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AI-dente: an open machine learning based tool
to interpret nano-indentation data of soft tissues
and materials†

Patrick Giolando,a Sotirios Kakaletsis,b Xuesong Zhang,c Johannes Weickenmeier,c

Edward Castillo,a Berkin Dortdivanlioglu *df and Manuel K. Rausch abef

Nano-indentation is a promising method to identify the constitutive parameters of soft materials,

including soft tissues. Especially when materials are very small and heterogeneous, nano-indentation

allows mechanical interrogation where traditional methods may fail. However, because nano-indentation

does not yield a homogeneous deformation field, interpreting the resulting load–displacement curves is non-

trivial and most investigators resort to simplified approaches based on the Hertzian solution. Unfortunately,

for small samples and large indentation depths, these solutions are inaccurate. We set out to use machine

learning to provide an alternative strategy. We first used the finite element method to create a large synthetic

data set. We then used these data to train neural networks to inversely identify material parameters from

load–displacement curves. To this end, we took two different approaches. First, we learned the indentation

forward problem, which we then applied within an iterative framework to identify material parameters.

Second, we learned the inverse problem of directly identifying material parameters. We show that both

approaches are effective at identifying the parameters of the neo-Hookean and Gent models. Specifically,

when applied to synthetic data, our approaches are accurate even for small sample sizes and at deep

indentation. Additionally, our approaches are fast, especially compared to the inverse finite element approach.

Finally, our approaches worked on unseen experimental data from thin mouse brain samples. Here, our

approaches proved robust to experimental noise across over 1000 samples. By providing open access to our

data and code, we hope to support others that conduct nano-indentation on soft materials.

1 Introduction

Testing and quantifying the mechanical properties of soft
materials, such as soft tissues, is essential to understanding
and predicting their behavior.1–3 Unfortunately, the experimental
characterization of soft materials faces numerous difficulties.
This is especially true for soft tissues that are often hetero-
geneous as well as very small.4–7 Traditional test methods, such
as uniaxial tensile-compression testing, may not capture the
heterogeneity of the tissue, as these tests tend to interrogate

only the bulk of the material and do not capture spatial
variations.8 Moreover, traditional test methods often require
significant extra sample space for clamping,9 which proves
difficult or impossible when working with small biological samples.
For example, when using model systems such as rodents,
tissues’ lateral dimensions can be on the order of millimeters
while having thicknesses on the order of micrometers.10–14

The inability of traditional test methods to yield spatially
resolved mechanical properties and to accommodate very
small test samples has inspired the use of indentation-based
methods. Such methods may use micrometer-sized indenters
ranging in size from a few to hundreds of micrometers that
locally probe soft biological tissues to yield load–displacement
curves.15–18 The qualitative and quantitative characteristics of
these curves may then be interpreted to yield approximations
for the local mechanical properties of the material of interest.
Thus, these methods overcome the limitations of traditional
mechanical test methods and can not only be applied to very
small test samples without the need for mechanical clamping
but can be repeated in a scanning pattern over the tissue to
map the samples heterogeneity.19–22
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However, indentation-based methods face their own challenges.
Aside from experimental hurdles, indentation yields highly
nonlinear deformations. To interpret these data, the commu-
nity has largely resorted to using the spherical Hertzian contact
solution.23,24 However, this solution has some limitations in that
it applies only to linearly elastic isotropic materials, assumes that
the indenter and sample surface are non-conforming, requires
that the indentation depth is much smaller compared to the
spherical indenter diameter, and finally, it ignores friction and
surface effects.25 The indentation of soft materials, including
biological soft tissues and hydrogels, in practice, violates at least
some of these assumptions.26,27 Therefore, using the Hertzian
model to identify the material parameters of soft biological tissues
via nano-indentation is prone to significant errors.28–32

Previously developed approaches for overcoming some of the
Hertzian model’s pitfalls each introduce their own limitations.
For example, Zhang et al. recently proposed a modification that
corrects the Hertzian model for large indentations (410% of the
indenter radius).33 However, this solution, and other proposed
modifications to the Hertzian model, usually only overcome
one of its limitations, but not all. In contrast, others have used
inverse finite element approaches to identify material parameters
through an iterative least squares approach in which either the
direct inverse problem or iterative forward problems are solved
to identify unknown material parameters from indentation
data.34–38 The flexibility of finite element methods allows these
approaches to overcome all of the Hertzian model’s limitations.
However, inverse finite element approaches can be computation-
ally expensive.39,40

The objective of our current work is to develop an efficient
approach that combines the generality of finite element-based
methods with the high computational efficiency of machine
learning. Thereby, we will provide an open-source tool that
identifies the material parameters of biological soft tissues –
and other soft materials – from indentation data at a much
lower cost than classic inverse finite element approaches. To
this end, we use the finite element method to create two large
synthetic data sets for the neo-Hookean and Gent models and
subsequently use them to train neural networks that identify
their material parameters from load–displacement data.

2 Methods
2.1 Synthetic data creation

To create synthetic data for model training, testing, and valida-
tion we first sampled a four- and five-dimensional parameter
space for the nano-indentation problem with neo-Hookean
and Gent models, respectively. The parameter space included
sample width (W), sample thickness (H), indentation depth (d),
sample shear modulus (m), and the Gent material parameter
( Jm), see Fig. 2. The indenter radius (R) was used as the
characteristic length to non-dimensionalize all geometric para-
meters. The final parameter space spanned 5 r W/R r 40 by
5 r H/R r 40 by 0.05 r d/R r 0.5 by 102 Pa r m r 106 Pa and
5 � 10�4 r Jm r 5. We then sampled this large parameter

space using latin hypercube sampling. Note that we logarith-
mically scaled the shear moduli before sampling. With each set
of parameters, we created a finite element input file for the
nonlinear finite element solver FEBio (www.febio.org). Within
FEBio, we then synthetically simulated the nonlinear indenta-
tion problem of a rectangular prism of dimensions W � W � H
to yield our training, validation, and testing load–displacement
data sets. In total we generated 25 000 data sets: a 10 000
sample training set, 1250 validation set, and 1250 test data
set for both, the neo-Hookean model and Gent model. Please
note, as the name suggests, the training data was used for
training our machine learning-based approaches, while the
validation data was used in network selection and hyperpara-
meter tuning. Finally, the testing data set was only used after
training and parameter tuning were concluded, to test the
success of our approach.

2.2 Machine learning based inverse approaches

In this study we compared two different machine learning
approaches to accelerate material parameter identification from
indentation data, see Fig. 1. First, we used a least squares-based
approach in which we trained a neural network to solve the
forward problem, see Fig. 1(A). In the second approach, we trained
a neural network to directly predict material parameters
from load–displacement data, without the need of iterations,
see Fig. 1(B).

For both the least squares and the direct inverse approach,
we chose a fully connected dense neural network or multilayer
perceptron. The hidden layer activation functions were set to
leaky ReLU (a = 0.3), and the output layer activation function
was set to linear. The neural network for the forward problem
used an Adam optimizer and mean squared error as the loss
metric to learn the mapping between W, H, m, Jm and load–
displacement data pairs sampled every 0.005R between d = 0
and d = 0.5R. The architecture for the forward neural network
consisted of 5 hidden layers, the first two layers having 4 nodes
and the last 3 layers having 100 nodes. Similarly, the neural
network for the direct inverse problem used Adam as an
optimizer and mean averaged error as the loss metric. Instead
of using full load–displacement curves as input features, we
parameterized the load–displacement curves by fitting them to
a power law, viz. F(d) = pds. In turn, we used p and s, together
with the geometric parameters W and H, as the input features
for the direct inverse approach. That is, we trained our second
neural network to map W, H, p, s to the material parameters m
and Jm. The architecture for the direct inverse neural network
consisted of 5 hidden layers, the first four layers having 4 nodes
and the last layer having 2 nodes.

2.3 Finite element model details

We simulated the indentation problem using the nonlinear
finite element solver FEBio (Version 3.0.0). To this end, we
created a rigid sphere that was displaced by d to indent a soft
material domain of dimensions W � W � H, see Fig. 2. After
careful convergence studies, we discretized the domain with a
biased mesh with 1609 to 65 484 elements – depending on
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domain size – using mixed hexahedral elements.41 The contact
itself was modeled as frictionless. We conducted these simula-
tions for two hyperelastic material models, the neo-Hookean
model and the Gent model.42 We chose the former for its
popularity in the biomechanics community, but also because
it yields a single material parameter that can be easily com-
pared to other, common measures of material stiffness, such as
Young’s modulus. In contrast, we chose the Gent model for its
ability to capture a wide spectrum of strain-stiffening material
behaviors as may be seen during indentation experiments
on soft tissues. The strain energy density functions for both
models read

WðCÞ ¼ m
2

~I1 � 3
� �

þ 1

2
K ln J½ �2 (1)

and

WðCÞ ¼ �mJm
2

ln 1�
~I1 � 3

Jm

� �
þ 1

2
K ln J½ �2; (2)

respectively. Here, m is the shear modulus, Jm is the stiffening
parameter for the first invariant, and K is the bulk modulus.
In all of our simulations, we chose K to be three orders of
magnitude larger than m to ensure quasi-compressibility.43

Note that Ĩ1 is the first invariant of the isochoric Cauchy–Green
deformation tensor and J is the determinant of the deformation
gradient. More details are available in the FEBio documenta-
tion and in the relevant literature on hyperelastic constitutive
modeling.44

2.4 Hertzian and modified Hertzian contact theory

The Hertzian solution was originally formulated as a simplified
contact model for a rigid sphere and an elastic half-space.
It relies on the assumption that the surface is an infinite half
plane, the pressure distribution is parabolic, the material is
homogeneous, and that the material strain is small. By inte-
grating the pressure over the region under compression, a

Fig. 2 Illustration of the finite element domain and discretization for the
indentation problem. The insert shows the deformed configuration after
displacing the rigid (blue) indenter of radius R to contact the indented
material (grey) of dimensions W � W � H.

Fig. 1 Inverse parameter identification and validation/testing procedures. After creating synthetic (Synth.) data sets, we trained a neural network to either
solve the forward problem or to solve the direct inverse problem. That is, we trained a neural network to either predict load–displacement curves
(depicted as discrete load points, i.e., P1 through Pn) from geometric and material input parameters, or we trained a neural network to predict material
parameters from load–displacement and geometric information. While the latter approach directly predicts material parameters from indentation
experiments, the former approach must be combined with an iterative (in our case, least squares) approach. Once material parameters have been
predicted using either method, we used them as inputs to a standard forward finite element simulation to output load–displacement predictions for
validation against experimental (Exp.) data.
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practical relationship between applied force (F) and vertical
displacement (d) of the indenter thus follows as

FðdÞ ¼ 16

3
mR1=2d3=2; (3)

where m is the shear modulus of the indented material.45 Please
note that we assumed a perfectly rigid indenter material and an
incompressible indented material to arrive at the above expres-
sion of the classic Hertzian formulation. When violating the
small strain and the nonconformity of surfaces assumptions,
indentation depth-dependent discrepancies between the Hertzian
solution and finite element solutions have been reported.46

This has led to the development of numerous modified
Hertzian solutions. Here we chose one for comparison to our
approach,33 viz.

FðdÞ ¼ 16

3
mR1=2d3=2 1� 0:15d=Rð Þ: (4)

It is the last term in this modified solution that improves the
standard Hertzian predictions for large indentation depths.

2.5 Real-world mouse brain indentation data

We used real-world data to test out our machine learning-based
approach. That is, we collected 1372 load–displacement curves
by indenting both fresh and fixed mouse brain tissue. Brains
were harvested from two 14-week-old female C57BL/6 mice
before using a vibratome (Leica Biosystems, Buffalo Grove, IL)
to slice each brain into 1 mm thick samples. ‘‘Fixed’’ samples
from animal #1 were first fixed for 24 hours in 10% neutral
buffered formalin solution, while ‘‘fresh’’ samples from animal
#2 were immediately transferred to our nano-indentation tester
(FT-MTA03, FemtoTools AG, Switzerland). Indentation tests on
fixed and fresh samples were then performed using a FT-S200
probe head with a 50 mm polystyrene bead. Note, the probe has
a �200 mN sensing range and a resolution of 0.0005 mN.
We probed the entire sample surfaces at 75 mm inter-
measurement spacing and an indentation speed of 10 mm s�1

for a total of 686 indentations in fresh tissue and 686 indenta-
tions in fixed tissue. All research and animal care procedures
were approved by the Institutional Review Board at Stevens
Institute of Technology under animal protocol 2019-004(AP)

and performed according to international guidelines on the use
of laboratory animals.

3 Results
3.1 Sensitivity of indentation

Fig. 3 demonstrates that violating the assumptions for the
Hertzian contact model leads to significant errors and that
modified solutions may correct for some shortcomings but not
all. Specifically, the figure shows three surfaces: first, it shows
the (gold-standard) finite element solution surface to the
indentation problem in red. This surface demonstrates that
the indentation force is highly dependent on the size of the
indented sample. That is, the thinner the sample, the larger the
indentation force. Similarly, the smaller the lateral dimension
of the sample, the smaller the indentation force. Additionally, it
shows that the deeper the indentation, the larger the indenta-
tion force. The figure also shows the Hertzian solution in
blue. That is, the Hertzian solution is a good approximation
for large and thick samples and small indentations. When
these assumptions are violated, the Hertzian solution quickly
deviates from the gold-standard solution. In fact, errors may be
as large as 89% when the sample becomes as thin as H = 2R.
Finally, the figure also shows the modified Hertzian solution in
black. We find that the modified Hertzian solution accurately
accounts for increased indentation depth but cannot account for
nonlinearities induced by small sample sizes and thicknesses.
This is important when applying indentation to biological tissues
where lateral sample sizes may be minuscule, and tissue can be
very thin14

3.2 Neural network training & validation

Fig. 4 shows the training and validation data for both the neo-
Hookean model (top row) and the Gent model (bottom row).
Fig. 4(A) and (C) demonstrate that 10 000 samples sufficed to
fully train both networks with minimum validation (relative)
errors of 0.61% and 0.37% for the neo-Hookean model and
Gent model, respectively. The figures also show the linearly
increasing cost, i.e., wall time, of increasing training data size.
Once we trained the neural network to predict the forward

Fig. 3 Comparison between the (modified) Hertzian approach and the gold-standard finite element solution. The predicted maximum load due to
indentation to a depth of 0.1 (A), 0.25 (B), and 0.5 (C) times the indenter radius. With decreasing lateral size (W) and thickness (H) the Hertzian solution and
its modification significantly deviate from the gold standard finite element solution, especially at deep indentations (d 4 0.1R).
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problem, we used the network within a least squares approach
to inversely identify the material parameters to the neo-
Hookean and the Gent models from synthetic load–displace-
ments curves. Fig. 4(B), (D) and (E) show a comparison between
the target parameters m and Jm, with which the synthetic load–
displacement curves were created, and the inversely identified –
or predicted – parameters for both models. The shown data sets
were pulled from the validation pool. Evidently, m of the neo-
Hookean model was predicted accurately with a near-perfect
correlation of R2 = 0.99 and an average relative error between
the actual and the predicted parameter of 0.26%. Similarly,
m of the Gent model was also predicted accurately with a near-
perfect correlation of R2 = 0.99 and an average relative error of
0.58%. However, we found that Jm was predicted less accurately
with an average relative error of 5.22%. Yet, its correlation was
still near perfect with R2 = 0.97 Please note that the error
increased with increasing values for Jm.

In our second approach, we trained a neural network to
directly map load–displacement curves – as represented
through parameters p and s, see Section 2.2 – to material
parameters. Fig. 5 shows the training and validation data of
this second approach for both the neo-Hookean and the Gent
models. Fig. 5(A) and (C) demonstrate that 10 000 samples
sufficed to fully train both networks with minimum validation
(relative) errors of 0.70% and 1.77% for the neo-Hookean and
Gent models, respectively. Here, again, the figures also show

the linearly increasing cost, i.e., wall time, of increasing training
data size. To validate the networks, we then applied the direct
approach to identify the neo-Hookean and the Gent material
parameters from synthetic load–displacement curves. Here, again,
we used data from the validation pool. Fig. 5(B), (D) and (E)
show a comparison between the target parameters and the
predicted parameters for the neo-Hookean and the Gent model,
respectively. From these data, it is evident that the shear modulus
m of the neo-Hookean model was predicted accurately with an
R2 = 0.99 and an average relative error of 0.68%. Similarly, the
shear modulus m of the Gent model was also predicted highly
accurately with an R2 = 0.99 and an average relative error of 0.44%.
However, as with the least squares approach, here, too, we found
that Jm was predicted less accurately with an average relative error
of 1.38%. Yet, R2 remained high.

3.3 Neural network testing against the Hertzian solution

After training and validating our neural networks for the least
squares-based and the direct inverse approach, we tested
and compared both approaches against the Hertzian and the
modified Hertzian solutions. Fig. 6(A) compares the predicted
and the target shear modulus m of the neo-Hookean model
between our least squares-based approach, the Hertzian, and
the modified Hertzian solutions. Our first approach achieved a
low average relative error of 0.60% for the shear modulus m of
the neo-Hookean model. In contrast, the Hertzian and the

Fig. 4 Training and validation of the least squares-based inverse approach. The trained forward neural network for the neo-Hookean model (A) yielded
near-perfect agreement between the predicted shear modulus and the ground truth (B). The trained forward neural network for the Gent model (C) also
yielded near-perfect agreement between the predicted shear modulus and the ground truth (D), and yielded strong, yet imperfect, agreement between
the predicted parameter Jm and the ground truth (E). Note, comparisons between predicted and target parameters used the neural networks that were
trained with 10 000 samples.
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modified Hertzian solutions achieved average relative errors of
8.05% and 3.34%, respectively. Importantly, however, individual
errors for both analytical solutions were as high as 100%. Those
findings are similar for the direct inverse approach. Fig. 6(B)
compares the predicted and the target shear modulus m of the
neo-Hookean model between our direct inverse approach, the
Hertzian, and the modified Hertzian solutions. Our second
approach achieved a low average relative error of 0.69%, com-
pared to the 8.05% and 3.34% reported above. See also Fig. 6(C)
for a comparsion between error distrubtions of the Hertzian,

the modified Hertzian, and our approaches. Please see ESI,†
Fig. S1 and S2 for additional sensitivity analyses, where we study
the prediction error as a function of sample geometry, indentation
depth, and material stiffness. All approaches were compared
using our testing data set that are different from our training
and validation data sets used in Fig. 4 and 5.

3.4 Neural network testing against real-world data

To test both of our approaches against real-world data, we used
nano-indentation data of fresh and fixed mouse brains with a

Fig. 5 Training and validation of the direct inverse approach. The trained inverse neural network for the neo-Hookean model (A) yielded near-perfect
agreement between the predicted shear modulus and the ground truth (B). The trained inverse neural network for the Gent model (C) yielded near-
perfect agreement between the predicted shear modulus and the ground truth (D), as well as for the predicted parameter Jm and the ground truth (E).
Note, comparisons between predicted and target parameters used the neural networks that were trained with 10 000 samples.

Fig. 6 Testing of the least squares and the direct inverse approaches for the neo-Hookean model. Both the least squares approach (A) and the direct
inverse approach (B) yield accurate predictions for the shear modulus m. This is especially true when compared to the Hertzian and the modified Hertzian
solutions (C) that show significantly higher errors between the predicted and the target shear moduli. Note, these data stem from our testing data pool
and were therefore unseen and not used during parameter tuning or model validation.
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total of 1372 load–displacement curves. To this end, we first
used our approaches to inversely identify the neo-Hookean and
the Gent material parameters from the experimental data. Next,
to test the accuracy of our prediction, we used those same
parameters in a nonlinear finite element simulation of the
nano-indentation problem and compared those predictions to
the actual experimental data. In Fig. 7 we compare the load–
displacement curves based on our predictions to the average
load–displacement data of fresh and fixed mouse brain inden-
tation. Specifically, we first compare our least squares-based
approach for both the neo-Hookean and the Gent model in
Fig. 8(A) and (B), respectively, before conducting the same
comparison for our direct approach in Fig. 8(C) and (D).
We find that our predictions fit the experimental data well with
root mean squared errors (RMSE) on the order of 10�4 to
10�2 mN. This is true for both fresh tissue (with lower moduli)
and fixed tissue (with higher moduli). We also find that the
Gent model fits the experimental data better than the neo-
Hookean model, especially for fresh tissue.

Finally, we tested our approach also on all individual load–
displacement curves from our fresh tissue data pool. Fig. 8(A)
shows the summary statistics of 686 individual inverse analyses
and their RMSEs against the experimental data for both
the neo-Hookean and the Gent model. These statistics show
that the least squares approach yields smaller and narrower
distributed errors than the direct approach. Additionally,
these statistics reinforce that the Gent model fits the fresh
mouse brain indentation data better than the neo-Hookean
model. Finally, Fig. 8(B) representatively shows the first nine
fits via the direct approach for both the neo-Hookean and
the Gent model, which reinforces the findings based on our
summary statistics.

Also, identifying the material parameter from our mouse
brain indentation data set comprised of 1372 samples took
6.85 hours using the least squares approach and 132 seconds
using the direct approach. In contrast, using a finite element-
based least squares approach to do the same would take
approximately 200 days. Note, we extrapolated this number

Fig. 7 Comparison between the least squares (LS) based inverse approach and the direct inverse approach on real-world indentation data. (A) and (B)
Least squares-based fits of the neo-Hookean and the Gent models to both averaged fresh and chemically fixed mouse brain nano-indentation data,
respectively. (C) and (D) Fits to the neo-Hookean and the Gent models to both averaged fresh and chemically fixed mouse brain nano-indentation data
using the direct inverse approach, respectively. Experimental data was obtained as the average of 686 fresh and fixed individual curves. RMSE = root
mean squared error.
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from the cost of a single finite element forward simulation and
the same number of iterations as required in our least squares

approach. All of these numbers were benchmarked on a personal
desktop computer (AMD Ryzen 9 5950X: 16 Cores at 4.9 GHz).

Fig. 8 Showcasing our two inverse approaches against real-world data. (A) The error distribution from fitting the neo-Hookean model and the Gent
models to 686 fresh mouse brain nano-indentation data sets. We compared both the least squares (LS) based inverse approach and the direct inverse
approach. (B) Fits via the direct inverse approach to the first nine samples in our data set. RMSE = root mean squared error.
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4 Open software tool: AI-dente

Our training data, python scripts, trained neural network, and
sample data are openly available.‡ In addition to the synthetic
data and the experimental data, our open repository contains
the scripts main_SynthData_neoHookean.py and main_SynthData_
Gent.py with which the interested reader can simulate the
indentation problem using FEBio. The repository also contains
the script main_AnalyzeData.py that reads load–displacement
data and sample dimensions and outputs the machine learning-
based and Hertzian-based predictions for the material shear
modulus. Please note, this script also computes Young’s modu-
lus and modified Young’s modulus as commonly reported in the
nano-indentation literature.46

5 Discussion

In our current work, we implemented a machine learning-based
tool to inversely identify material parameters from nano-
indentation derived force–displacement data. We set out to
overcome (i) the limited accuracy of the Hertzian contact
solution for experiments beyond the linear strain regime
and (ii) the high computational expense of finite element-
based approaches.

5.1 Advantage over other approaches

We showed that we successfully accomplished both goals. That
is, we showed through two differing approaches that a machine
learning-based approach can be both accurate and computa-
tionally efficient. First, we trained a neural network to solve the
forward indentation problem. By integrating this network into
a least squares framework, we could iteratively identify the
material parameters of two popular material models, the neo-
Hookean model and the Gent model. Additionally, we used a
neural network to directly predict those material parameters
from load–displacement curves. Both approaches yielded
results with errors of o1% and within o1 s, even for very
small and thin samples that violate the assumptions of the
Hertzian contact solution. The same cannot be said for alter-
native approaches, such as the inverse finite element approach.

5.2 Robustness to experimental noise

We tested our approach against both synthetic data and real-
world data. In both cases, we achieved high fit qualities with
low errors between predictions and ground truth (in the case of
the synthetic data) and between predictions and the experi-
mental data (in the case of real-world data). That is, our
approach is robust against experimental uncertainty and noise.
Interestingly, the robustness of our approach does not stem
from training our networks on synthetic noise. Instead, the
robustness of the least squares approach stems from the
forward model being effectively constrained through its train-
ing to only yield smooth load–displacement curves. On the
other hand, the direct inverse approach is highly sensitive to

noise when being directly applied to load–displacement data.
We overcame this challenge by fitting the synthetic and real-
world load–displacement curves to a two-parameter function.
Thereby, we effectively parameterized the load–displacement
curves akin to a low-pass filter step. Subsequently, we used the
two parameters as network input features rather than the
potentially noisy raw load–displacement curves.

5.3 Material model choice

Albeit not specifically related to our approach but potentially
interesting to the reader, we found that the Gent model was the
superior model for fitting the strain-stiffening behavior as seen
in our real-world data set. Of course, this is hardly surprising
as we expect a two-parameter model to outperform a one-
parameter model. Nonetheless, we want to highlight the favor-
able performance of the Gent model. Especially given that the
Gent model receives relatively little attention in the biomecha-
nics community and is often forgone in favor of the two-
parameter Ogden model, which receives much attention.47

One important advantage over its more popular counterpart
could be seen in the easier interpretability of its parameters.
That is, its parameters are the shear modulus and stiffening
parameter. While the Ogden model is also a two-parameter
model, its parameters are not as easily associable with physical
characteristics. Additionally, the Ogden model suffers from a
number of peculiarities that we have recently discussed.47

However, it should be noted that the Gent model shows a high
degree of nonlinearity in its stiffening parameter. Among other
effects, this causes a decrease in its influence with increasing
magnitude. For us specifically, this resulted in worse identifia-
bility and increasing training errors for large values of Jm, see
Fig. 4 for example.

5.4 Limitations

In our work, we limited our training to hyperelastic materials
and to a relatively simple contact problem (e.g., we did not
account for friction or surface effects, such as surface tension,
adhesion, or curvature forces48,49). Thus, when more complex
contact behavior is required, our tool will not be useful in its
current form. However, our framework is generally applicable
and could be trained on more complex materials and contact
cases. For example, one could train neural networks to learn
viscoelastic behavior of soft tissue and to learn surface effects
between indenter and sample.50 Thus, not only is our framework
accurate and fast, but it is also highly flexible. Of course, addi-
tional training requires additional synthetic data, as well as new
validation, and testing. Thus, the interested reader/user would
have to weight the cost of extending our framework against the
cost of conducting instead an inverse finite element analysis.

6 Conclusion

We proposed and successfully tested a machine learning-based
approach to determine material parameters from nano-
indenter-based load–displacement curves. That is, we showed‡ https://github.com/cmsmlab/AI-dente
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that we can use machine learning to yield accurate and fast
results that outperform both the classic Hertzian solution
(especially for very small and thin samples) and a traditional
finite element-based approach. In addition to being accurate
and fast, our approach is also highly flexible and allows
accounting for complex material behaviors and nonlinear con-
tact phenomena.
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