
fined longitudinally, a uniaxial compression builds up and
wrinkles of the surface emerge.8 Such wrinkle patterns have
been observed in, among many other settings, thin polymer
sheets resting on the surface of water,9 bacterial biofilms,10

granular rafts,11 the mineral veins of rocks,3 strained epitaxial
films,12 and in glaciology.13,14 From a theoretical standpoint,

wrinkles of confined elastic sheets are predicted by a simple set
of geometric rules.15 The theory for supported sheets also maps
onto a model to describe the elasticity of an unsupported
epithelial monolayer.16

In many settings the deforming material is treated as a
homogeneous solid, despite a potentially important intrinsic
composite structure. Indeed, whether or not the composite
structure can be treated as effectively homogeneous requires
appropriate quantitative analysis. When the host material is
stiff, such as ice, and the inclusions are soft, the theory of
Eshelby17 shows that the effective Young’s modulus, and hence
the bending stiffness is reduced relative to the case of the
stiff host material alone. When the host solid is soft and the
inclusions are uniformly distributed,18 two possibilities
exist—composite softening or stiffening—depending on the
size of inclusions relative to the elastocapillary length,
l� � g�=E�0 , where g� is the surface tension of the inclusion-
host interface and E�0 is the Young’s modulus of the host
material. However, by controlling the distribution of inclusions
we can, for example, prepare a gradient of bending stiffness,
and thereby manipulate the failure properties of such elastic
composites.

Here we examine the deformation of composite elastic
sheets floating on a liquid foundation. We treat the case with
a gradient of bending stiffness parallel to the direction of
confinement. This gradient is envisaged to be created by
controlling the distribution of liquid inclusions.

First, we present key results for the critical compressive load
and wrinkle patterns in homogeneous floating sheets. The
interplay between the intrinsic length scale, ‘�, and the
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undeformed size of the confined sheet, L�, determines the
wrinkled state that has the smallest compression. The observed
wrinkles are then either symmetric or antisymmetric about the
centre of the sheet. Importantly, at certain sheet lengths the
wrinkled states are degenerate: both symmetric and antisym-
metric modes exist at the same compression.

While the homogeneous case provides important insights
into the wrinkle pattern, our main interest is the study of
inhomogeneous sheets. Taking advantage of the effective med-
ium behaviour of composites,17–19 we examine the wrinkles in
composite sheets.

We impose a spatial distribution of liquid inclusions that
translates into spatially varying elastic moduli (Young’s mod-
ulus and Poisson ratio) and hence a spatially varying bending
stiffness. The inhomogeneous stiffness is responsible for
breaking the symmetry of the wrinkle patterns and eliminating
the degeneracies. For sheets large compared to the intrinsic
length scale, this gradient shifts the position of the maximum
amplitude of wrinkles. This displacement happens at the onset
of wrinkling, and hence it does not require any non-linear
behaviour. Inhomogeneous sheets are technologically appeal-
ing for they offer a new means to control fracturing via the
spatial variation of the wrinkle amplitude.

2 Mechanics of a floating composite
sheet

We start with a presentation of the governing equations for a
composite thin sheet floating on a liquid, including the effects
of in-plane forces. For more detail the reader is referred to the
book by Mansfield.4

2.1 Problem formulation

We denote all dimensional quantities with a superscript (�)�
and let x�,y�,z� be the Cartesian coordinates in the horizontal
direction, into the page, and in the vertical direction, respec-
tively. We consider a sheet with thickness h� and longitudinal
undeformed length L�, such that h� { L�. The sheet (of density
r�s ) rests on a liquid of density r�, and in the absence of all
forces apart from gravity, it floats with its mid-line at a height
z� ¼ h�ð1=2� r�s=r

�Þ above the free surface. We measure all
vertical displacements relative to this equilibrium level,† as in
Fig. 1 where the origin of the vertical axis is set at the liquid
level. The sheet is confined lengthwise by a distance d�, and has
clamped edges located at x� = �a� in the longitudinal direction,
with a� � (L� � d�)/2. However, we shall impose boundary
conditions at x� = �L�/2, which are the Lagrangian coordinates
of the sheet’s edges; this avoids confusion with their position at
the onset of buckling, x� = �a�, and is correct within small
deformation elasticity. A quantity of interest from our analysis
is the value of a� at the onset of buckling for a given sheet
length L�.

The geometric incompatibility between the sheet’s unde-
formed length and the confinement length yields a mechanical
instability producing a vertical displacement w�(x�,y�).
This displacement causes, and is influenced by, the restoring
pressure p� = �r�g�w� that the liquid foundation exerts on the
sheet. An in-plane compression t� (with dimensions of force
per unit length) is calculated as an emergent property, rather
than being imposed.

The static equilibrium of a confined floating sheet is deter-
mined by the balance between elastic forces and the hydrostatic
pressure. In this paper, we are concerned with the effects of a
variable bending stiffness, or flexural rigidity, B�(x�), which may
be achieved using composite materials whose elastic properties
are inhomogeneous. Such inhomogeneous sheets can be made
by embedding one material in the other to control the resulting
composite structure, as illustrated schematically in Fig. 2.
Examples include ionic liquid droplets in silicone,18 hydrogel
particles inside elastomeric matrices,20 3D printing materials
using silicone double networks21 and fibre–silicone mixtures,22

or hydrogel substrates with a photo-sensitive cross-linker and a
gradient photo-mask.23 Despite a varying composition, we
neglect any variation of the density r�s of the sheet. This is
justified for stiff composites in the dilute regime, and for soft
composites, because the matrix and the inclusions have
approximately the same density. (A varying bending stiffness
would also correspond to a single component material sheet
with varying thickness, but we do not treat this case here
because it would complicate the free-floating equilibrium.)

In the absence of inclusions, namely for a homogeneous
elastic sheet, the elastic coefficients (Young’s modulus, E�0 ,
and Poisson ratio, n0; we denote the elastic constants of the

Fig. 1 Schematic diagram showing a thin elastic sheet floating on a liquid
with a lateral compressive force t* due to confinement.

Fig. 2 Strip of a composite sheet of length L, with liquid inclusions and
the linear volume fraction profile of eqn (23) in the x direction, parallel to
the confinement.

† We treat sheets floating on water with density r� B 103 kg m�3, and the
standard value of the gravitational acceleration g� B 9.8 m s�2.
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homogeneous sheet with subscript ‘‘0’’) are constant, and
hence so too is the bending stiffness; in particular, the baseline
bending stiffness is

B�0 ¼
E�0h

�3

12ð1� n02Þ
: (1)

The intrinsic length scale of the displacements, or wrinkles,

‘� � B�0
r�g�

� �1=4

; (2)

plays a central role in the problem. Therefore, we use ‘� to
rescale all lengths, while we rescale the compressive force t�

with B�0=ð‘�Þ2. Dimensionless quantities are unstarred so that

x = x�/‘�, and t ¼ t�=ðB�0r�g�Þ1=2. This non-dimensionalization
also introduces a typical scale for the size of the stresses
induced by compression, which we define as

S � E�0h
�

ðB�0r�g�Þ1=2
; (3)

which is also a measure of the relative ease of bending to
stretching of the sheet, or the stretching-stiffness. Therefore, S
is important in determining how much confinement is
required to induce buckling, as we describe later. Because

B�0 � E�0h
�3 so that S � ½E�0=ðr�g�h�Þ�1=2, for thin sheets we

expect that S c 1, and hence deformation can be accommo-
dated more easily by bending than by stretching. For example, a
10 cm thick sheet of ice, for which E�0 � GPa and n0 E 0.3, has
S B 1000.2 A soft material, such as PDMS, for which E�0 �
100 kPa and n0 E 0.5, has S B 100 for h� on the order of cm.
However, thin sheets do not always bend more easily than they
stretch. Provided that S is finite, sheets may accommodate
some of the imposed deformation by compressing (negative
stretching), particularly when the confinement is small and the
supported sheet resists buckling. We therefore refer to S as the
‘inextensibility’ of the sheet. Before returning to this idea, we
introduce buckling in two dimensions where the equations of
mechanical equilibrium simplify.

2.2 Two-dimensional buckling of a sheet

Our focus here is on two-dimensional deformations of the sheet
under uniaxial compression. A simple argument (see Appendix
A) shows that the in-plane stress t is constant and that small
out-of-plane displacements of the sheet satisfy

d2

dx2
BðxÞw;2x
� �

þ tw;2x þ w ¼ 0; (4)

which is Euler’s linearized elastica equation (see e.g. Section 20
of ref. 24) with a lateral load due to the hydrostatic pressure in
the liquid foundation and varying elastic properties along the
axis of confinement. This is analogous to the small-deflection
equilibrium of a compressed inhomogeneous column.25 The
boundaries of the thin sheet at x = �L/2 are clamped so that
w,x(�L/2) = w(�L/2) = 0.

The elastic response of a composite is characterized by the
elastocapillary length l� discussed in the Introduction (Section 1).

When inclusions of radius R� are smaller (larger) than l�, the
composite is difficult (easy) to deform because surface tension can
maintain (cannot maintain) their sphericity. For example, for a
typical liquid inclusion with g� = O(0.01 N m�1),18 and soft
materials with a range of E� = O(1 � 100 kPa), l� ranges from
1 to 100 mm. Thus, surface tension effects are important for
micron-sized inclusions. A summary of different theoretical
models that predict the bulk mechanical properties of a compo-
site is given in Appendix B.

3 Buckling of a homogeneous sheet

The force balance of an elastic sheet with homogeneous proper-
ties, namely B(x) = 1 in eqn (4), is given by

(w0),4x + t0(w0),2x + w0 = 0, (5)

where we use subscript ‘‘0’’ to denote the displacement in the
homogeneous case. This is to be solved with boundary condi-
tions corresponding to a clamped sheet:

w0(�L/2) = 0, (6a)

and

(w0),x|x=�L/2 = 0. (6b)

3.1 Buckling profiles

Equations (5) and (6) define an eigenvalue problem whose
detailed solution is given in Appendix C. As expected from
the reflection symmetry about x = 0, there are two distinct types
of solutions with opposite parity: even functions of the form
w(s)

0 (x) = As cos kx, which correspond to symmetric buckling
profiles, and the odd counterpart w(a)

0 (x) = Aa sin kx, giving
antisymmetric profiles. For both cases the wavenumber k
satisfies

k4 � t0k2 þ 1 ¼ 0: (7)

Therefore, there are two possible wavenumbers, k�, given by

k�
2 ¼ 1

2
t0 �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
t02 � 4

p� �
: (8)

Importantly, the domain of k�(t0) (such that k�(t0) A R) is
bounded from below, where t0 = 2 gives the value where the two
branches of the solutions meet, k+(t0) = k�(t0). We show in
Appendix D that there are no solutions of the eigenvalue
problem (eqn (5) and (6)) for complex k�.

In general, w0(x) will contain both of the wavenumbers given
in eqn (8). The condition of zero vertical displacement at
x = �L/2 is satisfied by the symmetric and antisymmetric
combinations viz.,

w
ðsÞ
0 ðxÞ ¼ As

cos kþx

cos kþL=2
� cos k�x

cos k�L=2

� �
; (9a)

and w
ðaÞ
0 ðxÞ ¼ Aa

sin kþx

sin kþL=2
� sin k�x

sin k�L=2

� �
; (9b)
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where As, Aa are, yet to be determined, constants. The remain-
ing boundary condition that (w0),x(�L/2) = 0 leads to the
relations between k+ and k�;

kþ tan kþ
L

2
¼ k� tan k�

L

2
; (10a)

or kþ cot kþ
L

2
¼ k� cot k�

L

2
; (10b)

which are associated with the symmetric (9a) and antisym-
metric (9b) modes respectively. Since k� = k�(t0), the solutions
of eqn (10a) determine the compression t(s)

0 required to produce
the corresponding symmetric profile w(s)

0 (x) from eqn (9a).
Analogously, the roots t(a)

0 of eqn (10b) are associated with the
odd functions w(a)

0 (x) from eqn (9b). For a given value of L, each
relation (10a) and (10b) has an infinite number of solutions, the
smallest of which is t0 = 2. However, when t0 = 2, k+ = k� and
eqn (9) gives the trivial solution w0(x) � 0. Therefore, each value
of t0 4 2 that solves either of eqn (10) corresponds to a
different, and non-trivial mode of buckling in the sheet. We
are concerned with determining only the lowest mode of
buckling, which corresponds to the smallest value of t0 4 2 that
solves either eqn (10a) or eqn (10b) for a given sheet length L.

3.2 Asymptotic results for large sheets

Fig. 3 shows numerical results for the two smallest values of t0

at the onset of instability as a function of the sheet length L.
The quantity of principal interest is the smallest buckling load,
t0 4 2. These numerical results suggest that the critical
compressive load at the onset of wrinkling corresponds to a
symmetric or antisymmetric mode depending on the precise
value of L. To understand this behaviour, we also note that the
critical buckling load appears to approach 2 from above as the
sheet length L - N. We use this as motivation to seek an
asymptotic solution of eqn (10a) and (10b) for e = t0 � 2 { 1.
This analysis (see Appendix E) reveals that:

tðsÞ0 ¼ 2þ 4p2

L2
1þ 2

sinL

L

� �
þOð1=L4Þ (11)

for symmetric modes, while

tðaÞ0 ¼ 2þ 4p2

L2
1� 2

sinL

L

� �
þOð1=L4Þ (12)

for antisymmetric modes. These results go to higher order in
L�1 than the equivalent result by Rivetti and Neukirch.26

Note that, in either case, the result that t0 - 2 suggests that
k�- 1 and hence that the natural dimensionless wavelength is
l = 2p. It is therefore often useful to measure the sheet length in
terms of the number of half wavelengths and so we introduce

L̃ = L/p. (13)

We use L and L̃ interchangeably, for convenience.
The asymptotic predictions (11) and (12) show excellent

agreement with our numerical solutions of (10a) and (10b) for
L̃ \ 8 (see Fig. 3(b)). They also illustrate a L̃�2 power-law (red
triangles in both Fig. 3(a) and (b)) and how the mode with

smallest critical compression oscillates between the symmetric
and antisymmetric modes as sin L oscillates. Asymptotically we
have that the mode at onset should be antisymmetric when
sin L 4 0 (i.e. when 2np o L o (2n + 1)p), while it should be
symmetric when sin L o 0, (i.e. when (2n � 1)p o L o 2np), for
integer n. A more detailed discussion of this feature, for general
values of L, is given in Appendix F.

The asymptotic results for the critical loads also allow us to
give simpler expressions for the symmetric and antisymmetric
mode shapes in the limit L c 1 (see Appendix E):

w
ðsÞ
0 ðxÞ ¼ As cos x cos

x

~L

� �
; (14a)

and

w
ðaÞ
0 ðxÞ ¼ Aa sin x cos

x

~L

� �
: (14b)

These results show how the mode shapes consist of a
sinusoid of (short) wavelength equal to 2p, whose amplitude

Fig. 3 Minimum compressive force t0 as a function of the size of the confined
sheet L. (a) t0(L) for medium length sheets on a log–log plot. (b) log–log plot of
t0(L) � 2 for large sheets showing the good agreement between numerical
solutions of (10a) (black solid) and (10b) (gray solid) and the asymptotic relation-
ships (11) (green dashed) and (12) (red dashed), respectively.
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is modulated by another sinusoid with a large wavelength,
equal to 2L. This result also makes clear that the amplitude
of the wrinkles varies spatially as a result of a beating pheno-
menon—this spatial variation of wrinkle amplitude is similar
to, but has a simpler underlying cause than, the spatial varia-
tion observed by Tovkach et al.27

Fig. 4 shows a comparison between the asymptotic expres-
sions of (14) with the exact mode shapes predicted by eqn (9),
for a moderately large sheet (L̃ = 8). The agreement between the
asymptotic predictions and the shapes given by eqn (9a) and
(9b) is good, and small deviations only become visible near the
ends, which is more pronounced for the symmetric mode,
shown in the green dashed line of Fig. 4. Note that the
boundary condition eqn (6b) is only satisfied at O(L�1).

Our asymptotic results are related to those reported by
Pocivavsek et al.9 Indeed, the linear combination of As =
sin(L/2) in eqn (14a) and Aa = cos(L/2) in eqn (14b), yields the
asymptotic solution of Pocivavsek et al.9

3.3 Critical confinement for buckling

Having determined the critical compressive force required to
obtain buckling, t0(L), we now determine the properties of the
compressed sheet around this buckling threshold. The non-
zero lower bound for the compression reveals that the sheet is
subject to a uniform compression prior to buckling. We con-
sider a sheet that is confined to a domain of size 2a slightly
shorter than its undeformed length (L) such that its associated
compression is ta o t0(L). (Here, the subscript ‘‘a’’ is used to
distinguish the applied compression needed to confine the
sheet to a length 2a from the values required for buckling, i.e.
the eigenvalues of the mechanical equilibrium from eqn (5).)

Since ta o t0(L) the sheet is stable in its flat configuration, i.e.
w(x) = 0, and is uniformly strained in the x-direction. The
horizontal strain exx may be linked to the horizontal displace-
ment u(x) and also to the compressive stress ta via Hooke’s
law, giving

@u

@x
¼ exx ¼ �

ta
S
; (15)

which, upon integration from �L/2 to L/2 gives

a ¼ L

2
1� ta

S

� �
; (16)

so that the critical value of a at which the sheet buckles is

ac ¼
L

2
1� t0ðLÞ

S

� �
: (17)

The sheet can accommodate any imposed compressive
stress ta o t0(L), or equivalently any confinement a 4 ac,
through in-plane compression. Below that length, the sheet
buckles. As further confinement is imposed (a o ac) the sheet’s
stress remains at the eigenvalue t0(L) and it tends to accom-
modate this further confinement by bending out of plane,
rather than compressing in plane. We now consider how this
amplitude grows just beyond the onset of buckling, i.e. for
a o ac.

3.4 Amplitudes

Having determined t0 by solving eqn (10), the solution for the
shape of the buckled sheet is given by eqn (9) up to the
multiplicative constants As and Aa. Once the sheet has buckled
out of plane, the expression for the strain in eqn (15) is

modified to exx ¼
du

dx
þ 1

2

dw0

dx

� �2

(see Appendix A). Integrating

this from x = �L/2 to x = L/2 and using symmetry of w00
	 
2 about

x = 0, results in
ðL=2
0

ðw0Þ;x2dx ¼ Lð1� t0=SÞ � 2a ¼ 2ðac � aÞ: (18)

Using w0(x) from eqn (9a) and (9b) we find
ðL=2
0

½ðwðsÞ0 Þ;x�2dx

¼ As
2 L

4
ðkþ2 þ k�

2Þ þ L

2
kþ

2 tan2 kþL=2þ kþ tan kþL=2

� �
;

(19a)

or
ðL=2
0

½ðwðaÞ0 Þ;x�2dx

¼ Aa
2 L

4
ðkþ2 þ k�

2Þ þ L

2
kþ

2 cot2 kþL=2þ kþ cot kþL=2

� �
;

(19b)

which can be substituted into eqn (18) to give As and Aa. Since
k� and t0 are determined by the numerical solution of eqn (10a)

Fig. 4 Mode shapes corresponding to the two smallest compressions
for a sheet of size L̃ = 8. Results are computed from the exact solutions,
eqn (9) plotted with solid lines, and the asymptotic expressions, eqn (14)
in dashed lines. The amplitudes are computed assuming the condition
(ac � a) = 10�3 { 1, which ensures that the sheet bends close to the onset
of buckling, imposed in eqn (18).

Soft Matter Paper

O
pe

n 
A

cc
es

s 
A

rt
ic

le
. P

ub
lis

he
d 

on
 2

5 
Se

pt
em

be
r 

20
23

. D
ow

nl
oa

de
d 

on
 7

/2
8/

20
25

 1
1:

39
:5

9 
PM

. 
 T

hi
s 

ar
tic

le
 is

 li
ce

ns
ed

 u
nd

er
 a

 C
re

at
iv

e 
C

om
m

on
s 

A
ttr

ib
ut

io
n 

3.
0 

U
np

or
te

d 
L

ic
en

ce
.

View Article Online

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
https://doi.org/10.1039/d3sm00430a


8734 |  Soft Matter, 2023, 19, 8729–8743 This journal is © The Royal Society of Chemistry 2023

or (10b), the amplitudes depend only on the value of L. There-
fore, for given values of a and L, the shape of the sheet can be
completely determined numerically, including the amplitude,
up to a sign.

We classify the sheets according to their size: Short length
sheets are shorter than the intrinsic length scale of the wrin-
kles, ‘�, (L̃ o 1), medium length sheets are a few length scales
in size [L̃ = O(1,10)], and large length sheets are many length
scales in size (L̃ c 1). This classification is relevant to the
choice of the displacement parallel to the direction of
confinement.

3.5 Switching between symmetric and antisymmetric modes

For large L, the asymptotic analysis of Section 3.2 shows how
the sheet deformation switches between antisymmetric and
symmetric modes whenever L increases by p. A similar oscilla-
tion is observed in the numerical results for the smallest roots
of eqn (10), plotted in Fig. 3(a) for medium length sheets, and
Fig. 3(b) for large length sheets. However, this period of p is
only attained asymptotically as L - N: for finite L the length
between mode switches must be calculated separately, as
shown in Appendix F.

When the modes switch, or their compressions cross as L
varies, the two relations (10) are satisfied by the same values of
t0 and L̃. The crossing points that we call type I are located at

~L ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4l2 � 1
p

� ~L
ðIÞ
l;1 ; (20)

with l A N*; index l labels the crossings – starting at l = 1 for the
crossing at the smallest L̃, which is of type I, and increasing
with the length of the sheet. Similarly, for what we call type II
crossings we have

~L ¼ 2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
lðl þ 1Þ

p
� ~L

ðIIÞ
l;1 : (21)

The index l also explicitly determines the corresponding com-
pressions ‡. The second index in eqn (20) and (21) evaluates to
1 because here we are interested in the first pair of compres-
sions. The crossings for higher modes are included in
Appendix F.

For short length sheets (L̃ o 1) the compressions are
inversely proportional to L̃2 (see Fig. 3a). This power-law
behavior can be understood by dimensional analysis; as the
size of the confined sheet decreases it becomes the smallest
length scale in the problem and hence t�0 � B�0=ðL�Þ2. However,
a fundamental assumption for the floating beam eqn (4) is that
the size of the sheet is larger than its thickness, and hence we
will not explore the limit in which this condition is violated.

4 Buckling of inhomogeneous sheets

The results of the homogeneous case show that the amplitude
of the buckling mode at the onset of buckling varies spatially,
with a maximum close to the centre of the sheet. One natural

question is: can we control this amplitude variation, for exam-
ple by introducing a stiffness gradient? To make this idea more
concrete, we imagine adding liquid inclusions to our soft host
such that there is a stiffness gradient within the beam, and
solve the resulting problem numerically.

4.1 Theoretical setting

Imposing a gradient of the liquid volume fraction parallel to
the direction of confinement, f(x), means that the elastic
coefficients also vary spatially, i.e. E = E(x) and n = n(x).
Therefore, we have a variable bending stiffness, viz.,

B�ðx�Þ ¼ E�ðx�Þh�3
12½1� nðx�Þ2�: (22)

Note that while B� may vary due to changes in the thickness h�,
we do not consider this possibility here, which would modify
the isostatic floating requirement as noted above.

We anticipate that a gradient in f will break the symmetries
about x = 0 exhibited by homogeneous sheets. Naively, one
might expect the portion of the buckled sheet with the largest
amplitude to reside where the modulus is smallest, since
bending is easiest here, but this poses further questions, such
as where should such a sheet will experience maximum bend-
ing stress, and hence be most likely to fracture?

We consider for the numerical analysis a sheet that is
embedded with stiffening and incompressible liquid inclusions
(g0 = 10, with g0 � ‘�/R� as per Appendix B; R� denotes the size of
the inclusions), which are linearly distributed parallel to the
direction of confinement:

fðxÞ ¼ fend

1

2
� x

L

� �
; (23)

where fend:= f(x = �L/2) is the concentration of inclusions at
the left-hand end of the sheet. The scaled bending stiffness B(x)
equals the dimensionless effective Young’s modulus for stif-
fened soft composites given by Style et al.:18,28

E�½fðxÞ; g0� ¼ E�0

1þ 5

2
g0

5

2
g0½1� fðxÞ� þ 1þ 5

3
fðxÞ

� �; (24)

where f(x) is given by eqn (23). The control parameters here are
fend, and the size of the sheet, L.

4.2 Spatial variation of amplitude

For medium length sheets [L̃ = O(1,10)], we numerically solve
the equation of mechanical equilibrium (4) using the Chebfun
package36 to obtain the buckling profiles corresponding to the
smallest compression. The contour plot of w(x) for different
lengths L̃ in Fig. 5(a) shows that the maximal wrinkle amplitude
(the trajectory in green) is shifted to the softer side of the sheet
(x 4 0). Indeed, the buckling profile at L̃ = 8, in Fig. 5(b), is no
longer symmetric, unlike the modes of the homogeneous sheet
(L̃ = 8) in Fig. 4. This intuitive feature is also observed in the
buckling profiles of an inhomogeneous column.25 We also see
that the wrinkle wavelength is not noticeably altered by the

‡ At the crossing points, the compressions are t0 ¼
2l þ 2j � 1

2l � 1
þ 2l � 1

2l þ 2j � 1
and

t0 ¼
l

l þ j
þ l þ j

l
for type I and type II crossings respectively. See Appendix F.
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change in elastic modulus. To understand this, we note that
our asymptotic solution for large homogeneous sheets, leading
to (14a) and (14b), shows that the (short) wrinkle wavelength
depends on the sum k+ + k�, while the large wavelength of
amplitude modulations is controlled by the difference k+ � k�;
as such the fine scale wrinkle wavelength is affected only at
higher order in spatial variation of properties than the ampli-
tude modulation itself, as is observed. (To plot the function
w(x), we use the integral constraint eqn (18), with (ac � a) =
10�3 { 1; this is close to the onset of buckling where our theory
is valid.)

Despite the lack of symmetry, the buckling profiles of a
medium length inhomogeneous sheet are similar to the funda-
mental symmetric/antisymmetric modes characteristic of the
homogeneous sheets. We project the numerical solutions for

the inhomogeneous sheet, w(x), onto the modes of the homo-
geneous sheet (eqn (9)), i.e. the basis of eigenfunctions of the
eigenvalue problem given by eqn (5).§ More concretely,
we expand the solution of eqn (4) as the infinite linear combi-
nation

wðxÞ ¼
X1
j¼1

a
ðsÞ
j w

ðs;jÞ
0 ðxÞ þ a

ðaÞ
j w

ða;jÞ
0 ðxÞ

h i
; (25)

where we use the index j to denote each pair of solutions—
symmetric (s) and antisymmetric (a). We redefine the eigen-
functions (9a) and (9b) as

w
ðsÞ
0 ðxÞ ¼ cos k�

L

2
cos kþx� cos k�x cos kþ

L

2
; (26)

and

w
ðaÞ
0 ðxÞ ¼ sin k�

L

2
sin kþx� sin k�x sin kþ

L

2
; (27)

and choose to normalize to unity the coefficients in the linear
combination eqn (25).

The coefficients a(s)
1 and a(a)

1 are plotted in Fig. 6a. The first
pair of modes—either the symmetric or the antisymmetric—are
dominant in the linear combination that describes w(x). This
dominant term changes in the vicinity of the crossing points
(depicted by vertical dashed lines in Fig. 6). However, for larger
and more inhomogeneous sheets the residue that is not cap-
tured by the lowest symmetric and antisymmetric modes,
1 � [(a(s)

1 )2 + (a(a)
1 )2], plotted in Fig. 6b, grows. (Those cases with

larger values of fend are plotted in lighter gray in Fig. 6.) This
indicates a reduction in the projection of w(x) onto the first pair
of modes.

Higher order modes are necessary to account for the buck-
ling profile of longer and more inhomogeneous sheets. Thus
the difference between the wrinkles in homogeneous and
inhomogeneous sheets increases. This superposition of modes
also explains the concentration of the bending energy towards
the softer end of the sheet, as seen in Fig. 7 for the long
inhomogeneous sheet.9,29–31

4.3 The failure of hard composites

Our study of wrinkles thus far, leads to further questions. For
example, when we consider brittle materials, such as ice, in the
homogeneous case we expect failure (e.g. fracture) to happen at
the highest bending stress, i.e. at the centre. If we introduce a
stiffness gradient, we have shown above how the position of the
maximum amplitude is displaced from the centre. How does
this position compare with that of the maximum bending
stress? In other words, where is fracture more likely to occur
in an inhomogeneous sheet?

Fig. 5 (a) Contour plots for w(x) with varying L̃ and the largest vertical
displacement (highlighted in green), for a medium length stiffened sheet.
Here, fend = 0.1, g0 = 10. The amplitudes are computed assuming the
condition (ac � a) = 10�3 { 1, that ensures that the sheet bends close to
the onset of buckling, imposed in eqn (18). (b) Buckling profile in a sheet
with L̃ = 8.

§ Integration by parts shows that the operators
d4

dx4
þ 1

� �
and � d2

dx2

� �
are

Hermitian, the latter is also positive definite, and hence
d4

dx4
þ 1

� �
; � d2

dx2

� �
 �

is a Hermitian definite pencil. Therefore, the problem is one of standard
Hermitian eigen-theory and we can take advantage of the completeness of the
known eigenfunctions, eqn (9a) and (9b), of the homogeneous sheet problem,
eqn (5).
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Because ice is a hard material, we model the composite
structure of water inclusions with the effective Young’s mod-
ulus and the Poisson’s ratio of Eshelby17 as

E� 	 E�0 1� 3ð1� n0Þð1þ 13n0Þ
ð1þ n0Þð7� 5n0Þ

� �
f

� �
; (28)

and

n 	 n0 þ
12ð1� n0Þð�1þ 2n0Þ

�7þ 5n0

� �
f; (29)

(see Appendix B). A model for fracture in ice floes is given in
Vella and Wettlaufer;2 when a crack is initiated, the stresses
exceed a critical value s�m.¶

For elastic sheets, stresses vary linearly through the thick-
ness of the sheet, and so the maximum stress is achieved at the
surface of the sheet. This stress is related to the maximum
bending moment per unit length acting on an element of the

sheet (see p. 5 of ref. 4):

s�max ¼
E�ðx�Þh�

2 1� nðx�Þ2½ �B�ðx�ÞjM
�ðx�Þmaxj; (30)

where the maximum bending moment per unit length is

M�ðx�Þmax

�� �� ¼ maxfB�ðx�Þjw�;2x� ðx�Þj:x� 2 ½�L�=2;L�=2�g;
(31)

where w�;2x� ðx�Þ is the curvature of the sheet in the small slope

approximation (which is implicit in the derivation of the
floating beam eqn (4)4). This maximum represents a trade-off
between the bending stiffness, which peaks at the stiffer end of
the sheet, and the curvature of the buckling profile, which is
larger towards the softer side of the sheet.

We rescale the bending moment per unit length by B�0ð‘�Þ�1,
and the stress by B�0ðh�Þ�2ð‘�Þ�1. Now, considering a sheet with
constant thickness h� and varying Young’s modulus, the
dimensionless failure criterion is

sm r 6|Mmax|. (32)

Fig. 6 Smallest pair of squared coefficients in the expansion (25) for a
stiffened inhomogeneous sheet (g0 = 10). (a) Solid curves denote [a(s)

1 ]2, and
dotted curves [a(a)

1 ]2. (b) Residual that is not captured by the lowest
symmetric and antisymmetric modes. Different shades of gray for trajec-
tories corresponding to each value of fend, from fend = 0.02 (black), to
fend = 0.2 (lightest gray), and equally spaced jumps for the curves in
between (increasing in the direction of the arrow in (b)). The dashed
vertical lines denote the crossing points as in eqn (20) and (21) ( j = 1,
l = {1,2,3,4}).

Fig. 7 Displacement of the spatial variation in amplitude in the buckling
profile w(x) for a large length stiffened inhomogeneous sheet (fend = 0.1,
g0 = 10) as L varies. The sheet is stiffer at x = �L/2 and softer at x = L/2.
(a) Contour plots for w(x) for varying L̃ and the largest vertical displacement
in green. (b) Buckling profile in a sheet with L̃ = 30. (ac � a) = 10�3

to compute the amplitudes from eqn (18).

¶ For ice floes the yield strength, s�m, is 1–3 MPa for fresh ice,32,33 and
0.1–0.4 MPa,34 or 0.4 MPa,35 for sea ice.
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We plot in Fig. 8(a) the buckling profiles of a thin floating
sheet with a decreasing volume fraction of softening inclusions
(eqn (23)) and elastic moduli given by eqn (28) and (29) along
the direction of confinement (L̃ = 19.6). The vertical axis in the
contour plot denotes an increasing volume fraction at x = �L/2,
fend. The dimensionless stretching-stiffness that models the
behaviour of a fresh ice sheet, with r�ice ¼ 0:9 kg m�3,
E�0 ¼ 1 GPa, h� = 1 mm and n0 = 0.33,32,33 floating on water,
is a large value of S E 104. To compute the amplitudes of the
buckling profiles using eqn (18), we assume (ac � a) = 10�5.

In addition to the spatial variation of the wrinkle amplitude
towards the softer end of the sheet, which is more prominent at
larger values of the volume fraction fend, there is a deviation
between the position of the largest deflection (green dots)
and the coordinate of |Mmax| (red dots). To wit, the sheet’s
maximum bending stress is not at the wrinkle of largest
amplitude, but at wrinkles on the stiffer side.

The maximum bending stress and the largest deflection in
Fig. 8(a) move stepwise towards the soft end as fend increases,
and the separation between their positions changes with fend.
Now, because the largest curvature occurs at the largest deflec-
tion, and |Mmax| is proportional to the curvature (see eqn (31))
then |Mmax| is a discontinuous function of fend. In Fig. 8(b), the
discontinuities correspond to when the maximum bending
stress jumps to the left and hence approaches the location of
the largest deflection.

Finally, we note that the maximum bending stress, plotted
in Fig. 8(b), increases in inhomogeneous sheets.

4.4 Critical compression

The buckling profiles of an inhomogeneous sheet have no
symmetry for any finite L. Thus, the switching between sym-
metric and antisymmetric modes observed in the homogeneous
case as L varies has no analogue in the inhomogeneous case.
We recall that those sheet lengths at which the homogeneous
modes switch correspond to degenerate values of the associated
compressions, and hence these degeneracies should disappear
in the inhomogeneous case. This is a well established result in
quantum theory, where the jargon for degenerate eigenvalues
is ‘level crossing’, the simplest case of which was analyzed by
von Neumann and Wigner.37 From a mathematical perspective,
the problem here is very similar: the linear differential operator
defining the mechanical equilibrium, eqn (4), can be para-
metrized as A(fend) = AH + fend AI. When fend = 0, this
parametrization yields the homogeneous case, eqn (5):
AHw0 + t0(w0),2x = 0. The problem of finding the eigenvalues
of A(fend) by perturbation theory, which expresses each
eigenvalue as a power series in fend, then shows
the unification of the eigenvalues into a single multi-valued
analytic function of fend, and the avoidance of crossing for
fend a 0.38,39

We examine in Fig. 9 the two smallest compressions of
inhomogeneous sheets as the sheet size varies. We use the

rescaling t=
ffiffiffiffi
�E

p
(Ē denotes the spatial average of eqn (24)) in the

inhomogeneous case and include for comparison the smallest
pair of critical buckling compressions from the homogeneous
sheet. We note that this scaling collapses the inhomogeneous
case onto the homogeneous case. However, by blowing up the
region around L̃ = L̃(II)

1,1 (see the inset in Fig. 9, in which the
inhomogeneous curves are computed every DL̃ = 0.032), we see
that the compressions of the inhomogeneous sheet do not
cross. In other words, they are ordered from smaller to larger
for any finite L̃. We thus denote the two smallest compressions
t(1)(L̃) and t(2)(L̃), with t(1)(L̃) o t(2)(L̃). Importantly, t(1)(L̃) is
larger than the smallest compression in the first pair (t(s)

0 ,t(a)
0 ),

Fig. 8 Bending profiles w(x) and maximum bending stress of a thin, wide
softened sheet (L̃ = 19.6) close to the onset of buckling ((ac � a) = 10�5).
(a) Contour plots for w(x) with varying volume fraction fend are computed
numerically.36 The largest vertical displacement for every profile of a given
fend is marked by green dots. Red dots denote the position of the
maximum bending stress. (Greyscale is used to show the value of w(x),
as indicated by the bar to the right.) (b) The maximum bending stress
(dots) and the rescaled version of the yield strength s�m ¼ 2.8 MPa32,33

(horizontal dashed line).
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and hence an inhomogeneous stiffness induces larger com-
pressive loads; at most, compressions that match the homo-
geneous counterpart are observed for certain values of L̃.

In a thought experiment in which we infinitesimally
increase fend, starting at fend = 0, i.e. a homogeneous sheet,

the intersecting compressions at L̃ given by eqn (20) and (21)
split when fend 4 0. We measure this separation between
consecutive compressions, and we examine its growth with fend

close to the corresponding crossing points of the homogeneous
sheet, in Fig. 10.

We fix fend and then we find numerically the local minima
of Dt(2�1) with respect to L̃, which we denote Dt(2�1)

min . The values
of L̃ that minimize Dt(2�1) start at the crossing points when
fend = 0, and increase with fend. The first eight results
Dt(2�1)

min (corresponding to the first eight crossings in the homo-
geneous case) are plotted in Fig. 10 for different values of
fend/L, where L is the corresponding sheet size that minimizes
Dt(2�1). All curves Dt(2�1)

min collapse into one. Therefore we
conclude that Dt(2�1)

min grows linearly with fend/L, which is the
gradient from eqn (23).

5 Conclusions

We have examined the two-dimensional buckling and wrinkle
patterns in floating homogeneous and inhomogeneous thin
elastic sheets. With two control parameters, the size of the
confined sheet and the gradient of bending stiffness, we
quantified the wrinkled states using the Föppl–von Kármán
theory of thin sheets. A central test of the results is to vary the
bending stiffness by varying the volume fraction of inclusions
in the host solid.

In homogeneous sheets, the only control parameter is the
sheet size L. The buckling profile is determined by the smallest
compressive load, and so we expect that the mode that will be
observed in a buckling experiment corresponds to the smallest
compression. However, for some particular sizes of the con-
fined sheet, the same compression is associated with two
different wrinkling modes. We gave asymptotic results for the
shape of the sheet at the onset of buckling, together with the
critical loads and the critical sheet sizes for degeneracy in the
limit of large sheets, L c 1.

In contrast, this degeneracy is not observed in inhomoge-
neous sheets. Indeed, the otherwise crossing compressions of
the homogeneous case split when a gradient of stiffness is
applied parallel to the direction of confinement. The size of this
splitting grows linearly with the magnitude of the gradient of
the volume fraction at all the crossing points. Importantly, the
wrinkled states of confined inhomogeneous sheets depend
sensitively on their size. While medium length sheets buckle
very much like their homogeneous counterparts, the wrinkled
states in large length sheets are a superposition of many
modes. This feature of large length sheets allows for the
bending energy to be spatially concentrated, which is crucial
in establishing a failure criterion, with particular relevance in
glaciology.

Finally, the results presented here for floating sheets are also
relevant for sheets on a linear soft elastic foundation, see e.g.
ref. 40. A more complex behaviour is expected in the more
general case of a linear elastic foundation, whose response is
expected to be geometrically nonlinear, in which localization of

Fig. 9 Critical compression of a stiffened inhomogeneous sheet
(fend = 0.2, g0 = 10) as a function of the sheet size L̃, with numerical
results using Chebfun36 (t(1), t(2)). The quantities t(s)

0 , t(a)
0 denote the smallest

pair of compressions of the corresponding homogeneous sheet (fend = 0).
Here, the critical compression t has been rescaled by the square root of
the mean Young’s modulus, t=

ffiffiffiffi
�E

p
, to facilitate comparison with the results

from the homogenous case (solid curves).

Fig. 10 Minimal separation between the two smallest compressions
Dt(2�1)

min of a stiffened inhomogeneous sheet (g0 = 10). Different symbols
denote those minima corresponding to the crossings of type I (circles), and
of type II (triangles) when fend/L = 0. Shades of gray correspond to the
crossing point index l: lighter gray for l = 1, darkest gray for l = 4. The red
right triangle is one decade in length on both legs, showing the linear
relation Dt(2�1)

min p fend/L.
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buckling occurs, see e.g., ref. 41 and 42. In addition to the range
of applications of interest, from soft composites of biological
relevance43 to hard composites of engineering or geophysical
importance, a thorough mathematical analysis, rather than the
numerical study given here, may provide additional insights.
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Appendices
Appendix A Details of theoretical formulation

In the main text, we gave the equation governing the out-of-
plane displacement of the beam without a formal derivation.
Here, we expand upon the derivation of this. A key detail
concerns the state of stress within the sheet—to ensure that
this stress satisfies in-plane equilibrium, r�r = 0, we introduce
a force function w�: the internal in-plane forces per unit length
are obtained by double differentiation of w� so that
sxx ¼ @2w�=@y�2, syy ¼ @2w�=@x�2 and sxy = �q2w�/qx�qy�.4 Fol-
lowing the standard derivation of the plate equation, see ref. 4,
but accounting for the possibility that n = n(x�), we find that
normal displacements of the sheet satisfy:

r2ðB�ðx�Þr2w�Þ � ½B�ðx�Þf1� nðx�Þg;w�� þ r�g�w� ¼ ½w�; w��;
(33)

where B�(x�) is the bending stiffness (or flexural rigidity) of the
sheet and the von Kármán operator is

½w�; w�� � @
2w�

@x�2
@2w�

@y�2
� 2

@2w�

@x�@y�
@2w�

@x�@y�
þ @

2w�

@y�2
@2w�

@x�2
: (34)

For a midplane displacement with components (u�,v�,w�),
the sheet’s in-plane strains, eij, are given by

ex�x� ¼ ðu�Þ;x� þ
1

2
ðw�Þ;x� 2; ey�y� ¼ ðv�Þ;y� þ

1

2
ðw�Þ;y� 2; and

ex�y� ¼
1

2
ðu�Þ;y� þ ðv�Þ;x� þ ðw�Þ;x� ðw�Þ;y�
h i

;

(35)

where, for example, (w�),x� denotes the partial derivative of w�

with respect to x�. Note that the displacements u� and v� may be
eliminated from these relationships by cross-differentiation,
see p. 13 of ref. 4. Relating these derivatives of strains to the in-
plane forces, and hence to the derivatives of the force function
w�, one finds the compatibility equation

r2 1

E�ðx�Þr
2w�

� �
� 1þ nðx�Þ

E�ðx�Þ ; w
�

� �
¼ �h

�

2
½w�;w��; (36)

which gives the stress in the plane of the sheet induced by the
stretching of the sheet’s mid-plane.

Appendix B Effective stiffness of composite materials

The foundational Eshelby theory of solid composites17

describes the elastic behaviour of rigid composites with a dilute
dispersion of noninteracting incompressible inclusions. Stiff-
matrix materials such as ice, glass, ceramics and steel have
E� = O(GPa) and n B 0.3, and thus have subnanometric
elastocapillary length. Therefore, for typical inclusion sizes
the effect of surface tension is negligible and we can use
Eshelby theory17 to compute the effective elastic moduli of
compression, k�, and rigidity, m�, which are

k� ¼ k�0 1� ðk�1 � k�0Þ
ðk�0 � k�1Þa� k�0

� �
f


 �
; and

m� ¼ m�0 1� m�1 � m�0
ðm�0 � m�1Þb� m�0

� �
f


 �
;

(37)

where a � (1 + n0)/[3(1 � n0)] and b � 2(4 � 5n0)/[15(1 � n0)]. We
denote the host matrix’s elastic constants with subscript ‘‘0’’,
those corresponding to the inclusions with subscript ‘‘1’’, and
symbols with no subscript denote the solid composite. The
volume fraction of inclusions is f.

The incompressible liquid inclusions have zero shear mod-
ulus, m�1 ¼ 0, and infinite bulk modulus, k�1 ¼ 1 (due to incom-
pressibility), so that the Young’s modulus and Poisson’s ratio of
the composite are

E� 	 E�0 1� 3ð1� n0Þð1þ 13n0Þ
ð1þ n0Þð7� 5n0Þ

� �
f

� �
; (38)

and

n 	 n0 þ
12ð1� n0Þð�1þ 2n0Þ

�7þ 5n0

� �
f; (39)

where we have used eqn (37) and expanded to first order in f.
For a stiff-matrix composite with n0 = 0.3 with liquid inclusions,
the composite Young’s modulus (Poisson’s ratio) is less than
(greater than) the host matrix; E�oE�0 and n 4 n0.

For soft composites, micron sized inclusions create non-
negligible interfacial stresses with an effective Young’s mod-
ulus given by

E�ðf; g0Þ ¼ E�0

1þ 5

2
g0

5

2
g0ð1� fÞ þ 1þ 5

3
f

� �; (40)

where g0 � l�/R� captures the size regime where surface tension
operates.18,28 Eqn (24) assumes that the inclusion concen-
tration is dilute and hence we refer to it as the dilute theory
(DT). However, we note that this approach is quantitatively
accurate up to f E 0.2 when g0 4 2/3, which is in the stiffening
regime where E�ðf; g04 2=3Þ=E�0 4 1.44 The constituents of the
composite are incompressible and hence n = 1/2 throughout.

In the softening regime, where g0 o 2/3, we use the expres-
sion for the effective Young’s modulus of Mancarella
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et al.19 (MSW):

E�ðf; g0Þ ¼ E�0
2� 2fþ g0ð5þ 3fÞ

2þ ð4=3Þfþ g0ð5� 2fÞ: (41)

Appendix C The eigenvalue problem for a homogeneous sheet

Here we solve the linear fourth-order differential equation for
the vertical displacement w0,

d4w0

dx4
þ t0

d2w0

dx2
þ w0ðxÞ ¼ 0; (42)

where the eigenvalue t0 is determined by the requirement to
have a non-trivial that satisfies the homogeneous boundary
conditions

w0ð�L=2Þ ¼ 0 and
dw0

dx

����
�L=2
¼ 0: (43)

Since eqn (42) has constant coefficients, we seek solutions of
the form w0(x) p eikx, yielding

k4 � t0k2 þ 1 ¼ 0, (44)

and the solutions for k2 are

k�
2 ¼ t0 �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
t02 � 4

p
2

(45)

or

k� ¼
1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffi
t0 þ 2

p
�

ffiffiffiffiffiffiffiffiffiffiffiffiffi
t0 � 2

p� �
: (46)

Thus for the wavenumber k to be real, we need t0 Z 2. The
eigenfunctions w0(x) are linear combinations of e�ik+x and
e�ik�x, but we are interested in real solutions. Thus, we write
the general solution of eqn (42) as

w0ðxÞ ¼ C1 cosðkþxÞ þ C2 cosðk�xÞ þ C3 sinðkþxÞ þ C4 sinðk�xÞ;
(47)

where the k� are the positive roots of eqn (45) and the Ci (i =
1,2,3,4) are real constants. The problem is linear and has
homogeneous boundary conditions, so those constants can
only be determined up to a multiplicative factor. Enforcing
eqn (43), we obtain

C1 cosðkþL=2Þ þ C2 cosðk�L=2Þ ¼ 0

C1kþ sinðkþL=2Þ þ C2k� sinðk�L=2Þ ¼ 0

C3 sinðkþL=2Þ þ C4 sinðk�L=2Þ ¼ 0

C3kþ cosðkþL=2Þ þ C4k� cosðk�L=2Þ ¼ 0:

(48)

The vanishing determinant of the system (48) can be
factorized as

cosðkþL=2Þ cosðk�LÞ

kþ sinðkþL=2Þ k� sinðk�L=2Þ

�����
�����
sinðkþL=2Þ sinðk�LÞ

kþcosðkþL=2Þ k�cosðk�L=2Þ

�����
�����¼0:

(49)

Hence, for a given L we have two possible relations involving k�
and L:

kþtanðkþL=2Þ ¼ k�tanðk�L=2Þ (50)

or kþcotðkþL=2Þ ¼ k�cotðk�L=2Þ; (51)

where ‘or’ means that either relation (50) or relation (51) is
fulfilled, or both. Note that when only eqn (50) is fulfilled, we
must set C3 = C4 = 0 for the last two equations in (48) to be
satisfied, and hence the resulting eigenfunction is even. Simi-
larly, when only eqn (51) is fulfilled, we must set C1 = C2 = 0 and
the eigenfunction is odd.

Clearly when t0 = 2, k� = 1 and the relations (50) and (51) are
both satisfied simultaneously. However, the resulting solution
is trivial, w0(x) = 0. In Appendix F we ask for which values of L
both relations (50) and (51) are satisfied simultaneously with
t0 4 2 and show that there are certain values of L, the ‘crossing
points’, for which both odd and even solutions emerge with the
same value of t0. More generally, however, one of the relations
(50) and (51) has a smallest value of t0 4 2. We therefore expect
that as the compressive stress t0 is increased from 0, the mode
with the smallest value of t0 will be obtained; this emergent
buckling mode will therefore be symmetric or antisymmetric
depending on which of the relations (50) and (51) is solved by
the smaller value of t0. In Appendix E we determine asymptotic
expressions, valid for L c 1, for the smallest t0 4 2 that
satisfies each of the relations (50) and (51); this allows us also to
determine which is the smaller compression and hence which
mode, symmetric or antisymmetric, should be expected at the
onset of wrinkling.

We are generally interested in the dependence of the eigen-
value t0 on the natural length of the sheet L. We note that we
can rewrite the characteristic eqn (44) as

t0 ¼ k2 þ 1

k2
; (52)

which holds for k being either k+ or k�. We also note, from the
original quartic, that k+

2k�
2 = 1 and hence, taking k� to be

positive, we have

kþk� ¼ 1: (53)

Appendix D The buckling wavenumber for homogeneous
sheets is real

In Section 3 we assumed that the wavenumber k observed in
buckling is purely real. Here, we demonstrate this is the case by
supposing instead that eqn (44) has complex roots. Since the
tension t0 is real and eqn (44) contains only even powers, there
must be two complex conjugate pairs of solutions. We may
write one pair as k� = kr � iki, with kr Z 0, and hence the other
pair will be �k�. We extend sine and cosine to the complex
plane using analytic continuation, and thereby extend the
boundary conditions detailed in Appendix C to obtain the
counterparts of eqn (50) and (51) as

ðkr þ ikiÞtanðkr þ ikiÞL=2 ¼ ðkr�ikiÞtanðkr�ikiÞL=2 (54)
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and

ðkr þ ikiÞcotðkr þ ikiÞL=2 ¼ ðkr�ikiÞcotðkr�ikiÞL=2; (55)

where for both relations (54) and (55) the right-hand side is the
complex conjugate of the left-hand side, so the imaginary part
of either side must be zero. This condition takes the form

f ðkrL=2Þ ¼ �gðkiL=2Þ and f ðkrL=2Þ ¼ gðkiL=2Þ; (56)

for eqn (54) and (55), respectively, where

f ðxÞ � x

sinðxÞ cosðxÞ and gðxÞ � x

sinhðxÞ coshðxÞ: (57)

By plotting the functions f, g and �g one finds that their ranges
do not overlap (though f and g have the same limit as x tends to
zero) and hence there is no solution of eqn (56). Therefore,
k is real.

Appendix E Asymptotic solution for large sheet sizes, L c 1

Having shown that the roots of eqn (50) and (51) are necessarily
real, we consider in this appendix the behaviour of these roots
for large sheets, L c 1. Our starting point is the observation,
from numerical simulations, that as L - N it appears that
t0 - 2 for both symmetric and antisymmetric modes. We
therefore let

t0 = 2 + e, (58)

with e { 1. From (8) we then immediately have that

k� ¼ 1� 1

2
e1=2 þ e

8
þOðe2Þ: (59)

We consider first the case of symmetric modes, rewriting
eqn (50) as

kþ
k�
� 1 ¼ � 2 sin½ðkþ � k�ÞL=2�

sin½ðkþ þ k�ÞL=2� þ sin½ðkþ � k�ÞL=2�
; (60)

which can then be written in terms of e as

e1=2 þ e
2
þOðe3=2Þ ¼ � 2 sin½e1=2L=2�

sin 1þ 1

8
eþOðe2Þ

� �
Lþ sin½e1=2L=2�

:

(61)

The quantity e1/2L appears frequently, and so we let

e ¼ 4a2

L2
(62)

for some a which is an O(1) quantity to be determined. We find
that eqn (61) becomes

2a
L
þ 2a2

L2
þOðL�3Þ ¼ � 2 sin a

sin½LþOðL�1Þ� þ sin a
: (63)

A non-trivial solution requires sina{ 1, and hence that a E np
for some integer n. The smallest t0 4 2 corresponds to the
smallest positive a so that the relevant root is a E p. A simple
calculation of the correction a–p from eqn (63) then yields the
asymptotic expression for the value of t0 for the even mode,
t(s)

0 , that is given in eqn (11) of the main text. Precisely the same

calculation, with minor modifications of signs on the right
hand side of eqn (60)–(63), follows through for the asymmetric
mode and yields eqn (12) for t(a)

0 .
We note further that the asymptotic expressions for t(a)

0 and
t(s)

0 agree to leading order in L�1 when sin L = 0; therefore we
expect the crossing points to occur at L = np with n c 1 integer.

The asymptotic expressions for symmetric and antisym-
metric mode shapes, given in eqn (14) of the main text, follow
from expanding eqn (9) to leading order in L�1.

Appendix F Crossings of symmetric and antisymmetric modes

Here, we determine expressions for the values of L for which
both eqn (50) and (51) are satisfied simultaneously; this corre-
sponds to the sheet lengths for which a symmetric mode and
an antisymmetric mode have the same eigenvalue. We refer to
such a point as a ‘crossing’.

We multiply eqn (50) and (51) to obtain k+
2 = k�

2 and hence
k+ = k� = 1. However, this implies t0 = 2, which, as we have
already seen, corresponds to the trivial solution. Instead, we
must have that either tan k+L/2 = tan k�L/2 = 0 or cot k+L/2 =
cot k�L/2 = 0, thereby allowing simultaneous solutions of
eqn (50) and (51) with k+ a k�. Thus, there are two families
of non-trivial common solutions to eqn (50) and (51):

(1) k+L = p + 2mp and k�L = p + 2np, with m,n A N. Eqn (53)
then implies that

LðIÞ ¼ p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð2mþ 1Þð2nþ 1Þ

p
: (64)

We refer to the eigenvalues t0 at these crossing points as type I;
they are given by (see eqn (52))

tðIÞ0 ¼
2mþ 1

2nþ 1
þ 2nþ 1

2mþ 1
: (65)

(2) k+L = 2m̃p and k�L = 2ñp, with m̃,ñ A N* (the set of non-
zero natural numbers). Eqn (53) implies that

LðIIÞ ¼ 2p
ffiffiffiffiffiffiffi
~m~n

p
: (66)

We refer to the eigenvalues t0 at these crossing points as type II;
they are given by

tðIIÞ0 ¼ ~m

~n
þ ~n

~m
: (67)

Each symmetric and antisymmetric mode comes in a pair,
which we label with the index j = m � n A N* such that j = 1
corresponds to the pair with the smallest eigenvalues. (Note
that since k+ 4 k�, m 4 n.) We find that the crossings within
the pair j occur for

(mj,nj) = (l � 1,l � 1 + j) and (m̃j,ñj) = (l,l + j), l A N*.
(68)

The index l labels the crossings within a given pair, such that
l = 1 corresponds to the smallest size for which a crossing of
either type occurs. Hence, we obtain two sets of crossing points
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given by

L
ðIÞ
l;j ¼ 2p

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðl � 1=2Þðl þ j � 1=2Þ

p
and

L
ðIIÞ
l;j ¼ 2p

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
lðl þ jÞ

p
; l; j 2 N?:

(69)

The corresponding eigenvalues are

ðt0ÞðIÞl;j ¼
2l þ 2j � 1

2l � 1
þ 2l � 1

2l þ 2j � 1
and

ðt0ÞðIIÞl;j ¼
l

l þ j
þ l þ j

l
:

(70)

For very small values of L, within a pair the symmetric mode
always has the smallest eigenvalue. As L increases, the first pair
crosses at L ¼

ffiffiffi
3
p

p (type I), corresponding to t0 = 10/3. The next

crossing (type II) occurs at L ¼ 2
ffiffiffi
2
p

p, corresponding to t0 = 5/2.
Between those crossing points, the antisymmetric mode has the
smallest eigenvalue. As L increases this pattern repeats infi-
nitely many times (see Fig. 3). Indeed, as l - N, we note that:

L(I)
l,1 B 2pl, L(II)

l,1 B p(2l + 1), (71)

reproducing the result of the asymptotic analysis for L c 1 that
followed on from eqn (11) and (12), namely that the system
should switch between symmetric and asymmetric modes (and
vice versa) each time L increases by a multiple of p.
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R. F. Shepherd and Y. Mengüç, Nat. Commun., 2020, 11,
4000.

22 C. Mo, H. Long and J. R. Raney, Proc. Natl. Acad. Sci. U. S. A.,
2022, 119, e2123497119.

23 J. R. Tse and A. J. Engler, Curr. Protoc. Cell Biol., 2010, 47, 10.
24 E. Lifshitz, A. Kosevich and L. Pitaevskii, Chapter II - The

Equilibrium Of Rods And Plates, Butterworth-Heinemann,
Oxford, 3rd edn, 1986, pp. 38–86.
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