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Strain correlation functions in isotropic
elastic bodies: large wavelength limit
for two-dimensional systems

J. P. Wittmer, * A. N. Semenov and J. Baschnagel

Strain correlation functions in two-dimensional isotropic elastic bodies are shown both theoretically

(using the general structure of isotropic tensor fields) and numerically (using a glass-forming model

system) to depend on the coordinates of the field variable (position vector r in real space or wavevector

q in reciprocal space) and thus on the direction of the field vector and the orientation of the coordinate

system. Since the fluctuations of the longitudinal and transverse components of the strain field in

reciprocal space are known in the long-wavelength limit from the equipartition theorem, all

components of the correlation function tensor field are imposed and no additional physical assumptions

are needed. An observed dependence on the field vector direction thus cannot be used as an indication

for anisotropy or for a plastic rearrangement. This dependence is different for the associated strain

response field containing also information on the localized stress perturbation.

I. Introduction
A. General background

A tensor field assigns a tensor to each point of the mathe-
matical space, in our case for simplicity a two-dimensional
Euclidean vector space with Cartesian coordinates and an
orthonormal tensor basis.1–4 Tensor fields are used in differ-
ential geometry,1 general relativity,5,6 in the analysis of stress
and strain in materials7–9 and in numerous other applications in
science and engineering. Tensor fields are experimentally10,11 or
numerically4,12–32 probed by means of correlation functions33–35

of their components and, importantly, these correlation functions
are themselves components of tensor fields.4 See Appendix A for
a brief review. Assuming translational invariance, correlation
functions are naturally best analyzed, both for theoretical12–14,17

and numerical4,18,33 reasons, in a first step as functions of the
wavevector q in reciprocal space. The dependence on the spatial
field vector r in real space can then be deduced (cf. Appendix B) in
a second step by inverse Fourier transformation (FT). This was
done, e.g., in our recent analysis4 of the spatial correlations of the
(time-averaged) stress tensor fields in amorphous glasses formed
by polydisperse Lennard-Jones (pLJ) particles deep in the glass
regime (cf. Section IIIA). It can thus be shown that all stress
correlation functions (both in reciprocal as in real space) can
be described by means of one ‘‘Invariant Correlation Function’’
(ICF) in reciprocal space characterizing the typical ensemble

fluctuations of the quenched normal stress components in reci-
procal space perpendicular to the wavevector q. Under additional
but rather general assumptions4 this ICF is given in the large-
wavelength limit by a thermodynamic quantity, the equilibrium
Young modulus of the system.

B. Investigated case study

As another example of the general procedure we shall investi-
gate in the present work the correlation functions cabgdðrÞ ¼
F�1½cabgdðqÞ� of the instantaneous strain tensor field eab(r) in
real space. These may be readily obtained33 from the compo-
nents of the tensor field

cabgd(q) = heab(q)egd(�q)i (1)

in reciprocal space with eabðqÞ ¼ F½eabðrÞ� being the Fourier
transformed strain tensor field components. (The average h. . .i
will be specified below) An example for the autocorrelation
function c1212(r) of the shear strain e12(r) is given in Fig. 1 for
the same two-dimensional model system already used in ref. 4
and 18. Interestingly, the correlation function is seen to
strongly depend both on the orientation of the field vector r
(panel (a)) and on the rotation angle a of the coordinate system
(panel (b)). Since the simulated system can be shown to be
perfectly isotropic down to a few particle diameters,4,18,36–39

these findings beg for an explanation. Expanding on our recent
work on stress correlations,4,17,18 this behavior can be traced
back to the fact that correlation functions of tensor fields of
isotropic systems must be components of a generic isotropic
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tensor field (cf. Section IIB). This field is shown below (cf.
Section IIID) to be completely described in terms of two ICFs
cL(q) and cT(q) in reciprocal space (q = |q| being the magnitude
of the wavevector). These ICFs characterize the independent
fluctuations of the longitudinal and transverse strain compo-
nents eL(q) and eT(q). Due to the equipartition theorem of
statistical physics cL(q) and cT(q) are given by7,10,11,21

bVcLðqÞ !
1

lþ 2m
and bVcTðqÞ !

1

4m
for q! 0 (2)

in the large-wavelength limit with b = 1/kBT being the inverse
temperature, V the d-dimensional volume of the system and l
and m two macroscopic Lamé coefficients.7,8 All strain correla-
tion functions are thus imposed on large scales. In turn this
explains without any additional physical input the octupolar
pattern† observed in Fig. 1 (cf. Section IVC and Appendix D) and
shows that strain correlations in elastic bodies must necessarily
be long-ranged. This is different for the closely related but
distinct tensorial response field being the tensorial product of
correlation functions and the imposed tensorial perturbation.
As emphasized in Sections IIE and V, the response field thus
contains additional information due to the source term and its
symmetry.

C. Outline

We begin in Section II with some general theoretical considera-
tions on isotropic tensor fields. Technical points concerning
the model system and the data production of tensorial fields on
discrete grids are discussed in Section III. This is followed in
Section IV by the presentation of our main numerical results.
The strain response due to an imposed stress point source is
discussed in Section V. A summary and an outlook are given in

Section VI. More details may be found in the Appendix both on
the theoretical background (cf. Appendices A and D) and on
computational issues (cf. Appendices B and C).

II. General considerations
A. Isotropic tensors and tensor fields

Isotropic systems, such as generic isotropic elastic bodies,7–9

simple and complex fluids,34,40–42 amorphous metals and
glasses,23–25,27–32,43 polymer networks and gels,40,41 foams and
emulsions20,22 or, as a matter of fact, our entire universe5 are
described at least on some scales by isotropic tensors and
isotropic tensor fields (cf. Appendix A2).1,3,9 It is well known3,9

that the components of isotropic tensors remain unchanged
under an orthogonal coordinate transformation (including
rotations and reflections). For instance,

E�abgd ¼ Eabgd (3)

for the forth-order elastic modulus tensor of an isotropic body
(cf. Appendix C3)8,9 with ‘‘*’’ marking an arbitrary orthogonal
transformation (cf. Appendix A1). This implies (cf. Appendix A4)
that Eabgd is given by two invariants, e.g., the two Lamé
coefficients l and m. Importantly, this does not hold for
isotropic tensor fields.3,4,17 For instance, for a forth-order
correlation function in reciprocal space the isotropy condition
becomes

c�abgdðqÞ ¼ cabgdðq�Þ (4)

with q* being the ‘‘actively’’ transformed wavevector (cf.
Appendix A2).

B. Structure of isotropic correlation functions

Assuming in addition the system to be achiral and two-
dimensional (cf. Appendix A3) it can be shown4 that correlation
functions of second-order tensor field components must take
the following mathematical structure

cabgdðqÞ ¼ i1ðqÞdabdgd

þ i2ðqÞ dagdbd þ daddbg
� �

þ i3ðqÞ q̂aq̂bdgd þ q̂gq̂ddab
h i

þ i4ðqÞq̂aq̂bq̂gq̂d

(5)

in terms of four ICFs in(q), the coordinates q̂a of the normalized
wavevector q̂ and the Kronecker symbol dab. Legitimate correla-
tion functions of isotropic systems may thus depend on q̂a and,
hence, on the orientation of the wavevector and of the coordi-
nate system. While the isotropy of the system may not be
manifested by one correlation function, it is crucial for the
structure of the complete set of all correlation functions given
by eqn (5). We note finally that it is useful to express the above
ICFs in terms of an alternative set of ICFs cL(q), cT(q), c>(q) and

Fig. 1 Autocorrelation function c1212(r) of the strain field component e12(r)
obtained from our colloidal glasses in two dimensions: (a) unrotated frame
with coordinates (r1, r2), (b) frame r

0
1; r
0
2

� �
rotated by an angle a = 301

(rotations marked by ‘‘0 ’’). Albeit the system is isotropic, the correlation
function is strongly angle dependent, revealing an octupolar symmetry.
While each pixel corresponds in (a) and (b) to the same spatial position r,
the correlation functions differ by the angle a. c1212(r) is positive (red) along
the axes and negative (blue) along the bisection lines of the respective
axes.

† See, e.g., the wikipedia entries on quadrupoles and general multipolar expan-
sions as used, say, in electrostatics. For the planar harmonic basis functions
cos(py) or sin(py) a monopole corresponds to p = 0, a dipole to p = 1, a quadrupole
to p = 2 and an octupole to p = 4.
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cN(q) given by

i1ðqÞ ¼ cNðqÞ � 2cTðqÞ

i2ðqÞ ¼ cTðqÞ

i3ðqÞ ¼ c?ðqÞ � cNðqÞ þ 2cTðqÞ

i4ðqÞ ¼ cLðqÞ þ cNðqÞ � 2c?ðqÞ � 4cTðqÞ:

(6)

See Appendix A4 for more details.

C. Planar harmonic basis functions

Instead of using the components q̂a one may, quite generally,
express all isotropic tensor fields in two dimensions in terms of
the orthogonal planar harmonic basis functions cos(py) and
sin(py) with q̂1 = cos(y) and q̂2 = sin(y) and p = 0, 2 and 4. (See
Appendix D for more details.) For instance, it follows from
eqn (5) that

c1212ðqÞ ¼ i2ðqÞ þ
i4ðqÞ
8
� i4ðqÞ

8
cosð4yÞ: (7)

Hence, if the invariant i4(q) is sufficiently large, c1212(q) must
reveal an octupolar pattern. Due to eqn (B18) derived in
Appendix B3, this alternative representation is especially useful
for performing the inverse FT to real space. This also shows that
the corresponding correlation function cabgdðrÞ ¼ F�1½cabgdðqÞ� in
real space must have the same mathematical properties.

D. Response to point source

Let us consider the second order tensor field Rab(q) obtained by
the contraction

RabðqÞ ¼
1

V
cabgdðqÞsgd (8)

with a symmetric but not necessarily isotropic tensor sab using
the standard summation convention over repeated indices.1,3

(For convenience we have introduced the system volume V.) We
shall call Rab(q) the ‘‘response field’’ (in reciprocal space) and
sab the ‘‘point source tensor’’. In fact, using eqn (B4) and (B6) it
is seen that in real space the tensor sab/V corresponds to a
‘‘point source’’ sabd(r) (using Dirac’s delta function) and Rab(q)
becomes

RabðrÞ ¼ F�1½RabðqÞ� ¼ cabgdðrÞsgd (9)

using cabgdðrÞ ¼ F�1½cabgdðqÞ�. We shall say more about the
specific linear strain response in real space in Section V but
focus here on the generic response in reciprocal space. Being
symmetric the source tensor may be diagonalized by a rotation
of the coordinate system where s12 = s21 = 0 and s11 and s22

become the two (in general not identical) eigenvalues. Hence,

RabðqÞ ¼
1

V
s11cab11ðqÞ þ s22cab22ðqÞ
� �

: (10)

We emphasize that the sum must be taken over all eigenvalues
of the source tensor, i.e. two for the presented two-dimensional
case. (The failure to sum properly over all tensorial contributions
to Rab(q) leads to incorrect angular dependences.) Importantly,

Rab(q) thus contains information over both the system, character-
ized by the correlation functions, and the imposed source term.

E. Different types of source terms

If we now assume that not only cabgd(q) is an isotropic tensor
field but that, moreover, sab is isotropic, i.e. s11 = s22, the
product theorem eqn (A7) discussed in Appendix A2 implies
that Rab(q) must also be an isotropic tensor field. According to
eqn (A15) it is given by

Rab(q) = k1(q)dab + k2(q)q̂aq̂b (11)

in terms of two invariants k1(q) and k2(q) which can in turn be
expressed in terms of the invariants of cabgd(q) and sab. Rab(q)
can thus at most be quadrupolar (p = 2). Specifically,

R12(q) = k2(q)q̂1q̂2 p sin(2y) (12)

which is distinct from c1212(q), cf. eqn (7). Importantly, in many
physical situations the source is in fact not isotropic and thus in
turn the response field not consistent with eqn (11). We remind
that according to a popular model of localized plastic failure by
means of ‘‘shear transformation zones’’23,44–47 two orthogonal
twin force dipoles of opposite signs may be imposed at the
origin.‡ This suggests to consider the case s11 = �s22. It follows
then from eqn (5) and (10) that

R12(q) p i4(q)q̂1q̂2(q̂1
2 � q̂2

2) p sin(4y). (13)

The (non-isotropic) response field R12(q) thus is in this case
octupolar as the correlation field c1212(q), however, shifted by
an angle p/8. It is readily seen by inverse FT that the same
general behavior applies in real space.

III. Technical issues
A. Algorithm, configurations and frames

We investigate amorphous glasses in two dimensions formed
by pLJ particles4,18,36–39,48 which are sampled by means of
Monte Carlo (MC) simulations.33 See Appendix C for details
(Hamiltonian, units, cooling and equilibration procedure, data
production, generation and analysis of tensor fields on discrete
grids). We focus on systems containing n = 10 000 and 40 000
particles at a working temperature T = 0.2. This is much lower
than the glass transition temperature Tg E 0.26,36 i.e. for any
computationally feasible production time the systems behave
as solid elastic bodies.38 Nc = 200 completely independent
configurations c are prepared using a mix of local and swap
MC hopping moves38,49 while the presented data are computed
using local MC moves only. For each c we store time-series
containing Nt = 10 000 ‘‘frames’’ t computed using equidistant
time intervals. As described in Appendix C3, the elastic modulus
tensor is isotropic and determined by the two Lamé coefficients
l E 38 and m E 14.36,38

‡ Let us impose in a rotated coordinate system at a = �p/4 a symmetric source
tensor with a finite ‘‘shear’’ s

0
12 ¼ s and vanishing diagonal components

s
0
11 ¼ s

0
22 ¼ 0. Using eqn (A2) this implies S11 = �S22 = s and S12 = 0 in the original

coordinate system at a = 0.
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B. Sampled discrete tensorial fields

As shown in Fig. 2, a discrete square grid is used to store and to
manipulate the various fields needed for the microscopic
description. The standard lattice constant for the grid in real
space is agrid E 0.2. The displacement field u(r) in real space is
determined for each frame t using a standard method10,11,21

from the displacement vector of each particle using as refer-
ence position the time-averaged particle position (cf. Appendix
C5). We obtain then from the Fourier transformed displace-
ment field uðqÞ ¼ F½uðrÞ� the strain tensor field8,17

eabðqÞ ¼
i

2
qbuaðqÞ þ qaubðqÞ
� �

(14)

in reciprocal space. Using the correlation function theorem for
FTs (cf. Appendix B) the strain correlations functions in reci-
procal space are given by eqn (1) where the average is taken over
all t and c. Both strain and correlation function fields in
reciprocal space are defined to be dimensionless (cf. Appendix
B1). We emphasize by a prime ‘‘0’’ all tensor field components
obtained in a coordinate system rotated by an angle a (with
a = 0 being the original unrotated system). Specifically, the

correlation functions c
0
abgdðqÞ ¼ he

0
abðqÞe

0
gdð�qÞi are obtained

using the components u
0
aðrÞ and q

0
a in the rotated frame.

C. Natural Rotated Coordinates

All the tensorial fields introduced above depend on the orienta-
tion of the coordinate system. Importantly, we consider these
properties in a first step in ‘‘Natural Rotated Coordinates’’
(NRC) where for each wavevector q the coordinate system is
rotated until the 1-axis coincides with the q-direction. We mark
these new tensor field components by ‘‘1’’ to distinguish them
from standard rotated tensor field components (marked by
primes ‘‘0’’). Note that q�a ¼ qd1a for all wavevectors q. Using the

components q�a and u�aðqÞ we obtain (as before) the strain tensor
e�abðqÞ. Importantly,

q�2 ¼ 0) e�22ðqÞ ¼ 0 (15)

in agreement with eqn (14). We thus only have two independent
components of the strain tensor field in NRC. We alternatively

write for convenience uLðqÞ � u
�
1ðqÞ, uTðqÞ � u�2ðqÞ, eLðqÞ �

e
�
11ðqÞ and eTðqÞ � e

�
12ðqÞ � e

�
21ðqÞ for the longitudinal and trans-

verse components of the displacement and strain tensor fields.
Note that

e
�
11ðqÞ � eLðqÞ ¼ iquLðqÞ (16)

and

e�12ðqÞ � e�21ðqÞ � eTðqÞ ¼ iquTðqÞ=2; (17)

i.e. displacement and strain fields in NRC contain essentially
the same information.

D. Correlation functions in NRC

The correlation functions c�abgdðqÞ � he�abðqÞe�gdð�qÞi may for

finite Nc not only depend on q but also on q̂. Consistently with
eqn (A18) and ref. 4, 17 and 18 we thus operationally define the
ICFs cLðqÞ � hc�1111ðqÞiq̂, cTðqÞ � hc�1212ðqÞiq̂, cNðqÞ � hc�2222ðqÞiq̂
and c?ðqÞ � hc�1122ðqÞiq̂ by averaging over all wavevectors with

|q| E q. However, e�22ðqÞ ¼ 0 implies immediately that

c�2222ðqÞ ¼ c�1122ðqÞ ¼ cNðqÞ ¼ c?ðqÞ ¼ 0 for 8q: (18)

The two remaining non-trivial ICFs cL(q) and cT(q) are called,
respectively, the ‘‘longitudinal ICF’’ and the ‘‘transverse ICF’’.
As already noted in the Introduction, according to the equipar-
tition theorem cL(q) and cT(q) are given for sufficiently large
wavelengths by the Lamé coefficients l and m. The stated
eqn (2) can be readily obtained from published work7,10,11,21

using eqn (16) and (17) to substitute the displacement fields
uL(q) and uT(q) in NRC by the corresponding strain fields eL(q)
and eT(q).

IV. Main numerical results
A. Measured longitudinal and transverse ICFs

We turn now to the numerical results of this work. Fig. 3
focuses on the two non-vanishing correlation functions
obtained in reciprocal space and NRC. All correlation functions
are rescaled by bV having thus the dimension of an inverse
modulus. As can be seen for the two indicated particle numbers
n, a data collapse for different system sizes is observed,
confirming the expected volume scaling. The inset presents
the (not yet spherically averaged) correlation functions
bVc�1212ðqÞ and bVc�1111ðqÞ as functions of the wavevector angle
y for one small wavevector with q E 0.1. As expected for
isotropic systems, these correlation functions are y-inde-
pendent (apart from a small noise contribution due to the
finite number of independent configurations). The main panel
presents the q̂-averaged longitudinal and transverse ICFs bVcL(q)
and bVcT(q) as functions of q. The expected large-wavelength limit

Fig. 2 Two-dimensional (d = 2) square lattice with agrid being the lattice
constant and nL = L/agrid the number of grid points in one spatial
dimension. The filled circles indicate microcells of the principal box, the
open circles some periodic images. The spatial position r of a microcell is
either given by the r1- and r2-coordinates (in the principal box) or by the
distance r = |r| from the origin (large circle) and the angle y.
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eqn (2) is indicated in both panels by bold horizontal lines. As can
be seen in the main panel, it is well confirmed for q { 1 over at
least one order of magnitude where we have used the known
values of l and m. We remind that eqn (2) has been used in various
experimental and numerical studies10,11,21 to fit l and m. cL(q) and
cT(q) characterize the typical length of the complex random vari-
ables eL(q) and eT(q). Their distributions and correlations will be
discussed elsewhere.50 We note finally that the increase of the ICFs
from the low-q asymptotics visible for q 4 1 correlates with the
deviation of the total static structure factor S(q) from its low-q
plateau (cf. Fig. 6).

B. Correlation functions in reciprocal space

While remaining in reciprocal space we consider next coordi-
nate frames which are either unrotated (a = 0) or rotated as in
Fig. 1(b) using the same angle a for all q. According to eqn (5)
the correlation functions cabgd(q) of isotropic achiral systems in
two dimensions depend quite generally on the four ICFs cL(q),
cT(q), cN(q) and c>(q). Due to eqn (18) the last two of these ICFs
must vanish while cL(q) and cT(q) are given by eqn (2). Let us
introduce for later convenience the two ‘‘creep compliances’’

J1 �
1

m
� 1

lþ 2m
and J2 �

2

lþ 2m
: (19)

This yields in the original coordinates

bVc1212ðqÞ !
J1

8
cosð4yÞ þ . . . (20)

bVc1122ðqÞ !
J1

8
cosð4yÞ þ . . . (21)

�bV
2
ðc1111ðqÞ þ c2222ðqÞÞ !

J1

8
cosð4yÞ þ . . . (22)

bV
2
ðc1111ðqÞ � c2222ðqÞÞ !

J2

4
cosð2yÞ þ . . . (23)

for q - 0. The dots mark irrelevant constant contributions.§
See Appendix D for more details. For correlation functions

c
0
abgdðqÞ in rotated coordinate systems one merely needs to

substitute y by x = y � a. These relations are put to a test in
Fig. 4 where we focus for clarity on the reduced shear-strain

autocorrelation function f ðqÞ ¼ bVc
0
1212ðqÞ for n = 40 000. The

angular dependences are presented in the main panel for one
wavevector in the low-q limit. Focusing on the first term in
eqn (20) we have taken off the mean constant average over all y
(corresponding to the dots). Importantly, all data for different a
are seen to collapse when plotted as a function of the scaling
variable x. Obviously, this simple scaling (without characteristic
angle) would not hold for anisotropic systems. To obtain a
precise test of the q-dependence of cabgd(q) we project out the
angular dependences using

P½f ; p�ðqÞ � 2� 1

2p

ð2p
0

dy f ðq; yÞ cosðpyÞ (24)

for p = 2 and p = 4. For convenience the prefactor of the integral
is chosen such that P[cos(2y),2] = P[cos(4y),4] = 1. The result for
the shear-stress autocorrelation function with p = 4 is shown in
the inset of Fig. 4. In agreement with eqn (20) the presented
data is given by J1/8 (solid line) for sufficiently small wave-
vectors. Equivalent results have been obtained for the other
correlation functions mentioned above.

C. Correlation functions in real space

We turn finally to the correlation functions c
0
abgdðrÞ ¼

F�1½c 0abgdðqÞ� in real space. As shown in Appendix D, inverse

Fig. 3 Rescaled correlation functions in NRC and reciprocal space. The
bold dashed and solid lines indicate the expected low-q limit eqn (2). Inset:
bVc�1212ðqÞ and bVc�1111ðqÞ vs. y for q E 0.1. Main panel: Semi-logarithmic

representation of ICFs bVcT(q) and bVcL(q) vs. q.

Fig. 4 Rescaled correlation function f ðqÞ ¼ bVc
0
1212ðqÞ for n = 40 000.

Main panel: Angle dependence of vertically shifted f (q) for q E 0.1. Data
collapse is observed using the reduced angle x = y�a. The bold solid line
indicates the prediction, eqn (20). Inset: Comparison of P[f,p](q) for p = 4
with the predicted low-q limit J1/8 (bold solid line).

§ The omitted constant terms correspond to localized d(r) contributions to strain
correlation functions in real space. For example, such a contribution to c1212(r) is
J1 þ J2

8b
dðrÞ.

Soft Matter Paper

O
pe

n 
A

cc
es

s 
A

rt
ic

le
. P

ub
lis

he
d 

on
 2

4 
Ju

ly
 2

02
3.

 D
ow

nl
oa

de
d 

on
 8

/6
/2

02
5 

9:
15

:3
4 

A
M

. 
 T

hi
s 

ar
tic

le
 is

 li
ce

ns
ed

 u
nd

er
 a

 C
re

at
iv

e 
C

om
m

on
s 

A
ttr

ib
ut

io
n-

N
on

C
om

m
er

ci
al

 3
.0

 U
np

or
te

d 
L

ic
en

ce
.

View Article Online

http://creativecommons.org/licenses/by-nc/3.0/
http://creativecommons.org/licenses/by-nc/3.0/
https://doi.org/10.1039/d3sm00424d


This journal is © The Royal Society of Chemistry 2023 Soft Matter, 2023, 19, 6140–6156 |  6145

FT implies

bc
0
1212ðrÞ ’

J1

4pr2
cosð4xÞ for r� 1 (25)

with x = y � a being the difference of the angles y and a
indicated in Fig. 1. The same large-r limit holds also for

bc
0
1122ðrÞ and for �bðc 01111ðrÞ þ c

0
2222ðrÞÞ=2. Moreover,

bðc 01111ðrÞ � c
0
2222ðrÞÞ=2 ’ �

J2

4pr2
cosð2xÞ (26)

for r c 1, i.e. a dipolar symmetry is expected. A verification of
the r-dependence is obtained using again (now in real space)
the projection P[f,p](r), cf. eqn (24). Focusing on n = 40 000
several rescaled correlation functions f (r) are presented in
Fig. 5. In agreement with eqn (25) the indicated first three
cases collapse for p = 4 and r \ 20 on J1/4pr2 (bold solid line).
This confirms the octupolar symmetry of these correlation
functions. Confirming eqn (26) the last case with f (r) =
�b(c1111(r) � c2222(r))/2 collapses onto J2/4pr2 (dashed line).
p = 2 is used here in agreement with the predicted quadrupolar
symmetry of this correlation function. Similar results are
obtained for other particle numbers n.

V. Linear response to point stress
A. Time-dependent strain correlations

Correlation functions describe quite generally the linear
response to a small imposed perturbation.7,34,35,42 Being ten-
sorial fields, just like the correlation function fields, the
response fields must in general depend on the direction of
the field vector and on the orientation of the coordinate system.
As already emphasized in Section II4 and Section II5, the
response fields contains information of both the system and
the imposed source and the source term may either be isotropic
or anisotropic. We elaborate here this general point focusing,
naturally, on correlation functions of the instantaneous strain
field êab(r) = eab(r, t). Extending very briefly our discussion to the

time domain, let us introduce the time-dependent correlation
functions

cabgd(q, t) = heab(q, t)egd(�q, t = 0)i (27)

of the strain fields in reciprocal space with t being the ‘‘time
lag’’.33 Naturally, this reduces to eqn (1) for t - 0. This
definition allows us to take advantage of the general ‘‘Fluctuation-
dissipation theorem’’ (FDT) of statistical mechanics as stated,
e.g., in ref. 34, 35 and 42. We thus anticipate immediate generali-
zations of the present study for time-dependent tensorial corre-
lation and response fields which will be discussed elsewhere.

B. Fluctuation-dissipation theorem

Let us switch on at time t = 0 a small perturbation

DH ¼ �
ð
drdsabðrÞêabðrÞ for t 	 0 (28)

to the Hamiltonian DH ¼ H0 þ DH of the system with dsab(r)
being an imposed external stress field. This is equivalent to the
application of an appropriate external perturbative force field to
each particle. For a general ‘‘growth function’’42 in response to
a sudden application of a step field, such as eqn (28), the
relevant FDT relations are stated (for scalar fields) by eqn (3.65)
and (3.67) of ref. 42. The mean strain increment deab(r, t)
induced by this perturbation is then given in real space by a
convolution integral for the time-dependent correlation func-
tions cabgd(r, t) and the stress perturbation dsab(r). Using
eqn (B6) this relation may be written more compactly in
reciprocal space as

deab(q, t) = bV [cabgd(q, t = 0) � cabgd(q, t)]dsgd(q) (29)

where the summation over repeated indices is essential and
cannot be omitted. Note that deab(q, t) = 0 for t r 0 and that,
since all cabgd(q, t) are continuous functions of time, the creep
response deab(q, t) must also be continuous, especially at t = 0.40

The time-dependent creep is thus determined by the time-
dependent correlation functions and the imposed stress per-
turbation. We are interested here only in the static equilibrium
response a long time after the perturbation is switched on. The
time-dependent strain correlation functions (computed for the
unperturbed Hamiltonian H ¼ H0 at switched off external
perturbation DH) must, of course, vanish

cabgd(q, t) - 0 for t - N. (30)

Hence, eqn (29) reduces to

deab(q) = bVcabgd(q)dsgd(q) for t - N (31)

with deabðqÞ � limt!1 deabðq; tÞ denoting the long-time creep and
cabgdðqÞ � limt!0 cabgdðq; tÞ standing for the spatial correlation
function without time lag, eqn (1), as everywhere else in this paper.

C. Response to point source

Following the discussion at the end of Section II, we investigate
now the long-time creep for a point source

dsab(r) = sabd(r) (32)

Fig. 5 P[f,p](r) for various correlation functions and modes p for n =
40 000. The bold solid line marks the prediction J1/4pr2 for the first three
cases, the dashed line the prediction J2/4pr2 for the last one.
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with sab being a symmetric 2� 2 matrix (of dimension ‘‘stress�
volume = energy’’). According to the FDT relation eqn (31) this
implies

deab(q) = bcabgd(q)sgd for t - N (33)

and an equivalent relation in real space. As in Section IID it is
convenient to diagonalize sab by an appropriate rotation of the
coordinate system. The perturbation becomes therefore equiva-
lent to that of two small force dipoles23 oriented along
the eigenvectors. The real-space analogue of eqn (10) is thus
given by

deab(r) = bcab11(r)s11 + bcab22(r)s22. (34)

Using in addition eqn (D13) we may replace for isotropic
systems the real space correlation functions by the corres-
ponding invariants ĩn(r) in real space. Introducing the scalars
s1 = sgg/2 and s2 = r̂asabr̂b/2 this may be written quite generally

deabðrÞ ¼ 2 ~i1ðrÞs1 þ ~i3ðrÞs2
� �

dab

þ 2 ~i3ðrÞs1 þ ~i4ðrÞs2
� �

r̂a r̂b

þ 2~i2ðrÞsab:

(35)

Taking now advantage of the specific results for strain correla-
tions presented in Section IVC and in Appendix D the invariants
ĩn(r) are given by eqn (D14), i.e. we may quite generally express
deab(r) in terms of the two creep compliances J1 and J2, cf.
eqn (19).

We also note that the term sab in the last line of eqn (35)
must be isotropic, i.e. s1 = s11 = s22 = 2s2, to obtain an isotropic
second-order tensor field in agreement with eqn (A20).
As expected from the more general argument given in Section
2, the shear strain increment

de12ðrÞ=s11 ¼ �
J2

4pr2
sinð2yÞ for r4 0 (36)

becomes quadrupolar in this case.
As already emphasized in Section IIE, the source tensor need

not necessarily be isotropic albeit the system is isotropic. To be
specific, let us consider the ‘‘shear transformation zone’’ model
for localized plastic failure involving two orthogonal force
dipoles of opposite signs.23 Hence, s11 = �s22 and s1 = 0 and
s2 = s11(r̂1

2 � r̂2
2)/2. Using eqn (13) or eqn (35) this yields

de12ðrÞ=s11 ¼ �
2J1

4pr2
sinð4yÞ for r4 0 (37)

for the shear strain response.
As one expects on general grounds, all reference to statistical

physics, i.e. the inverse temperature b, drops out in both cases.
Moreover, the shear strain response naturally strongly depends
on the type of source term applied at the origin: for force
dipoles of same sign it is quadrupolar and proportional to J2

while for dipoles of opposite sign it gets octupolar and propor-
tional to J1.

VI. Conclusion
A. Summary

Strain correlation functions. The present work has focused
on correlation functions of components of strain tensor fields
in two-dimensional, isotropic and achiral elastic bodies. This
was done theoretically using

 the general mathematical structure of isotropic tensor

fields as summarized in Section IIB, cf. eqn (5), and in more
detail in Appendix A and

 the well-known equipartition theorem of statistical physics

for macroscopic strain fluctuations in reciprocal space, cf.
eqn (2).

Numerically we have tested our predictions by means of
glass-forming particles deep in the glass regime. This shows
that these correlation functions may depend on the coordinates
of the field variable (qa in reciprocal space or ra in real space)
and implies in turn that they depend in general on the direc-
tion of the field vector and on the orientation of the coordinate
system. Scaling with x = y � a these angular dependencies are
distinct from those of ordinary anisotropic systems. Impor-
tantly, correlation functions of strain tensor fields are compo-
nents of an isotropic forth-order tensor field, eqn (5), being
characterized by the two ICFs cL(q) and cT(q). With the asymp-
totic plateau values being given by two Lamé coefficients,
eqn (2), all strain correlation functions are determined and
all (finite) real-space strain correlations must be long-ranged
decaying as 1/r2 (cf. Fig. 5). We thus obtain similar results as in
our recent study on correlation functions of stress tensor
fields.4 Note that time-averaged stress fields have been probed
in the latter study while correlations of instantaneous strain
fields have been considered here. Our numerical findings do
agree with other studies of strain correlations29,30,32 being,
however, now traced back to the isotropy of the system and
the tensor field nature of the probed correlations. Importantly,
we have given here a complete and asymptotically exact descrip-
tion for the correlation functions of strain tensor fields of
isotropic elastic bodies. No additional physical assumption is
thus needed (for sufficiently small wavevectors).

Response to tensorial point sources. We also discussed the
associated linear response fields as defined in general mathe-
matical terms by the tensorial contraction of the correlation
function tensor by means of a source tensor and, more physi-
cally, by the FDT relation for the strain increment due to an
imposed small stress perturbation, cf. eqn (28) and (29). Natu-
rally, the response must by definition contain information from
both the correlation functions, characterizing the system, and
from the imposed source tensor which may not be isotropic.
We have emphasized that the summation over repeated indices
must be properly performed, i.e. the response field is not given
by one correlation function times a scalar but by the sum over
all eigenvalues of the source tensor. For this reason response
and correlation fields, albeit closely related, have in general
different angular dependences, e.g., the shear strain correlation
function c1212(r) in an isotropic system must be octupolar,
cf. eqn (25), while the shear strain response de12(r) may be

Soft Matter Paper

O
pe

n 
A

cc
es

s 
A

rt
ic

le
. P

ub
lis

he
d 

on
 2

4 
Ju

ly
 2

02
3.

 D
ow

nl
oa

de
d 

on
 8

/6
/2

02
5 

9:
15

:3
4 

A
M

. 
 T

hi
s 

ar
tic

le
 is

 li
ce

ns
ed

 u
nd

er
 a

 C
re

at
iv

e 
C

om
m

on
s 

A
ttr

ib
ut

io
n-

N
on

C
om

m
er

ci
al

 3
.0

 U
np

or
te

d 
L

ic
en

ce
.

View Article Online

http://creativecommons.org/licenses/by-nc/3.0/
http://creativecommons.org/licenses/by-nc/3.0/
https://doi.org/10.1039/d3sm00424d


This journal is © The Royal Society of Chemistry 2023 Soft Matter, 2023, 19, 6140–6156 |  6147

either quadrupolar for an isotropic source, cf. eqn (36), or
octupolar for an anisotropic source corresponding to two force
dipoles of opposite signs, cf. eqn (37). Albeit all contributing
correlation functions are isotropic the response field is aniso-
tropic in the latter case due to the source. It is thus important to
not lump together correlation functions and response fields.
Mesoscopic elasto-plastic models45,46 thus must specify not
only the correlation functions but also the source tensors
characterizing the local plastic events.

B. Outlook

Our work suggests several natural extensions:

 The general mathematical framework for isotropic tensor

fields and the discussed relations and numerical procedure
for correlation and response fields naturally generalize to
higher spatial dimensions, especially for the three-dimensional
case.

 The present work has focused on Euclidean spaces and

Cartesian coordinates. A generalization for systems embedded
in non-Euclidean spaces, say for glasses on spheres,51,52

and more general curvilinear coordinate systems1,5 may be
worked out.

 The present work has focused on the large-wavelength

limit (q - 0). More generally, one may express the longitudinal
and transverse ICFs cL(q) and cT(q) for finite q as

bVcLðqÞ ¼
1

LðqÞ and bVcTðqÞ ¼
1

4GðqÞ (38)

in terms of the generalized longitudinal and transverse elastic
moduli L(q) and G(q) (with L(q) - l + 2m and G(q) - m for small
q).¶ 17,48,50 It can be shown50 that both the isotropicity and the
harmonicity of the strain modes assumed in the derivation of
eqn (38) are well justified for the present model up to q E 1
while deviations become relevant for larger wavevectors, espe-
cially around the main peak of the static structure factor S(q).

 A further generalization of the current work concerns time-

dependent correlation functions cabgd(q, t) as defined in
eqn (27). These can be again expressed via eqn (5) in terms of
(now time-dependent) longitudinal and transverse ICFs cL(q, t)
and cT(q, t). These time-dependent ICFs are given in turn by
time-dependent creep compliance material functions which
can be related to the two time-dependent material functions
L(q, t) and G(q, t).17 Strain correlation functions may thus reveal
octupolar pattern whenever the invariant

|i4(q, t)| = |cL(q, t) � 4cT(q, t)| (39)

is sufficiently large. Since i4(q, t) must become q-independent
for small q, a long-range decay with

cabgd(r, t)I 1/rd (40)

is generally expected for the time-dependent correlation func-
tions in isotropic d-dimensional systems. Using eqn (29) simi-
lar long-range relations are predicted for the associated
dynamical response fields.

 It may be also of interest to characterize correlations of

tensor fields of different order. For instance, the forth-order
elastic modulus field Eabgd(r)26,53 may be characterized by a
correlation function tensor of order eight.53 Strong angular
dependencies are expected based on our formalism. For iso-
tropic systems these correlation functions must again adopt a
general mathematical structure in terms of a small finite
number of ICFs. Once these ICFs are characterized (theoreti-
cally or numerically using NRC) in the low-q limit all correlation
functions are again determined.
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Appendix A Summary of isotropic
tensor fields
1 Background

Isotropic systems are described by ‘‘isotropic tensors’’ and
‘‘isotropic tensor fields’’. We give here a brief recap of various
useful aspects already presented elsewhere.3,4 Quite generally, a
tensor field assigns a tensor to each point of the mathematical
space, in our case a d-dimensional Euclidean vector space.3 We
denote an element of this vector space by the ‘‘spatial position’’
r (real space) or by the ‘‘wavevector’’ q for the corresponding
reciprocal space. The relations for tensor fields are formulated
in reciprocal space since this is more convenient both on
theoretical and numerical grounds due to the assumed spatial
homogeneity (‘‘translational invariance’’). The corresponding
real space tensor field is finally obtained by inverse FT.

For simplicity we assume Cartesian coordinates with an
orthonormal basis {e1,. . ., ed}.1,3,9 Greek letters a, b, . . . are
used for the indices of the tensor (field) components. A twice
repeated index a is summed over the values 1, . . ., d, e.g.,
q = qaea with qa standing for the vector coordinates. This work
is chiefly concerned with tensors T(o) = Ta1. . .ao

ea1
. . . eao

of
‘‘order’’ o = 2 and o = 4 and their corresponding tensor fields
with components depending either on r or q. The order of a
component is given by the number of indices. Note that

Ta1...aoðqÞ ¼ ½Ta1...aoðrÞ� (A1)

¶ The elastic modulus tensor Eabld(q) for isotropic bodies at finite wavevector q is
not only characterized by the longitudinal modulus L(q) and the shear modulus
G(q) but also by a third modulus M(q) called the ‘‘mixed modulus’’.17 Note that
E�1111ðqÞ ¼ E�2222ðqÞ ¼ LðqÞ, E�1212ðqÞ ¼ GðqÞ and E�1122ðqÞ ¼MðqÞ for isotropic

bodies in NRC. It is not possible to determine M(q) solely using strain fluctua-
tions. This requires the additional measurement of stress fields in NRC. M(q) may
then be obtained using either the appropriate stress–strain or stress–stress
correlation functions in reciprocal space.17,50
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for the do coordinates in real and reciprocal space (with F½. . .�
denoting the FT as discussed in Appendix B).

We consider linear orthogonal coordinate transformations
(marked by ‘‘*’’) e�a ¼ cabeb with matrix coefficients cab given by
the direction cosine cab � cosðe�a; ebÞ.

3 We remind that3

T�a1...aoðqÞ ¼ ca1n1 . . . caonoTn1...noðqÞ (A2)

under a general orthogonal transform. For a reflection of the
1-axis we thus have, e.g.,

T�1222ðqÞ ¼ �T1222ðqÞ;T�1221ðqÞ ¼ T1221ðqÞ; (A3)

i.e. we have sign inversion for an odd number of indices equal
to the index of the inverted axis. The field vector q ¼ qaea ¼ q�ae

�
a

remains unchanged by these ‘‘passive’’ transforms albeit its
coordinates change.

2 Definitions, properties and construction of general
isotropic tensors and tensor fields

Isotropic tensors. Components of an isotropic tensor remain
unchanged by any orthogonal coordinate transformation,3,9 i.e.

T�a1...ao ¼ Ta1 ...ao : (A4)

As noted at the end of Section A1 the sign of tensor components
change for a reflection at one axis if the number of indices
equal to the inverted axis is odd. Consistency with eqn (A4)
implies that all tensor components with an odd number of
equal indices must vanish, e.g.,

T12 = T1112 = T1222 = 0. (A5)

Isotropic tensor fields. The corresponding isotropy condi-
tion for tensor fields is given by3

T�a1 ...aoðq1; . . . ; qdÞ ¼ Ta1...aoðq�1; . . . ; q�dÞ (A6)

with q�a ¼ cabqb which reduces to eqn (A4) for q = 0. Please note
that the fields on the left handside of eqn (A6) are evaluated
with the original coordinates of the vector field variable q while
the fields on the right handside are evaluated with the trans-
formed coordinates. Another way to state this is to say that
the left hand fields are computed at the original vector q =
(q1,. . .,qd) while the right hand fields are computed at the
‘‘actively transformed’’ vector q� ¼ ðq�1; . . . ; q�dÞ. It is for this
reason that finite components with an odd number of equal
indices, e.g., T1222(q) a 0, are possible in principle for finite q.

Natural rotated coordinates. Fortunately, there is a conve-
nient coordinate system where the nice symmetry eqn (A5) for
isotropic tensors can be also used for isotropic tensor fields.
In these ‘‘Natural Rotated Coordinates’’ (NRC) the coordinate
system for each wavevector q is rotated until the 1-axis coin-
cides with the q-direction, i.e. q�a ¼ qd1a with q = |q|. These
tensor field components in NRC are marked by ‘‘1’’ to distin-
guish them from standard rotated tensor fields (marked by
primes ‘‘0’’) where the same rotation is used for all q. If in
addition T�a1...aoðqÞ is an even function of its field variable q (as

in the case of achiral systems for even order o) it can be shown4

that all tensor field components with an odd number of equal
indices must vanish.

Product theorem for isotropic tensor fields. Let us consider a
tensor field C(q) = A(q) # B(q) with A(q) and B(q) being two
isotropic tensor fields and # standing either for an outer
product, e.g. cabgd(q) = Aab(q)Bgd (q), or an inner product, e.g.
cabgd(q) = Aabgn(q)Bnd(q). Hence,

C�ðqÞ ¼ AðqÞ � BðqÞð Þ�¼ A�ðqÞ � B�ðqÞ

¼ Aðq�Þ � Bðq�Þ ¼ Cðq�Þ
(A7)

using in the second step a general property of tensor (field)
products, due to eqn (A2), and in the third step eqn (A6) for the
fields A(q) and B(q) where q* stands for the ‘‘actively’’ trans-
formed field variable. C(q) is thus also an isotropic tensor field.
One may use this theorem to construct isotropic tensor fields
from known isotropic tensor fields A(q) and B(q).

3. Summary of assumed symmetries

All second-order tensors in this work are symmetric, Tab = Tba,
and the same applies for the corresponding tensor fields in
either r- or q-space. This is, e.g., the case for the strain field
eabðqÞ ¼ F½eabðrÞ�, cf. eqn (14), or the source tensor sab needed
for a response field, cf. eqn (8). We assume for all forth-order
tensor fields that

Tabgd(q) = Tbagd(q) = Tabdg(q) (A8)

Tabgd(q) = Tgdab(q) (A9)

and

Tabgd(q) = Tabgd(�q). (A10)

Note that eqn (A10) is necessarily valid both for achiral and
chiral two-dimensional isotropic systems. Forth-order tensor
fields are often constructed by taking outer products9 of
second-order tensor fields. We consider, e.g., correlation func-
tions hT̂ab(q)T̂gd(�q)i with T̂ab(q) being an instantaneous
second-order tensor field. eqn (A8) then follows from the
symmetry of the second-order tensor fields. The evenness of
forth-order tensor fields, eqn (A10), is a necessary condition for
achiral systems. It implies that Tabgd(q) is real if Tabgd(r) is real
and, moreover, eqn (A9) for correlation functions since

hT̂ab(q)T̂gd(�q)i = hT̂gd(q)T̂ab(�q)i. (A11)

As already emphasized, all our systems are assumed to be
isotropic, i.e., eqn (A6) must hold for ensemble-averaged tensor
fields.

4. General mathematical structure

General structure of tensors. Isotropic tensors of different
order are discussed, e.g., in Section 2.5.6 of ref. 9. Due to
eqn (A5) all such tensors of odd order must vanish. The finite
isotropic tensors of lowest order are thus

Tab = k1dab, (A12)

Tabgd = i1dabdgd + i2(dagdbd + daddbg) (A13)
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with k1, i1 and i2 being invariant scalars. Please note that all
symmetries stated above hold, especially also eqn (A5). Note
that the symmetry eqn (A8) was used for the second relation,
eqn (A13). Importantly, this implies that only two coefficients
are needed for a forth-order isotropic tensor. As a consequence,
the elastic modulus tensor is completely described by two
elastic moduli (cf. Section 9.3).

General structure of tensor fields. We restate now the most
general isotropic tensor fields for 1 r o r 4 and focusing on
two-dimensional systems (d = 2) compatible with the symme-
tries stated in Section 7.3. With ln(q), kn(q), jn(q) and in(q) being
invariant scalar functions of q = |q| we have3,4

Ta(q) = l1(q)q̂a (A14)

Tab(q) = k1(q)dab + k2(q)q̂aq̂b (A15)

Tabg(q) = j1(q)q̂adbg + j2(q)q̂bdag + j3(q)q̂gdab + j4(q)q̂aq̂bq̂g
(A16)

TabgdðqÞ ¼ i1ðqÞdabdgd

þ i2ðqÞ dagdbd þ daddbg
� �

þ i3ðqÞ q̂aq̂bdgd þ q̂gq̂ddab
� �

þ i4ðqÞq̂aq̂bq̂gq̂d

(A17)

for finite wavevectors q. See ref. 4 for a derivation, general-
izations for d 4 2 and a discussion of the limit q - 0. Terms
due to the invariants k1(q), i1(q) and i2(q) are independent of the
coordinate system. All other terms depend on the components
q̂a of the normalized wavevector q̂ and thus on the orientations
of the field vector and of the coordinate system.

Alternative representation for forth-order tensor fields.

It is convenient to define the four functions

cLðqÞ � T�1111ðqÞ

cTðqÞ � T�1212ðqÞ

cNðqÞ � T�2222ðqÞ

c?ðqÞ � T�1122ðqÞ

9>>>>>>=
>>>>>>;
for q�a ¼ qd1a (A18)

using NRC. For an isotropic system these four functions can
only depend on the wavenumber q but not on the direction q̂ of
the wavevector q. Importantly, all other components T�abgdðqÞ
are either by eqn (A8) and (A9) identical to these invariants or
must vanish for an odd number of equal indices as reminded
in Section A2. The d4 = 16 components T�abgdðqÞ are thus

completely determined by the four invariants and this for

any q. Tabgd(q) is then obtained by the inverse rotation to the
original unrotated frame using eqn (A2). It is readily seen that

cLðqÞ ¼ i1ðqÞ þ 2i2ðqÞ þ 2i3ðqÞ þ i4ðqÞ

cNðqÞ ¼ i1ðqÞ þ 2i2ðqÞ

c?ðqÞ ¼ i1ðqÞ þ i3ðqÞ

cTðqÞ ¼ i2ðqÞ

(A19)

being consistent with eqn (6).
Isotropic tensor fields in real space. We have formulated

above all tensor fields in terms of the wavevector q and its
components since it is most convenient to start the analysis in
reciprocal space. The above results also hold, however, in real
space. This implies, e.g., for isotropic (and achiral) fields in two
dimensions that

Tab(r) = k̃1(r)dab + k̃2(r)r̂ar̂b (A20)

TabgdðrÞ ¼ ~i1ðrÞdabdgd

þ ~i2ðrÞ dagdbd þ daddbg
� �

þ ~i3ðrÞ r̂ar̂bdgd þ r̂g r̂ddab
� �

þ ~i4ðrÞr̂a r̂br̂g r̂d

(A21)

for r 4 0 with k̃n(r) and ĩn(r) denoting the invariants in real
space and r̂a = ra/r components of the normalized vector r̂ = r/r.
As already stated, eqn (A1), the tensor field components in real
and reciprocal space are related by FT. Note that k̃n(r) and ĩn(r)
are in general not the FTs of, respectively, kn(q) and in(q). For
the important case that the invariants in reciprocal space are q-
independent constants it follows quite generally that

4pr2 ~k1ðrÞ ¼ 2k2

4pr2 ~k2ðrÞ ¼ � 4k2

4pr2~i1ðrÞ ¼ 4i3 þ 5i4

4pr2~i2ðrÞ ¼ � i4

4pr2~i3ðrÞ ¼ � 4i3 � 6i4

4pr2~i4ðrÞ ¼ 8i4

(A22)

for r 4 0. (Additional d(r)-terms arise at the origin. The
constant invariants k1, i1 and i2 only contribute to these terms.)
That this holds can be readily shown using relations put
forward in Appendix B and Appendix D.

Appendix B: Useful Fourier
transformations
1. Continuous Fourier transform

We consider real-valued functions f (r) in d dimensions. As in
ref. 4, 18 and 54 the Fourier transform (FT) f ðqÞ ¼ F½f ðrÞ� from
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‘‘real space’’ (variable r) to ‘‘reciprocal space’’ (variable q) is
defined by

f ðqÞ ¼ 1

V

ð
dr f ðrÞ expð�iq � rÞ (B1)

with V being the volume of the system. The inverse FT is then
given by

f ðrÞ ¼ F�1½f ðqÞ� ¼ V

ð2pÞd
ð
dq f ðqÞ expðiq � rÞ: (B2)

Note that f (r) and f (q) have the same dimension. For notational
simplicity the function names remain unchanged. We remind
the FTs

F @

@ra
f ðrÞ

� 	
¼ iqaf ðqÞ (B3)

F dðr� vÞ½ � ¼ 1

V
expð�iq � vÞ (B4)

with d(r) being Dirac’s delta function. Let us consider the
spatial convolution function

f ðrÞ ¼ 1

V

ð
dr0gðr� r0Þhðr0Þ (B5)

in real space. With gðqÞ ¼ F½gðrÞ� and hðqÞ ¼ F½hðrÞ� this
implies according to the ‘‘convolution theorem’’55

f ðqÞ ¼ F½f ðrÞ� ¼ gðqÞhðqÞ: (B6)

We also remind for completeness that the spatial correlation
function

cðrÞ ¼ 1

V

ð
dr0gðrþ r0Þhðr0Þ (B7)

of real-valued fields g(r) and h(r) becomes according to the
‘‘correlation theorem’’55

c(q) = g(q)h*(q) = g(q)h(�q) (B8)

with marking the conjugate complex. For auto-correlation
functions, i.e. for g(r) = h(r), this simplifies to (‘‘Wiener–
Khinchin theorem’’)

c(q) = g(q)g(q) = |g(q)|2, (B9)

i.e. the Fourier transformed auto-correlation functions are real
and Z0 for all q. Moreover, we shall consider correlation
functions c(r), eqn (B7), being even in real space, c(r) = c(�r),
and thus also in reciprocal space, c(q) = c(�q) = c*(q), i.e. c(q)
is real.

2. Discrete Fourier transform on microcell grid

All fields f (r) are stored on a regular equidistant d-dimensional
grid as shown in Fig. 2 for d = 2. Periodic boundary conditions
are assumed.33 The discrete FT and its inverse become

f ðqÞ ¼ 1

nV

X
r

f ðrÞ expð�iq � rÞ (B10)

f ðrÞ ¼
X
q

f ðqÞ expðiq � rÞ (B11)

with
P
r

and
P
q

being discrete sums over nV = nd
L = V/ad

grid grid

points in, respectively, real or reciprocal space. As shown
in Fig. 2 we label the grid points in real and reciprocal
space using

ra

agrid
¼ na and qaagrid ¼

2p
nL

na

with na ¼ �
nL

2
þ 1; . . . ; 0; 1; . . . ;

nL

2
:

(B12)

To take advantage of the Fast-Fourier transform (FFT)
routines55 the number of grid points in each spatial direction
nL = L/agrid is an integer-power of 2.

3. Fourier transform of planar harmonic functions

As discussed in the main part, all correlation functions in
reciprocal space become in the large-wavelength limit indepen-
dent of the magnitude q of the wavevector q but depend on its
angle yq (and, more generally, on the angle difference yq �a
for rotated coordinate frames). As noted in Section IIC,
these angular dependencies can be uniquely expressed in terms
of the planar harmonic basis functions cos(pyq) and sin(pyq)
with p being an integer. We denote these orthogonal basis
functions by bp(yq). We thus need to compute the inverse FTs of
f (q) = bp(yq)/V. More specifically, we are interested in modes
with p = 2 and p = 4. Additional constant terms (p = 0), such as
the ones indicated by dots in eqn (20)–(22), are irrelevant
leading merely to d(r)-contributions at the origin. For d = 2
eqn (B2) becomes

f ðrÞ ¼ 1

4p2

ð1
0

dq q�

ð2p
0

dyqbpðyqÞ exp½iqr cosðyq � yrÞ�
(B13)

with yr being the angle of r̂ = (cos(yr), sin(yr)). We make now the
substitution y = yq � yr and use that56

cos(py + pyr) + cos(�py + pyr) = 2cos(py)cos(pyr)

sin(py + pyr) + sin(�py + pyr) = 2cos(py)sin(pyr).

We remind that following eqn (9.1.21) of ref. 56 the integer
Bessel function Jp(z) may be written

JpðzÞ ¼
i�p

p

ðp
0

dy cosðpyÞ exp½iz cosðyÞ� (B14)

which leads to

f ðrÞ ¼ ip

2p
bpðyrÞ

ð1
0

dq qJpðrqÞ: (B15)

For finite r we may rewrite this as

f ðrÞ ¼ ipp

2pr2
bpðyrÞ � lim

t!1
IpðtÞ for r4 0 (B16)
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where we have set IpðtÞ �
Ð t
0dt
0t 0Jpðt 0Þ=p. As may be seen from

eqn (11.4.16) of ref. 56 the latter integral becomes8

Ip(t) - 1 for t - N and p 4 �2 (B17)

from which we obtain the final result

f ðrÞ ¼ ipp

2pr2
bpðyrÞ for r4 0: (B18)

Note that f (r) = f (�r) and that f (r) is real for even p. General-
izing the above argument it is seen that f (r) p 1/rd for higher
dimensions d.

Appendix C Computational details
1 Simulation model

We consider systems of polydisperse Lennard-Jones (pLJ) par-
ticles in d = 2 dimensions where two particles i and j of
diameter Di and Dj interact by means of a central pair
potential4,18,36–39,48

uðsÞ ¼ 4e
1

s12
� 1

s6


 �
with s ¼ r

ðDi þDjÞ=2
(C1)

being the reduced distance according to the Lorentz rule.34

This potential is truncated and shifted4,33 with a cutoff scut =
2smin given by the minimum smin of u(s). Lennard-Jones units33

are used throughout this study, i.e. e = 1 and the average
particle diameter is set to unity. The diameters are uniformly
distributed between 0.8 and 1.2. We also set Boltzmann’s
constant kB = 1 and assume that all particles have the same
mass m = 1. The last point is irrelevant for the presented Monte
Carlo (MC) simulations.33 Time is measured in units of MC
steps (MCS) throughout this work.

2. Parameters and configuration ensembles

We focus on systems with n = 10000 and n = 40 000 particles. We
first equilibrate = 200 independent configurations c at a high
temperature T = 0.55 in the liquid limit. These configurations
are adiabatically cooled down using a combination of local MC
moves33 and swap MC moves exchanging the sizes of pairs of
particles.38,49 In addition, an MC barostat33 imposes an average
normal stress P = 2.36,38 At the working temperature T = 0.2 we
first thoroughly temper over Dt = 107 all configurations with
switched-on local, swap and barostat MC moves and then again
over Dt = 107 with switched-on local and swap moves and
switched-off barostat moves. The final production runs are

carried out at constant volume V only keeping local MC moves.
Under these conditions, T = 0.2 is well below the glass transi-
tion temperature Tg E 0.26 determined in previous work.36,38

Due to the barostat used for the cooling the box volume V = Ld

differs slightly between different configurations c while V is
identical for all frames t of the time-series of the same configu-
ration c. In all cases the number density is of order unity.
For each particle number n and each of the independent
configurations c we store ensembles of time series containing
= 10 000 instantaneous ‘‘frames’’ t. These are obtained using
the equidistant time intervals dt = 1000 for n = 10 000 and
dt = 100 for the other system sizes.

3. Macroscopic linear elastic properties

The amorphous glasses formed by pLJ particle systems at a
pressure P = 2 and a temperature T = 0.2 { Tg E 0.26 are for
sampling (production) times Dt r 107 MCS reversible linear
elastic bodies whose plastic rearrangements can be neglected
for all practical purposes.18,21,36,38,57,58 Moreover, these systems
can be shown to be isotropic above distances corresponding to
a couple of particle diameters.18,38 Following eqn (A13) the
forth-order elastic modulus tensor for isotropic systems may be
written8,9

Eabgd = ldabdgd + m(dagdbd + daddbg) (C2)

in terms of the two isothermic Lamé moduli l and m. As
described in detail elsewhere21,36,57–60 we have determined l
and m either by means of strain fluctuations, e.g., by letting the
box volume V fluctuate at imposed pressure P,57 or using the
stress-fluctuation formalism at fixed volume and shape of the
simulation box.59,60 This shows that l E 38 and m E 14.
We have verified especially that similar values are obtained
for n Z 5000 and using different components, say E1111 and
E2222 for l + 2m, and that the fluctuations of Eabgd|c for
independent configurations c become negligible for n Z 5000.

4. Discrete fields on square grid

We turn now to the relevant microscopic tensor fields as
functions of either the spatial position r (real space) or the
wavevector q (reciprocal space). The different fields are stored
on equidistant discrete grids as sketched in Fig. 2. The same nL

is used for both spatial directions and for all configurations
and frames of a given particle number n. As already mentioned,
the box volume V = L2 fluctuates slightly between different
configurations c (at same n) due to the barostat used for the
cooling, tempering and equilibration of the systems. Accord-
ingly, agrid also differs between different configurations c. These
fluctuations become small, however, with increasing system
size. If nothing else is mentioned we report data obtained using
a lattice constant agrid E 0.2. As shown in Fig. 6 for the rescaled
transverse ICF bVcT(q) plotted using a double-logarithmic
representation, there is no need to further decrease agrid. Even
the very large grid constant agrid E 3.2 gives, apparently, the
correct large-wavelength asymptote bcT(q) E 1/4m indicated by
the dashed horizontal line.

8 The infinite integral eqn (11.4.16) of ref. 56 is expressed in terms of two
coefficients m and n which in our case take the (real) values m = 1 and n = p. It is
stated that eqn (11.4.16) holds for <ðmþ nÞ4 � 1, being consistent with the
condition p 4 �2 noted in eqn (B17), but also that <mo 1=2, being at first sight
in conflict with m = 1. However, the integral divergence for t - N for m 4 1/2 is
fictitious as, e.g., discussed in the Wikipedia entry on ‘‘Oscillatory integrals’’
where it is noted that ‘‘Oscillatory integrals make rigorous many arguments that, on

a naive level, appear to use divergent integrals’’. Note that eqn. (B18) also holds for
p = 0 and finite r 4 0 which follows from the fact that the FT of a constant is zero
everywhere except at the origin. See ref. 4 for an alternative more straight-forward
but also more lengthy derivation of eqn. (B18) using the asymptotic behavior of
the confluent hypergeometric Kummer function M(a, b, z).
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5. Displacement fields

As in previous experimental and numerical studies10,11,21 the
displacement field u(r) is constructed from the instantaneous
spatial positions ra of the particles a with respect to their
reference positions ra. As reference position ra we have used
either the average particle position determined using a long
trajectory or the particle position after a rapid quench to T = 0.
Having not observed any significant quantitative difference
between both methods we only report here data computed
using the first one. We thus get first the displacement vector
ua = ra � ra for each a. By construction the average displace-
ment vector huai must vanish. We find

urms � hua
2i 4 1/2 E 0.13 (C3)

for the root-mean-squared average urms (sampled over all
particles, frames and configurations). The instantaneous dis-
placement field may then be defined by10,11,21

uðrÞ ¼ 1

n=V

X
a

uadðr� ~raÞ (C4)

assuming for the moment an infinitessimal fine grid, i.e.
agrid - 0. (Different prefactors have been used in ref. 10, 11
and 21). We remind that the d(r)-function has the dimension
‘‘1/volume’’. By definition u(r) has thus the same dimension
‘‘length’’ as the displacement vector ua. Following the common
definition of the particle flux density,34 the reference position r̃a

in the d-function may be replaced by the time-dependent
position ra, i.e. the displacement field may alternatively be
defined by

uðrÞ ¼ 1

n=V

X
a

uadðr� ~raÞ: (C5)

Both operational definitions are compared for the transverse
ICF bVcT(q) in Fig. 6 where data obtained using eqn (C4) are
indicated by open symbols. In reciprocal space we obtain

uðqÞ ¼ 1

n

X
a

ua expð�iq � ~raÞ: (C6)

for eqn (C4) and similarly for eqn (C5) with ra replacing r̃a.
Since ra = r̃a+ ua we have to leading order

exp(�iq�ra) E exp(�iq�ra)(1 � iq�ua. . .) (C7)

for q|u(q)| { 1. Both operational definitions eqn (C4) and (C5)
thus become equivalent for qurms { 1. Due to the small typical
(root-mean-squared) displacement urms, eqn (C3), this holds for
all sampled q as may be seen from the data presented in Fig. 6.
Due to the center-of-mass convention for all particle displace-
ments the volume integral over u(r) must vanish and, equiva-
lently, we have u(q = 0) = 0 in reciprocal space for each
instantaneous field. We also remind that the two coordinates
of the displacement field in NRC are the longitudinal compo-
nent uL(q) � u11(q) and the transverse component uT(q) �
u21(q).

In numerical practice, the continuous field vector r of
eqn (C4) and (C5) corresponds to the discrete point on the
grid, eqn (B12), closest (using the minimal image convention)
to, respectively, the reference position ra or the particle position
ra. Strictly speaking, we thus obtain by means of eqn (B10) the
FT with respect to their respective closest grid points. (In
principle one could directly without approximation compute
the displacement field u(q) using eqn (C6) in reciprocal space.
Unfortunately, this leads to an additional loop over all n
particles for each wavevector q.) The differences between these
definitions become neglible for qagrid { 1. That this holds can
be clearly seen from Fig. 6 where we have varied agrid over more
than one order of magnitude.

6. Linear strain fields

Using the displacement field u(r) the linear (‘‘small’’) strain
tensor field is defined by8,9

eabðrÞ �
1

2

@uaðrÞ
@rb

þ @ubðrÞ
@ra


 �
: (C8)

Due to eqn (B3) this becomes

eabðqÞ ¼
i

2
qbuaðqÞ þ qaubðqÞ
� �

(C9)

in reciprocal space as already stated in Section IIIB. (Obviously,
eab = eba for any r in real space and any q in reciprocal space.)
Note that both eab(r) and its FT eab(q), cf. eqn (B1), are dimen-
sionless fields. Due to our definitions and conventions the
macroscopic strain eab(q = 0) is assumed to vanish. Using
eqn (B12) we numerically determine the relevant components
of the (symmetric) strain tensor field eab(q) from the two
components of the displacement field ua(q) stored on the
reciprocal space grid (cf. Fig. 2) and the wavevector qa according
to eqn (B12). As noted in Section IIIB, in NRC there are only
two non-vanishing strain fields, namely the longitudinal and

Fig. 6 Rescaled transverse ICF bVcT(q) for different grid constants agrid as
indicated. The open symbols have been obtained using eqn (C4), the thin
solid line using eqn (C5) and nL = 2048. Importantly, we obtain the same
results in all cases where qurms { 1 and qagrid { 1. Even a rather coarse
grid, say for nL = 64, is sufficient to confirm the expected large-wavelength
limit (horizontal dashed line). The total static structure factor S(q) is shown
for comparison (solid line). The ‘‘dip’’ of S(q) around q E 4 is caused by the
polydispersity of the particles as emphasized elsewhere.48 S(q) and bVcT(q),
at least for sufficiently small agrid, have both a strong peak located similarly
at q E 6.5 (arrow).
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transverse strain fields eL(q) and eT(q) linearly related to the
corresponding displacement fields uL(q) and uT(q), cf. eqn (16)
and (17).

7 Correlation function fields

Using the strain tensor fields eab(q) in reciprocal space com-
puted according to eqn (C9) for each c and t we obtain the
correlation functions cabgd(q) = heab(q)egd(�q)i averaged over

all c and t. For the reported correlation functions c
0
abgdðqÞ ¼

he 0abðqÞe
0
gdð�qÞi in a coordinate system turned by an angle a we

first compute the new components u
0
aðrÞ and q

0
a of displacement

field and wavevector. (Alternatively, one may also rotate egd(q).)
For the ICFs cL(q) and cT(q) obtained using NRC we first get the
longitudinal and transverse displacement fields uL(q) and uT(q)
in NRC and from those using eqn (16) and (17) the longitudinal
and transverse strains eL(q) and eT(q). cL(q) = heL(q)eL(�q)i and
cT(q) = heT(q)eT(�q)i are computed by averaging over all c and t
and all wavevectors q with magnitude |q| within a chosen bin
around q. The correlation functions cabgd(r) in real space (either
for unrotated or a-rotated coordinate systems) are finally
obtained by inverse FFT.

Appendix D: From cL(q) and cT(q) to
cabcd(r)

As shown in Appendix A4, a forth-order tensor field describing
an isotropic achiral system in two dimensions is given by
eqn (A17) in terms of four invariants in(q). In turn these
invariants are expressed in terms of the alternative set of
invariants cL(q), cT(q), cN(q) and cT(q). Due to eqn (18) we have
cN(q) = c>(q) = 0 for strain correlations. The correlation function
cabgd(q) in reciprocal space are thus given by the invariants

�i1ðqÞ
2
¼ i3ðqÞ

2
¼ i2ðqÞ ¼ cTðqÞ (D1)

and

i4(q) =cL(q) � 4cT(q). (D2)

More specifically, this implies

c1111ðqÞ ¼ c4cLðqÞ þ 4s2c2cTðqÞ

c2222ðqÞ ¼ s4cLðqÞ þ 4s2c2cTðqÞ

c1122ðqÞ ¼ c2s2cLðqÞ � 4s2c2cTðqÞ

c1212ðqÞ ¼ c2s2cLðqÞ þ ðc2 � s2Þ2cTðqÞ

c1112ðqÞ ¼ c3scLðqÞ � 2scðc2 � s2ÞcTðqÞ

c1222ðqÞ ¼ cs3cLðqÞ þ 2scðc2 � s2ÞcTðqÞ

(D3)

with c = cos(y) = q̂1 and s = sin(y) = q̂2 being coefficients
depending only on the wavevector angle y. Alternatively, the
six relations eqn (D3) may also be obtained using that the
components eab(q) in the original coordinate frame can be

expressed as

e11ðqÞ ¼ c2e�11ðqÞ þ s2e�22ðqÞ � 2sc e�12ðqÞ

¼ c2eLðqÞ � 2sc eTðqÞ
(D4)

e22ðqÞ ¼ s2e�11ðqÞ þ c2e�22ðqÞ þ 2sc e�12ðqÞ

¼ s2eLðqÞ þ 2sc eTðqÞ
(D5)

e12ðqÞ ¼ sc e�11ðqÞ � sc e�22ðqÞ þ ðc2 � s2Þe�12ðqÞ

¼ cs eLðqÞ þ ðc2 � s2ÞeTðqÞ
(D6)

in terms of the longitudinal and transverse strains eL(q) and
eT(q) and the fact that eL(q) and eT(q) fluctuate independently.
For the correlation functions c

0
abgdðqÞ in rotated coordinate

systems one simply replaces y by x = y � a. Note also that

c
0
1112ðqÞ and c

0
1222ðqÞ do in general not vanish for all x in

standard (unrotated or rotated) coordinates. The values for
NRC are obtained by setting x = 0, i.e. s = 0 and c = 1. We
expand the angle-dependent coefficients before cL(q) and cT(q)
in terms of the planar harmonic functions cos(py) and sin(py)
with p being integers using standard trigonometric relations.56

This implies for example

c1212 ¼
1

8
4cT � cLð Þ cosð4yÞ þ 4cT þ cLð Þ½ �

c1122 ¼
1

8
4cT � cLð Þ cosð4yÞ � 4cT � cLð Þ½ �

c1111 þ c2222

2
¼ 1

8
� 4cT � cLð Þ cosð4yÞ þ 3cL þ 4cT½ �

c1111 � c2222

2
¼ 1

4
2cLð Þ cosð2yÞ

where we have omitted the arguments q on the l.h.s. and q on
the r.h.s. The prefactor of cos(4y) and sin(4y) is always propor-
tional to i4(q). Having in mind the equipartition relation eqn (2)
and using the creep compliances J1 and J2 introduced in
eqn (19) one sees that

bV ½4cTðqÞ � cLðqÞ� ! J1 �
1

m
� 1

lþ 2m
; (D7)

bV ½2cLðqÞ� ! J2 �
2

lþ 2m
(D8)

in the low- q limit. We thus get in reciprocal space

bVc1212ðqÞ !
J1

8
cosð4yÞ þ . . .

bVc1122ðqÞ !
J1

8
cosð4yÞ þ . . .

bV
c1111ðqÞ þ c2222ðqÞ

2
!� J1

8
cosð4yÞ þ . . .

bV
c1111ðqÞ � c2222ðqÞ

2
!J2

4
cosð2yÞ

where the dots mark constant terms. These terms are irrelevant
for the inverse FT, only leading to contributions at r = 0.
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We may thus take advantage of the analytical result for the
inverse FT eqn (B18). This leads to

bc1212ðrÞ !
J1

4pr2
cosð4yÞ (D9)

bc1122ðrÞ !
J1

4pr2
cosð4yÞ (D10)

b
c1111ðrÞ þ c2222ðrÞ

2
! � J1

4pr2
cosð4yÞ (D11)

b
c1111ðrÞ � c2222ðrÞ

2
! � J2

4pr2
cosð2yÞ (D12)

with y denoting the polar angle of the field vector r. The

correlation functions c
0
abgdðrÞ in rotated coordinate systems

generalize the above equations by substituting y with the angle
difference x = y � a. These results can be rewritten compactly
using the general form expected from eqn (A21) for a manifest
two-dimensional, isotropic and achiral forth-order tensor field
in real space yielding

bc
0
abgdðrÞ ¼ ~i1ðrÞdabdgd

þ ~i2ðrÞ dagdbd þ daddbg
� �

þ ~i3ðrÞ r̂
0
ar̂
0
bdgd þ r̂

0
gr̂
0
ddab

h i

þ ~i4ðrÞr̂
0
ar̂
0
br̂
0
gr̂
0
d

(D13)

where the invariants ĩn(r) in real space are given by

4pr2~i1ðrÞ ¼ J2 � 3J1;

4pr2~i2ðrÞ ¼ J1;

4pr2~i3ðrÞ ¼ 4J1 � J2 and

4pr2~i4ðrÞ ¼ � 8J1:

(D14)

Since i1 = �(2J1 + J2)/4, i2 = (2J1 + J2)/8, i3 = (2J1 + J2)/4 and i4 =
�J1, this is consistent with the more general relation eqn (A22).

The angle dependence for the shear-strain autocorrelation
function in real space is investigated in Fig. 7 where we plot

using linear coordinates bc
0
1212ðr; yÞ4pr2 as a function of x for

different r and a. (To obtain sufficiently high statistics we need
to average over the indicated finite r-bins. This is done by
weighting each data entry for a bin with the proper factor 4pr2.)
The data compare well with the prediction, eqn (D9), confirm-
ing thus especially the scaling with angle difference x = y � a.
Naturally, the statistics deteriorates with increasing r due to the
faster decay of the correlations as compared to the noise.
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J. Baschnagel, Shear modulus of simulated glass-forming
model systems: Effects of boundary condition, temperature
and sampling time, J. Chem. Phys., 2013, 138, 12A533.

37 L. Klochko, J. Baschnagel, J. P. Wittmer and A. N. Semenov,
Relaxation dynamics in supercooled oligomer liquids: From
shear-stress fluctuations to shear modulus and structural
correlations, J. Chem. Phys., 2019, 151, 054504.

38 G. George, L. Klochko, A. N. Semenov, J. Baschnagel and
J. P. Wittmer, Ensemble fluctuations matter for variances of
macroscopic variables, Eur. Phys. J. E: Soft Matter Biol. Phys.,
2021, 44, 13.

39 G. George, L. Klochko, A. N. Semenov, J. Baschnagel and
J. P. Wittmer, Fluctuations of non-ergodic stochastic pro-
cesses, Eur. Phys. J. E: Soft Matter Biol. Phys., 2021, 44, 54.

40 J. D. Ferry, Viscoelastic properties of polymers, John Wiley &
Sons, New York, 1980.

41 M. Rubinstein and R. H. Colby, Polymer Physics, Oxford
University Press, Oxford, 2003.

42 M. Doi and S. F. Edwards, The Theory of Polymer Dynamics,
Clarendon Press, Oxford, 1986.

43 J. K. G. Donth, The Glass Transition: Relaxation dynamics
in liquids and disordered materials, Springer, Berlin-
Heidelberg, 2001.

44 A. Argon and H. Kuo, Plastic flow in a disordered bubble
raft (an analog of a metallic glass), Mater. Sci. Eng., 1979,
39, 101.

45 D. Rodney, A. Tanguy and D. Vandembroucq, Modeling the
mechanics of amorphous solids at different length scale and
time scale, Modell. Simul. Mater. Sci. Eng., 2011, 19, 083001.

46 A. Nicolas, E. Ferrero, K. Martens and J. L. Barrat, Deforma-
tion and flow of amorphous solids: Insights from elasto-
plastic models, Rev. Mod. Phys., 2018, 90, 045006.

47 M. L. Falk and J. S. Langer, Dynamics of viscoplastic deforma-
tion in amorphous solids, Phys Rev E, 1998, 57, 7192.

48 L. Klochko, J. Baschnagel, J. P. Wittmer and A. N. Semenov,
Relaxation moduli of glass-forming systems: temperature
effects and fluctuations, Soft Matter, 2021, 17, 7867.

49 A. Ninarello and L. Berthier, Coslovich D. Models and
Algorithms for the Next Generation of Glass Transition
Studies, Phys. Rev. X, 2017, 7, 021039.

50 J. P. Wittmer, A. N. Semenov and J. Baschnagel Strain
fluctuations at finite wavevectors for isotropic colloidal
glasses using natural rotated coordinates. in preparation.
2023.

51 J. P. Vest, G. Tarjus and P. Viot, Mode-coupling approach for
the slow dynamics of a liquid on a spherical substrate,
J. Chem. Phys., 2015, 143, 084505.

Paper Soft Matter

O
pe

n 
A

cc
es

s 
A

rt
ic

le
. P

ub
lis

he
d 

on
 2

4 
Ju

ly
 2

02
3.

 D
ow

nl
oa

de
d 

on
 8

/6
/2

02
5 

9:
15

:3
4 

A
M

. 
 T

hi
s 

ar
tic

le
 is

 li
ce

ns
ed

 u
nd

er
 a

 C
re

at
iv

e 
C

om
m

on
s 

A
ttr

ib
ut

io
n-

N
on

C
om

m
er

ci
al

 3
.0

 U
np

or
te

d 
L

ic
en

ce
.

View Article Online

http://creativecommons.org/licenses/by-nc/3.0/
http://creativecommons.org/licenses/by-nc/3.0/
https://doi.org/10.1039/d3sm00424d


6156 |  Soft Matter, 2023, 19, 6140–6156 This journal is © The Royal Society of Chemistry 2023

52 F. Turci, G. Tarjus and C. P. Royall, From Glass Formation
to Icosahedral Ordering by Curving Three-Dimensional
Space, Phys. Rev. Lett., 2017, 118, 215501.

53 H. Mizuno and S. Mossa, Mat Phys., 2019, 22, 43604.
54 J. P. Wittmer, A. N. Semenov and J. Baschnagel, Different

spatial correlation functions for non-ergodic stochastic
processes of macroscopic systems, Eur. Phys. J. E: Soft Matter
Biol. Phys., 2022, 45, 65.

55 W. H. Press, S. A. Teukolsky, W. T. Vetterling and
B. P. Flannery, Numerical Recipes in FORTRAN: the art of
scientific computing, Cambridge University Press, Cambridge,
1992.

56 M. Abramowitz and I. A. Stegun, Handbook of Mathematical
Functions, Dover, New York, 1964.

57 J. P. Wittmer, H. Xu, P. Polińska, C. Gillig, J. Helfferich and
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