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Rod-climbing rheometry revisited

Rishabh V. More, a Reid Patterson, b Eugene Pashkovski b and
Gareth H. McKinley *a

The rod-climbing or ‘‘Weissenberg’’ effect in which the free surface of a complex fluid climbs a thin

rotating rod is a popular and convincing experiment demonstrating the existence of elasticity in

polymeric fluids. The interface shape and steady-state climbing height depend on the rotation rate, fluid

elasticity (through the presence of normal stresses), surface tension, and inertia. By solving the equations

of motion in the low rotation rate limit for a second-order fluid, a mathematical relationship between

the interface deflection and the fluid material functions, specifically the first and second normal stress

differences, emerges. This relationship has been used in the past to measure the climbing constant, a

combination of the first (C1,0) and second (C2,0) normal stress difference coefficients from experimental

observations of rod-climbing in the low shear rate limit. However, a quantitative reconciliation of such

observations with the capabilities of modern-day torsional rheometers is lacking. To this end, we combine rod-

climbing experiments with both small amplitude oscillatory shear (SAOS) flow measurements and steady shear

measurements of the first normal stress difference from commercial rheometers to quantify the values of both

C1,0 and C2,0 for a series of polymer solutions. Furthermore, by retaining the oft-neglected inertial terms, we

show that the ‘‘climbing constant’’ b̂ = 0.5C1,0 + 2C2,0 can be measured even when the fluids, in fact,

experience rod descending. A climbing condition derived by considering the competition between elasticity and

inertial effects accurately predicts whether a fluid will undergo rod-climbing or rod-descending. Our results

suggest a more general description, ‘‘rotating rod rheometry’’ instead of ‘‘rod-climbing rheometry’’, to be more

apt and less restrictive. The analysis and observations presented in this study establish rotating rod rheometry

combined with SAOS measurements as a prime candidate for measuring normal stress differences in complex

fluids at low shear rates that are often below commercial rheometers’ sensitivity limits.

1. Introduction

The knowledge of a fluid’s rheological properties is an essential
prerequisite for predicting the flow of a complex fluid in any
desired application. A simple steady shear flow measurement is
enough for generalized Newtonian fluids as the shear-rate–
dependent viscosity Z( _g) is the only rheological property
required to resolve the flow dynamics in a specific geometry
of interest. However, the presence of fluid elasticity requires the
use of multiple deformation protocols to build a thorough
understanding of the materials’ rheological properties. Simple
steady homogeneous shear flow, which is the most widely used
test protocol, provides (in principle) quantitative information
about the shear-rate dependence of three independent materi-
als functions, viz., the viscosity Z( _g), the first normal stress
difference N1( _g) and the second normal stress difference N2( _g).
These normal stress differences are identically zero in

Newtonian fluids. They are associated with nonlinear viscoelas-
tic effects and hence, are negligibly small in linear viscoelastic
measurements.1 Their first appearance comes as a second-order
effect in the shear rate, represented using the first (C1) and the
second (C2) normal stress coefficients such that N1( _g) = C1 _g2

and N2( _g) = C2 _g2, respectively.2,3 However, due to limitations on
the torque and axial force transducer sensitivities of commercial
rheometers, it is typically only possible to measure the material
functions over a limited range of shear rate values, which can be
determined a priori from the transducer sensitivity limits.4

In a strongly non-Newtonian fluid, N1 can be comparable
or even larger than the shear stress, s, at high shear rates.
Consequently, N1 can typically be measured for many complex
fluid systems using the very sensitive force re-balance transdu-
cer technology, which is now available in many commercial
rheometers. Using a cone-and-plate (CP) geometry with a radius
R and cone angle y0, the first normal stress difference N1( _g) can
be measured directly from the axial force FCP acting on either
the cone or the plate using:2

N1( _g) = 2FCP( _g)/pR2, (1)
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where _g = O/y0 and O is the rotational speed of the conical
fixture. At low shear rates, in a simple fluid with fading
memory,1 N1 is expected to vary quadratically through the
analytical relationship

lim
_g!0

N1

_g2
¼ C1j _g!0 ¼ C1;0 ¼ lim

o!0

2G0ðoÞ
o2

: (2)

Here the storage modulus G0(o) can be measured with relatively
high accuracy in small amplitude oscillatory shear (SAOS) flow
at an oscillatory frequency o. The subscript 0 (e.g., C1,0) on a
rheological property such as C1 denotes its value in the limit of
vanishingly small shear rate.

On the other hand, the measurement of N2 poses many
difficulties compared to Z or N1, resulting in far less attention to
its accurate determination. Over the years, many techniques5

have been proposed to determine N2 experimentally. The most
widespread approach is to use a cone-and-plate geometry for
the direct measurement of N1( _g) using eqn (1) in conjunction
with another technique that measures a combination of N1 and
N2. The complementary techniques are discussed in great detail
in the review by Maklad and Poole5 and include parallel–plate
(PP) thrust measurement, offset cone-and-plate fixtures with
distance adjustment, a cone-and-plate geometry with pressure
distribution measurement, plate-and-ring geometry, and cone-
and-ring geometry. An estimate of N2 can be obtained by an
appropriate subtraction of the two independent experimental
measurements. However, because N2 is often a small percen-
tage of the value of N1, such approaches are fraught with
experimental difficulties.

Although the determination of N2 using the combination of
CP thrust and any of the supplementary measurements seems
straightforward, many practical challenges arise, e.g., reduced
values of the measured thrust due to inertia and/or secondary
flows,6 amplified uncertainty due to subtracting two nearly
equal values of the measured normal stress differences, differ-
entiation of experimental data with respect to variations
of other control parameters, or building a much more compli-
cated experimental setup to measure pressure gradients (or
several thrust measurements) directly.5 Another alternative
technique is to use a cone-and-partitioned plate.7 A specific
combination of the two normal stress differences is obtained
from each measurement varying the partition radius. Perform-
ing several measurements at different radii, we can get a trend
with radius variations, and the intercept at r = 0 gives N1, and
the second normal stress difference can then be evaluated.
However, the most commonly encountered limitation in mea-
suring N1 or N2 using the mentioned techniques is that the
torque or thrust measuring transducers have minimum sensi-
tivity limits below which they cannot detect the forces or
torques exerted by a complex fluid under shear. For example,
the state-of-the-art ARES-G2 rheometer (TA instruments) has a
practical lower sensitivity limit of 0.001 N (0.1 gm-force) for the
axial force FCP in eqn (1). So, a 40 mm CP geometry, for
instance, will not be sensitive to a first normal stress difference
below approximately N1 �o 1:6Pa. Practically, this means that
quantitative estimation of the asymptotic quadratic behavior of

N1 and N2 (or equivalently the first and second normal stress
coefficients C1| _g-0 = C1,0 and C2| _g-0 = C2,0) cannot be
achieved using the above-mentioned techniques for many
complex fluids of interest such as polymer solutions or con-
centrated suspensions.

It is well known that the normal stress differences can also
lead to secondary flows due to the breaking of axisymmetry, for
instance, in pipes of non-circular cross-sections. These second-
ary flows arise because normal stress differences lead to tensile
(or compressive) stresses acting along the streamlines and
vortex lines in the flow (depending on the signs of N1 and
N2). Similarly, non-zero contributions to the total stress acting
on a deformable or free surface (for instance, flow down an
open inclined trough or around a rotating rod, also lead to
secondary flows). In such flows, the deformable shear-free
surface acts as a very sensitive ‘‘pressure gauge’’, and hence,
is a popular way to demonstrate visually and unequivocally the
presence of normal stress differences in complex fluids.8 With
careful work, the tilted trough (TT) experiment has been used to
quantify N2 by measuring the free surface deflection in the
steady shear flow generated by gravity when the open trough is
inclined at a specific angle.9 The tilted trough technique offers
great potential but requires a dedicated experimental facility,
large volumes of fluid, and a complicated data-processing
technique to extract N2. In addition, only a narrow range of
shear stresses can be probed, making it difficult to accurately
determine C2,0 using the TT.5

To overcome the above-mentioned limitations in reliably
measuring C1,0 and C2,0, in the present study we revisit the
well-known rod-climbing effect. Following the original pioneer-
ing work by D. D. Joseph and co-workers on the rod-climbing
rheometer,10–13 measurements of the climbing height and how
it varies with rotation rate have been used to estimate C2,0 in
polyisobutylene (PIB) Boger fluids with the same components
but slightly different PIB concentrations (0.24 wt%14 and 0.1
wt%15). However, this flow configuration has not received much
attention in the ensuing three decades following these earlier
studies, mainly because a reliable reconciliation of rod-climbing
experiments with material functions measured in modern-day
rheometers is still lacking. To this end, we present a protocol to
robustly measure both C1,0 and C2,0 using a combination of
rod-climbing, normal force measurements in steady shear, and
SAOS measurements. The results presented here show that rod-
climbing data can serve as an inexpensive supplement to data
from commercial rheometers to enable measurements of both
the first and second normal stress difference of a complex fluid
in the low shear rate limit, which is typically beyond the
sensitivity limits of commercial rheometers.

2 The climbing height in the
‘‘rod-climbing’’ experiment

The ‘‘rod climbing’’ or Weissenberg effect16 is illustrated in
Fig. 1, where the free surface of a fluid climbs a thin rotating
rod and serves as an indisputable experiment demonstrating
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the presence of non-linear elasticity in polymeric fluids. The
presence of normal stresses in a fluid under shear leads to the
idea of a streamwise or ‘hoop’ stress in a fluid experiencing a
torsional shear flow around a thin rotating rod. These hoop
stresses pull fluid elements radially inward toward the rotating
rod. As a result of this secondary flow, the deformable free
surface near the rod ascends to a height at which the additional
hydrostatic pressure pushing the fluid downwards and outwards
exactly balances the hoop stress pulling the fluid inwards. The
interface shape is denoted by h(O,r,a), and the climbing height at
a given rotation speed is denoted by h(O,a,a), where r is the radial
coordinate, O is the rod rotation speed, a is the rod radius, and a
is the contact angle of the fluid–air interface at the rod. The
interface shape and the climbing height generally depend on the
rod rotation rate and the fluid elasticity, as quantified by the two
normal stress differences, surface tension, and inertia. The
functional dependence can be determined by solving the govern-
ing equations of motion using a domain perturbation technique
in the low rotation rate limit for a second-order fluid.10–12 A
detailed derivation is presented in Appendix A. The final solution
(eqn (22) in Appendix A) for the interface shape h(O,r,a) gives the
following mathematical relationship between the climbing
height h(O,a,a) and the material functions characterizing the
fluid in terms of a specific combination of both normal stress
differences called the ‘‘climbing constant’’ b̂ = 0.5C1,0 + 2C2,0:11

hðO; a; aÞ ¼ hsða; aÞ þ
a

2 Grgð Þ1=2
4b̂

4þ
ffiffiffiffiffiffi
Bo
p � ra2

2þ
ffiffiffiffiffiffi
Bo
p

" #
O2

þOðO2aþ O4Þ:
(3)

Here hs(a,a) is the static climbing height arising from capillarity
effects (in a fluid with surface tension G and contact angle a). r is
the fluid density, a is the rod radius which rotates with an
angular speed O, and Bo = rga2/G is the Bond number with g
being the acceleration due to gravity. Eqn (3) establishes the
foundation of rod-climbing rheometry.5

3. Methods and materials

The schematic of our experimental setup is presented in Fig. 2.
A stress-controlled rheometer (TA instrument’s AR-G2 Magnetic
Bearing Rheometer) was modified to function as a rotating-rod
rheometer. A precisely machined hollow steel tube of known
outer diameter 2a = 9.525 mm was mounted concentrically
using a compression fit to a standard 8 mm parallel plate
geometry (which in itself is effectively a thin but short axially
aligned rod with a flat end) to increase its length. This modified
rheometer fixture serves perfectly as a thin and well-aligned
axially uniform cylindrical rod that can be rotated in a fluid
reservoir using the rheometer’s precision motor control. The
polymeric fluid (see description below) was contained in a
cylindrical glass beaker of diameter 100 mm and depth
50 mm. The original study by joseph et al.11 recommends the
beaker-to-rod diameter ratio to be at least ten so that edge
effects on the climbing height measured in the low rotation
speed regime are minimal.14,15 The rods were fully immersed in
the beaker to a depth of 10a E 45 mm. It has been shown that
the immersion depth of the rod into the fluid does not affect
the rod-climbing height.14 The position of the beaker was
manually adjusted to align it concentrically with the rotation
axis of the rotating rod. Using the AR-G2 rheometer motor to
impose the rotation rate allowed us to control the rod rotational
speed O accurately. Photographs taken with a Nikon EOS 7D
DSLR camera were used to capture the free surface shape and
the climbing height at various rotational speeds. The photo-
graphs were used to measure the climbing heights of the fluid-
free surface near the rod h(O,a,a). The photographs capture the
interface with a spatial resolution of 0.05 mm pixel�1, which
can be determined from the magnification of the lens and the
pixel resolution of the captured images.

Eqn (3) for the rod-climbing height at the rod surface (r = a)
was derived assuming a semi-infinite fluid container and a
domain perturbation approach (see Appendix A for a detailed
derivation). All the higher-order terms in eqn (3) involve
computing secondary motions from complex boundary value
problems. However, it has been shown that computing these
higher-order terms is not necessary at low rotation rates, and
the expression

DhðO; aÞ ¼ hðO; a; aÞ � hsða; aÞ

� a

2 Grgð Þ1=2
4b̂

4þ
ffiffiffiffiffiffi
Bo
p � ra2

2þ
ffiffiffiffiffiffi
Bo
p

" #
O2

(4)

is a good approximation for the changes in the free surface
height in the small rotation speed limit.10,11 This means the
change (or perturbation) in the climbing height Dh(O,a) =
h(O,a,a) � hs(a,a) is approximately independent of the contact
angle a in the small O limit and scales linearly with O2. From
the rod-climbing experiment (Fig. 2), we measure the change in
the climbing height due to rod rotation Dh(O,a) compared to
the static rise height hs(a,a) and plot it as a function of the
imposed rotation speed. From this plot of Dh(O,a) vs. O2, we
compute the slope dDh/dO2 in the quadratic regime

Fig. 1 The rod-climbing or ‘‘Weissenberg’’ effect.16 The free surface of an
elastic fluid climbs a thin rotating rod with a radius a and an angular
velocity O. The interface shape and the climbing height (Dh(O,a)) com-
pared to the static rise near the rod (hs(a)) is primarily determined by the
rate of rotation, the normal stresses in the fluid, along with surface tension
and inertia.
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corresponding to low values of O2 and equate it to the
theoretical slope

dDhðO; aÞ
dO2

� a

2 Grgð Þ1=2
4b̂

4þ
ffiffiffiffiffiffi
Bo
p � ra2

2þ
ffiffiffiffiffiffi
Bo
p

" #
(5)

obtained from eqn (4). If the fluid density and surface tension are

known, one can compute the climbing constant b̂ = 0.5C1,0 + 2C2,0

from the slope of the data. This calculated value of b̂ can then
be used in conjunction with an independent measurement of
C1,0 from a complementary method to calculate C2,0 as

C2;0 ¼
1

2
b̂� 1

4
C1;0 ¼ �

C1;0

4
1� 2b̂

C1;0

 !
: (6)

As discussed in the Introduction, direct measurements of the
axial force in a CP geometry used to measure N1 using eqn (1)
cannot probe very small shear rates because the normal force
signal exerted by the fluid is often weaker than the lower
sensitivity limits of the force transducer. Hence, measuring
G0(o) (with relatively high accuracy) through SAOS deforma-
tions in a concentric cylinders geometry and using the asymp-

totic limit in eqn (2), i.e., C1;0 ’ limo!0
2G0

o2
is a practical and

superior solution, as will be shown later in Section 4.
Further insights into the competition between the

elastic effects (i.e., the first term in the square brackets in

eqn (5) – denoted Term I), which encourage rod-climbing, and
the inertial effects, which drive a decrease in the height (the
second term in the square brackets in eqn (5) – denoted Term
II), can be obtained from eqn (5). These insights aid in extend-
ing the usefulness of the rod-climbing rheometer beyond the
moderately viscous and elastic fluids tested decades ago.14,15,17

To achieve this expansion in utility, we do not make any
simplification to eqn (5) and, unlike previous studies,14,15,17

retain the contribution due to inertial effects (Term II). From
eqn (5), one can conclude that weakly elastic fluids with
relatively smaller values of b̂ can undergo rod-descending
(i.e., Term I o Term II in eqn (5)), that is, the climbing height
decreases with increasing O from the initial static rise hs(a,a) due to
the dominance of inertial effects. However, the linear relationship
expected in Dh(O,a) vs. O2 in the low rotation rate limit is still valid
and can be used to measure b̂ (and consequently C2,0) even in
weakly viscoelastic fluids, e.g., dilute or semi-dilute polymer solu-
tions. We test this hypothesis in Section 4. In the extreme case of a
Newtonian fluid when b̂ = 0 we expect

dDhðO; aÞ
dO2

� a

2 Grgð Þ1=2
� ra2

2þ
ffiffiffiffiffiffi
Bo
p

� �
; (7)

which sets the Newtonian inertial rod-dipping limit from the slope
of the Dh(O,a) vs. O2 plot (in the low O limit). Any deviation of dDh/
dO2 from eqn (7), denotes the presence of a non-zero climbing
constant b̂, and consequently, the presence of finite normal stress

Fig. 2 (a) The rod-climbing rheometer includes a cylindrical beaker filled with the fluid of interest. A thin rod of radius a is submerged with its axis aligned
with the axis of the beaker. As the rod rotates with an angular velocity O, the fluid interface climbs (or descends) if the climbing condition [see Section 4.4
Fig. 8] is satisfied (not satisfied). The fluid is illuminated with a strong background light, and still images of the interface are captured using a digital camera
(Nikon EOS 7D DSLR). (b) In a weakly elastic fluid, dominant inertial effects compared to the fluid elasticity result in a local dip in the free surface that we
define as ‘‘rod-descending’’. In a more strongly elastic fluid, rod-climbing due to large normal stress differences can be visualized; for example, by (c)
shining a laser sheet in a plane perpendicular to the camera and (d) illuminating the fluid using a strong backlight. The bulk of the measurements in this
work are performed using this latter illumination setup. Scale bars in (b–d) are all 5 mm.
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differences. Eqn (5) can also be utilized to derive a ‘‘climbing
condition’’ in terms of two dimensionless quantities: a dimension-
less normal stress difference ratio c0 = �C2,0/C1,0 and the
inertioelastic quantity ra2/C1,0; both of which are independent
of the flow kinematics in the problem. We defer a more detailed
discussion on this climbing condition to Section 4.4.

For this study, we use polymeric solutions of polyisobutylene
(PIB) (Molecular weight E106 g mol�1) dissolved in a paraffinic
oil (Lubrizol Inc.). We perform all our measurements at a
constant temperature T = 20 1C. The Newtonian solvent oil
has a steady state viscosity Zs = 18.07 mPa s at 20 1C. The
polymer intrinsic viscosity is measured to be [Z] = 3.69 dL g�1,
and this can be used to estimate the critical overlap concen-
tration of the polymer solute C* C 0.77/[Z]18 = 0.23 wt%.
The solutions were all measured to have a constant density
r = 873.1 kg m�3 and surface tension G = 29.7 mN m�1. The
material properties of the test fluids used are summarized in
Table 1. We vary the dissolved concentration of polymer in the
solution to change the viscoelastic properties. We work with three
semi-dilute solutions (C 4 C*): 3 wt%, 2 wt%, and 1 wt%,
respectively, and one close to C*: 0.3 wt%. These polymeric
solutions are all shear-thinning, with their viscoelasticity decreasing
at lower concentrations, as shown in the next section.

4. Results and discussion

The rotating rod rheometry protocol involves
1. Determining the value of C1,0 from SAOS data obtained

over a range of temperatures to construct a time-Temperature
superposition (tTS) master curve and then using the asymptotic
result obtained from simple fluid theory C1,0 = limo-02G0/o2

(Section 4.1),
2. Calculating the climbing constant b̂ = 0.5C1,0 + 2C2,0 by

measuring the surface deflection and determining the slope
dDh/dO2 of perturbations to the static interface Dh(O,a) vs. O2

for small O. This value is then equated to the theoretical result
(eqn (5)) (Section 4.2), and

3. Calculating the second normal stress coefficient using the
relationship C2,0 = (b̂ � 0.5C1,0)/2 (Section 4.3).

We first present the results of applying this protocol to the
four PIB-based fluids described above. In addition, we derive a
modified ‘‘climbing condition’’ (Section 4.4) and present obser-
vations which support the use of the rotating rod experiment to
probe C2,0 even in fluids that exhibit a local dip in the free
surface that we define as ‘‘rod-descending’’ (Section 4.5).

4.1 W1,0 measurements using small amplitude oscillatory
shear

Fig. 3 shows the results obtained from small amplitude oscilla-
tory shear (SAOS) flow experiments using a concentric cylinder

geometry for the 3 wt% and 1 wt% solutions. We perform time-
Temperature superposition (tTS) to construct a master curve of
the storage and loss moduli as functions of the reduced
oscillation frequency or = aTo, denoted G0(or) and G00(or),
respectively. This allows us to extend the range of measure-
ments to sufficiently low frequencies to observe the terminal
scaling expected. Here o is the oscillatory frequency, and aT is
the temperature-dependent horizontal shift factor. For the
limited range of temperatures 10 1C r T r 80 1C studied here,
we find the vertical shift factor bT E 1 for these PIB solutions,
and there is no need to shift the G0(or) and G00(or) data vertically.
In addition, we observe that even though the solutions are in the
semi-dilute regime, the generalized Rouse–Zimm model
expressed in the form19

G0ðorÞ ¼ Gc
ortZ sin watanðortZÞ½ �
ð1þ ðortZÞ2Þ½ �w=2

; (8a)

Table 1 PIB polymer solution properties

C (wt%) r (kg m�3) G (mN m�1) Zs (mPa s) C* (wt%)

0.30–3.00 873.1 29.7 18.07 0.23

Fig. 3 Small amplitude oscillatory shear (SAOS) measurements at a strain
amplitude g0 = 1% of (a) 3 wt% and (b) 1 wt% PIB solutions used in this study.
Time-temperature superposition using a reference temperature T0 =
20 1C is employed to construct a master curve with a lateral shift factor
aT giving the reduced frequency or = aTo. The generalized Rouse–Zimm
model (eqn (8)) does an excellent job of fitting the SAOS data, and the
corresponding fits are shown using black lines. The fitting parameter
values for the generalized Rouse–Zimm model are tabulated in Table 2.
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G00ðorÞ ¼ Gc
ortZ cos watan ðortZÞ½ �
ð1þ ðortZÞ2Þ½ �w=2

(8b)

does a good job of fitting the SAOS data, as shown in Fig. 3. Here
the fitting parameters are the characteristic modulus Gc, the
Zimm relaxation time tZ, and w = (1 � 1/3n) with n being
the solvent quality exponent. The best-fit parameter values for
the generalized Rouse–Zimm model are tabulated in Table 2.

We can now use eqn (2) to evaluate the expected value of the
first normal stress difference coefficient C1,0 in the zero shear
limit. Using the generalized Rouse–Zimm model (eqn (8a)) and
the expectation from simple fluid theory (eqn (2)) we obtain,

C1,0 = 2GctZ
2w, (9)

which allows us to calculate C1,0 from the linear viscoelastic
master curve. The calculated values for all the solutions used in
this study are provided in Table 2. However, it should be noted
that the asymptotic value of C1,0 as defined in eqn (2), can also
be calculated solely from a master curve of the SAOS data by a
careful regression analysis of the empirical data. This is especially
useful if a statistically good fit with available models, such as the
Zimm model, is not possible, provided there is a discernible
quadratic regime in which G0(or) B or

2 at low frequencies.
Observing a clear quadratic scaling from the SAOS data at a fixed
temperature can often be difficult for certain weakly elastic fluids,
as sufficiently low frequencies might not be accessible due to
rheometer sensitivity limits. Hence, performing time-temperature
superposition can be useful, as well as using a constitutive model
so that SAOS measurements can be robustly extrapolated into the
region where tZor { 1 in order to calculate C1,0 accurately. Results
in Table 2 show that we can expect C1,0 to vary over four orders of
magnitude by diluting the solutions over a factor of 10. Thus,
varying the PIB concentration is expected to have an equivalent
dramatic impact on the rod-climbing; indeed, we observe the same
sensitivity level, as discussed in the following subsection.

4.2 Measurements of the climbing constant b̂ using
rod-climbing observations

We turn our attention to the rod-climbing experiments in this
subsection. The experimental data and representative photographs
of the 3 wt% solution undergoing rod-climbing are presented in
Fig. 4. When O = 0, we observe a finite climbing height due to
meniscus wetting as shown in Fig. 4a-i. This is the static climbing
height hs(a,a) as explained in eqn (4). This meniscus height and

shape can be adequately described by solving the Young–Laplace
equation for the interface with the knowledge of the contact
angle determined from the photograph, but this will not be
pursued here as our focus is on measuring the change in the
climbing height Dh(O,a) due to rotation of the rod. As we rotate
the rod with a rotation speed O, Dh(O,a) is expected to initially
be proportional to O2 at low rotation rates, as shown in Fig. 4b.
However, it is difficult to predict a priori the maximum allow-
able rotational speed of the rod (denoted Omax) above which the
experimental observations deviate from the quasi-linear rela-
tionship given by eqn (5). In practice, one can estimate Omax

from the experimental data a posteriori as shown in Fig. 4c
with the condition that the centripetal force is small and there
is no secondary flow, i.e., the modified Froude number
Fr = O2L/g o 1. Here L is a characteristic length, which can

be taken to be11 L �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
gdDh=dO2

p
� 1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ab̂

ffiffiffiffiffiffi
g

rG

rs
using eqn (5).

From the rod-climbing observations, using a conservative con-
dition that Fr o 1, we find Omax E 2, 6, 15, and 30 rad s�1 for
the 3 wt%, 2 wt%, 1 wt%, and 0.3 wt% PIB solutions,
respectively.

The observed values of Dh(O,a) lie on a straight line when
plotted against O2 at values Oo Omax as shown in Fig. 4b and c.
The photographs of the interface shape presented in Fig. 4a-i
and ii reveal that the interface shape h(O,r,a) is concave for
O t Omax. This shows that in the low O regime, increasing the
rotation rate results in small perturbations to the static inter-
face shape, which increases the interface height linearly with
O2 as predicted by eqn (5). These perturbations to the interface
shape Dh(O,a) are positive if elastic effects dominate over
inertial effects, i.e., if Term I 4 Term II in eqn (5). In other
words, we should observe rod-climbing, which is true for the
concentrated solutions with C = 3 wt%, 2 wt%, and 1 wt% as
shown in Fig. 5. On the other hand, the perturbations to the
static interface shape Dh(O,a) are negative if elastic effects are
weaker than inertial effects, i.e., Term I o Term II in eqn (5). In
other words, we should observe rod-descending, which is true
for the semi-dilute solution with C = 0.3 wt% as shown in Fig. 5
and more clearly in Fig. 6. Additionally, Fig. 6 also illustrates
that fluid elasticity suppresses the rapid inertial interface
descending that one would observe for the purely Newtonian
solvent oil. In particular, one would have to go to exceptionally high
rotation speeds (i.e., high Reynolds numbers Re = rOa2/Zs c 1)
before the fluid interface descends to a depth equal to the
initial static rise hs(a) as depicted in Fig. 6. The critical
Reynolds number Rec at which Dh = �hs(a) can be estimated
for a Newtonian fluid, such as the paraffinic oil solvent, by
substituting b̂ = 0 and Dh(O,a) = �hs(a) in eqn (4), which gives

Rec ¼
ra
Zs

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2

Gg
r

� �1=2

ð2þ
ffiffiffiffiffiffi
Bo
p

ÞhsðaÞ
a

s
: (10)

For a rod of diameter 2a = 9.525 mm and the paraffinic solvent
oil (which has a viscosity of Zs = 0.018 Pa s) gives us a critical
rotation rate of Oc E 55 rad s�1 as indicated by the red circle in
Fig. 6. Thus, from eqn (5), it is evident that we can predict

Table 2 Generalized Rouse–Zimm model fit parameters for the linear
viscoelastic properties obtained from master curves of the small amplitude
oscillatory shear (SAOS) flow data for various PIB solutions, as well as the
first normal stress coefficient obtained from eqn (9)

C (wt%) Gc (Pa) tz (s) w n C1,0 (Pa s2)

3.00 2.88 11.62 0.579 0.791 534.0
2.00 1.03 7.01 0.514 0.686 051.9
1.00 0.39 1.43 0.337 0.503 0.527
0.30 0.20 0.52 0.189 0.411 0.021
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whether a given complex fluid will undergo rod-climbing or
descending if its material functions are known. We will return
to this discussion in Section 4.4, where we analyze eqn (5) in

further detail and derive a ‘‘climbing condition’’ to predict
whether the interface of a given viscoelastic fluid will climb or
descend a thin rotating rod immersed in it.

For larger values of rotation speeds O2 4 Omax
2 when rod-

climbing is observed (Term I 4 Term II in eqn (5)), the height
increment Dh(O,a) increases non-linearly with O2 and the
asymptotic relationship presented in eqn (5) is no longer valid.
The interface shape changes from concave to convex in the
large O regime as depicted in Fig. 4a-iii. Consequently, this
transition from a concave to a convex interface can also be used
as an in situ condition to determine Omax more accurately (in
conjunction with the preliminary criterion involving the mod-
ified Froude number), and this experimentally motivated
approach is utilized in this study. With further increase in
the rod rotation rate beyond Omax, the interface shape assumes
a rotating blob-like shape, which emerges distinctively from the
larger pool of stationary or slowly rotating fluid at a point with a
slope discontinuity as shown in Fig. 4a-iv. Eventually, at very
high rotation speeds, this bolus of fluid becomes unstable with
unsteady secondary motions resulting in a band of fluid rising
up and down the rod in a wave-like manner. Further increases
in O completely disrupt the climbing fluid blob into smaller
pendant drops that are thrown radially outwards from the rod.

From our rod-climbing experiments as well as previous
studies,11,13,14 we can conclude that there is an accessible range

of small rotation rates O2 oOmax
2 �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
g=ðdDh=dO2Þ

p
such that

the second-order fluid approximation is valid and the climbing
fluid interface height scales linearly with O2. Hence, we can

Fig. 4 (a) Still images illustrating rod-climbing in the 3 wt% PIB solution with increasing rod rotation speeds (i) O = 0 rad s�1, (ii) O = 1 rad s�1, (iii) O = 5 rad s�1,
and O = 10 rad s�1. The change in the interface height at the rotating rod (Dh(O,a)) compared to the static rise hs(a) for 3 wt% PIB solution: (b) in the low O
regime (O o 1 rad s�1), Dh varies linearly with O2 as predicted by theory (eqn (4)). The slope of the curve in this regime is used to calculate the climbing
constant b̂. (c) At higher O, the higher order terms in the perturbation expansion cannot be neglected and lead to secondary flows in the fluid bulge that result
in the deviation in linearity from a plot of Dh vs. O2.

Fig. 5 Change in the interface height at the rotating rod (Dh(O,a)) com-
pared to the static rise hs(a) for various PIB solutions utilized in this study.
The 3 wt%, 2 wt%, and 1 wt% (0.3 wt%) solutions satisfy (does not satisfy)
the condition for climbing (Section 4.4 Fig. 8); hence, the interface height
increases (decreases) with the rotation rate. Solid lines show the least-
square linear fit to the Dh vs. O2 data for O2 o Omax

2. The dashed line
depicts the lower bound on rod-descending expected for a purely New-
tonian fluid without any elasticity, which arises solely due to inertial effects.
The Dh vs. O2 curves of any fluid with finite non-zero normal stresses will
lie above this lower bound.
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equate the slope (dDh/dO2)exp determined experimentally in the
O o Omax regime to the predictions of the second-order fluid
theory in eqn (5) to evaluate the climbing constant

b̂exp ¼
4þ

ffiffiffiffiffiffi
Bo
p

4

dDh
dO2

� �
exp

2 Grgð Þ1=2

a
þ ra2

2þ
ffiffiffiffiffiffi
Bo
p

" #
: (11)

The values of b̂exp thus obtained from measurements for the
various PIB solutions are presented in Table 3. We observe a

significant reduction in the climbing constant b̂ that varies over
four orders of magnitude by diluting the PIB concentration
from 3 wt% to 0.3 wt% as was anticipated in Section 4.1 from a
similar dramatic four orders of magnitude of reduction in the
C1,0 values.

4.3 Reconciling rod-climbing measurements with SAOS to
determine W2,0

Reptation theory predicts that the normal stress difference ratio
c0 = �C2,0/C1,0 for semi-dilute and concentrated entangled
solutions has the value c0 = 2/7 or 1/7 depending on whether
the independent alignment assumption is made or not.20 The
precise value of c0 critically affects the level of rod climbing

expected. Specifically, if c0 = 1/4, then from eqn (6), it is clear
that the climbing constant is b̂ = 0.

However, in dilute solutions without entanglement effects,
one can expect c0 = 0, as has been confirmed for some Boger
fluids experimentally,14,21 and thus conclude that rod-climbing
is driven primarily from the first normal stress difference. This
becomes clear if we rearrange eqn (6) as

C1;0 ¼
2b̂

1þ 4C2;0=C1;0
¼ 2b̂

1� 4c0

: (12)

Then by substituting c0 = 0 (or equivalently C2,0 = 0 in the
first inequality of eqn (12), one obtains C1,0 = 2b̂. In this limit
from the rod-climbing measurements of b̂exp, one could calcu-
late the expected value of the first normal stress difference
coefficient to be C1,0 = 2b̂exp. This a priori estimate of
C1,0 = 2b̂exp can be interpreted as the lower bound on C1,0

obtained from rod-climbing measurements alone because any
finite positive c0 value would result in a larger computed value
of C1,0. In other words, in the absence of second normal stress
effects in the fluid, the lower bound value of C1,0 = 2b̂exp

obtained above should be enough to achieve the rod-climbing
height measured in the experiments. However, the presence of
a non-zero second normal stress difference diminishes the rod-
climbing abilities of the fluid, as a result of which, a higher
value of C1,0 is required to achieve the climbing height given by
the measured climbing constant b̂exp.

This naı̈ve a priori estimate of C1,0 = 2b̂exp for the various PIB
solutions utilized in this study is represented in Fig. 7 by the
dashed lines. If C2,0 is indeed zero (as has been observed for
some dilute Boger fluids experimentally14,21), we would expect
these dashed lines (i.e., the lower bound prediction of C1,0

extracted from rod-climbing experiments) to coincide exactly
with the dashed-dotted lines in Fig. 7, which depict the actual
values of C1,0 obtained in Section 4.1 from the asymptotic
quadratic scaling of the SAOS data. However, there is a signifi-
cant offset in these two independent experimental estimates;
hence, the initial assumption that C2,0 = 0 is incorrect. A finite
non-zero C2,0 affects rod-climbing, and in particular, negative
values of C2,0 increase the values of C1,0 that are consistent with
a given experimental observation b̂exp (see eqn (12)). This
additional contribution can be obtained by solving eqn (6) with
the independent knowledge of (i) C1,0 from the SAOS measure-
ments in Section 4.1, and (ii) b̂exp from the rod-climbing

Fig. 6 Decrease in the interface height at the rotating rod (Dh(O,a))
compared to the static rise hs(a) for the 0.3 wt% solution, which does
not satisfy the condition for climbing (Section 4.4 Fig. 8); hence, the
interface height decreases with the rotation rate. However, this rod-
descending regime still varies linearly with O2 as predicted by the domain
perturbation solution for a second-order fluid in the low rotational speed
limit. The dashed line depicts the lower bound on rod-descending
expected for a purely Newtonian fluid without any elasticity, which arises
solely due to inertial effects. The dotted horizontal line depicts the case
when Dh(O,a) = �hs(a), i.e., the interface height reduction due to the
inertial descending of the interface has a depth equal to the initial
meniscus rise without any rod rotation. For the pure Newtonian solvent
oil, Dh(O,a) = �hs(a) occurs at a Reynolds number Re E 60 (eqn (10))
corresponding to O E 55 rad s�1. However, finite elasticity due to the
presence of even a small amount of PIB results in less rapid inertial rod-
descending as we increase the rotation rate.

Table 3 Measurements of the experimental climbing constant b̂exp from
the rod-climbing rheometry and values of C2,0 obtained by combining
rod-climbing rheometry with the SAOS measurements from a conven-
tional rheometer (TA instruments ARES-G2) for the various PIB polymer
solutions utilized in this study

C (wt%) b̂exp (Pa s2) c0 ¼ �
C2;0

C1;0
C1,0 (Pa s2) C2,0 (Pa s2)

3.00 10.03 0.241 534.0 �129.0
2.00 0.710 0.243 051.9 �012.6
1.00 0.018 0.233 0.527 �0.123
0.30 0.002 0.205 0.021 �0.004
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measurements in Section 4.2. The values of C2,0 thus obtained
for various PIB solutions are summarized in Table 3.

As an additional independent check, we also directly mea-
sure the material function N1( _g) using a 40 mm 21 Cone-and-
plate (CP) geometry, and this data is also presented in Fig. 7. As
discussed in the Introduction, due to the lower sensitivity limit
of FCP,min E 0.001 N (0.1 gm-force) on the axial thrust measure-
ment, N1( _g) values t 1.6 Pa cannot be measured using a 40 mm
21 CP geometry. This limit is shown by a horizontal dotted line
in Fig. 7. Thus, Fig. 7 pictorially illustrates that the asymptotic

second-order regime in which N1( _g) C C1,0 _g2 cannot be directly
accessed using axial force measurements with this CP geometry
due to the lower sensitivity limits of the normal force transducer.
Larger plates will, of course, lower this bound, as is evident by
considering eqn (1), but the largest available plates (Rmax E
60 mm) only result in lowering the dotted line by a factor of 2.25.

From Table 3, we observe that the values of c0 obtained for
all the PIB solutions investigated here lie between the two
limiting values 2/7 (E0.285) and 1/7 (E0.143) predicted by
reptation theory20 (with and without the independent align-
ment approximation, respectively). Very careful measurements
with distributed pressure measurements across a cone and
plate have shown that the typical c0 values of semi-dilute
and concentrated entangled polystyrene solutions are
similar and close to the reptation prediction of 2/7.22 A value
1/7 o c0 o 2/7 is typical for semi-dilute polystyrene solutions.22

The exact limiting condition required at low shear rates to
observe rod-climbing can be derived analytically by neglecting
the inertia term in eqn (5) and rearranging to show that for rod
climbing to be observed, we require15,23,24

b̂ 4 0 ) c0 o 0.25. (13)

Hence, if the independent alignment approximation is exactly
obeyed so that c0 E 0.285, rod-climbing will not be observed
and vice versa. Prima facie, this seems like a serious limitation
on the utility of rod-climbing as a technique for measuring C2,0.
Furthermore, for the least viscoelastic 0.3 wt% PIB solution, our
independent measurements of rod-climbing, the SAOS tTS
master curve, and N1( _g) all suggest c0 = 0.205, a value which
satisfies the asymptotic rod-climbing condition in eqn 13; how-
ever, Fig. 5 reveals that the 0.3 wt% PIB solution undergoes rod-
descending instead of rod-climbing. These experimental obser-
vations motivate a more complete understanding of eqn (5), and
this is considered in the following subsection.

4.4 The climbing condition

Here we modify the rod-climbing condition in eqn (13) by account-
ing for the combined effects of inertia and elasticity. In doing so, we
extend the utility of rod-climbing experiments for measuring C2,0 to
cases where rod-descending is observed. The first step is to return
our attention to eqn (5), which predicts the small perturbations in
the interface height with increasing O2 in the small rotation speed

limit. The first term in eqn (5) given by 4b̂=ð4þ
ffiffiffiffiffiffi
Bo
p

Þ (Term I)
suggests that positive perturbations to hs(a,a) will be observed if the

fluid has significant elasticity, i.e., b̂ 4 0. On the other hand, the

second term in eqn (5) ra2=ð2þ
ffiffiffiffiffiffi
Bo
p

Þ (Term II) suggests that
negative perturbations to hs(a,a) arising from fluid inertial effects
will be observed. As a result, the fluid interface may climb or
descend a rotating rod depending on whether Term I 4 Term II
or vice versa. From the climbing condition, dDh(O,a)/dO2 4 0, after
rearranging the various terms in eqn (5) we can obtain the following
condition for rod-climbing to be observed:

c0 o
1

4
1� 4þ

ffiffiffiffiffiffi
Bo
p

2ð2þ
ffiffiffiffiffiffi
Bo
p

Þ
ra2

C1;0

 !
: (14)

Fig. 7 Reconciling rod-climbing measurements of normal stress differ-
ences measurements with conventional rheometry for: (a) 3 wt% PIB
solution, and (b) 1 wt% PIB solution. C1,0 can be estimated from the
SAOS data using the simple fluid asymptotic theory, which gives

C1;0 ¼ limo!0 2G
0=o2 (shown by dashed-dotted lines). Another estimate

for the same property can be obtained from the rod-climbing measure-

ments by first assuming C2,0 = 0 Pa s2, which gives C1,0 = 2b̂ (shown by
dashed lines). These two estimates must match exactly in the absence of a
second normal stress difference in the fluid. However, a finite non-zero
C2,0 is present, as indicated by the significant separation between the two
estimated curves. Thus, the rod-climbing rheometer measurements for

b̂exp in conjunction with the SAOS master curve data can be used to

estimate C2;0 ¼
1

2
b̂exp �

1

4
C1;0 as tabulated in Table 3. Normal force mea-

surements of N1( _g) from a 40 mm 21 CP geometry are also shown with
filled squares. The normal force measurements cannot access the antici-
pated second-order scaling of N1 at low shear rates due to limits on the
sensitivity of the axial force transducer.
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This rod climbing constraint incorporates the competition between
inertial and elastic effects, as depicted in Fig. 8. The ratio ra2/C1,0

represents the relative contributions of fluid inertia and elasticity.
Recognizing that for a second order fluid, we can write the relaxa-
tion time as ts = C1,0/(2Z0), we can rewrite this ratio in terms of a
Deborah number De = tsO and a Reynolds number Re = rOa2/Z0 or
alternatively in terms of the elasticity number El = De/Re = (tsO)/
(rOa2/Z0) = C1,0/(2ra2). The curves in Fig. 8 show the condition of
eqn (14) for three different values of the Bond number Bo = rga2/G,
including the value Bo = 4.7 appropriate for our PIB solutions.
Because of the functional form of the fractional term involving
Bo in eqn (14), the boundary between rod-climbing and rod-
descending is only weakly sensitive to gravitational effects and is
predominantly controlled by inertial effects. We also show the
actual values of c0 and ra2/C1,0 determined experimentally for
the various PIB solutions studied here. The original rod-
climbing condition in eqn (13) is recovered when inertia effects
are negligible compared to elasticity effects, i.e., ra2/C1,0 { 1.

Fig. 8 shows that the values of the material functions
determined experimentally for the 3 wt%, 2 wt%, and 1 wt%
solutions satisfy the rod-climbing condition and should exhibit
positive perturbations to the static interface shape under low
finite rod-rotation speeds. This is indeed true as depicted in Fig. 5
by the increase in Dh with O2 for these three solutions. On the
other hand, the low elasticity of the 0.3 wt% solution satisfies the
rod-descending condition as shown in Fig. 8 and should exhibit
negative perturbations to the static interface shape. This is again
found to be true in Fig. 5, which shows a decrease in Dh with
increasing O2 for the 0.3 wt% solution. Also, for the 0.3 wt%
solution, the inertioelastic quantity ra2/C1,0 4 1, indicating that

inertial effects cannot be ignored. As a result, using the original
simplified climbing condition given in eqn (13) fails to predict
the observed rod-descending as it was derived by ignoring inertial
effects.24

As indicated in Fig. 8, eqn (14) predicts whether the small
perturbations Dh(O,a) will be positive or negative in the small O
limit. However, it should be noted that even if the criterion of
eqn (14) predicts rod-descending, the rotating rod experiments
can still be useful in measuring C2,0 as long as the fluid wets the
rotating shaft, i.e., the contact angle 01 o a o 901. The negative
free surface perturbations Dh(O,a) can be readily calculated
from a sequence of rod-climbing photographs of the interface
shape for a wetting fluid as shown in Fig. 6 for the 0.3 wt% PIB
solution. Once Dh(O,a) vs. O2 data is available, its slope in the
low O2 regime can be equated to eqn (5) to calculate b̂exp

irrespective of its sign. This is especially useful in weakly elastic
fluids when inertial effects compete with elastic effects, e.g., for
the 0.3 wt% PIB solution, or if the normal stress ratio exceeds
c0 4 0.25, e.g., for fluids following the predictions of reptation
theory with the independent alignment approximation.22 The
analysis presented in this section and our measurements for the
0.3 wt% solution, which undergoes rod-descending, extend
the validity of rod-climbing rheometry in principle to a much
wider range of complex fluids, provided special care is taken in
selecting a rigid rod constructed from a solid material that the
fluid wets.25

Finally, we note that a special (redundant) case arises when
b̂ = 0, i.e., we can either have c0 = 0.25 or an inelastic fluid with
C2,0 = C1,0 = 0. In this case, if the fluid is viscoelastic, a finite
value of C1,0 can first be measured independently as discussed in
Section 4.1 using normal force measurements, or from the
asymptotic scaling of a viscoelastic master curve for G0(or). If
no rod-climbing is observed, we can conclude that C2,0 E
�0.25C1,0 in such a fluid. The interface shape will be unper-
turbed at low rod rotation speeds provided ra2/C1,0 { 1
(i.e., weak inertial effects). If the inertial effects are strong,
i.e., ra2/C1,0 4 1, then this fluid will exhibit rod-descending at
all rod rotation speeds.

If the independent measurement of the first normal stress
difference reveals that the fluid is essentially inelastic, i.e.,
C1,0 E 0, then a fluid with b̂ = 0 will simply exhibit Newtonian
rod-descending at sufficiently high rotation rates as shown by
the dashed pink line in Fig. 5. In this case, we can conclude that
C2,0 C C1,0 = 0.

The observations discussed in this section imply that calling
this technique ‘‘Rod-climbing rheometry’’ might be misleading
as empirical measurements are still useful even when the fluid
might experience rod-descending. Hence, a more general
description, ‘‘rotating rod rheometry’’, is more suitable than
rod-climbing rheometry, as the protocol presented in this study
is readily applied irrespective of whether a fluid undergoes rod-
climbing or rod-descending.

4.5 Varying fluid elasticity and viscosity

To further corroborate the accuracy of the modified climbing
condition presented in eqn (14), and to support the ideas

Fig. 8 The condition for observing rod-climbing vs. rod-descending is
plotted for different Bond numbers, Bo, as a competition between the
normal stress ratio c0 and the dimensionless inertioelastic parameter
ra2/C1,0 = 1/(2El) with El being the elasticity number. The curves show
the condition of eqn (14) for three different values of the Bond number
Bo = rga2/G including the value Bo = 4.7 expected for the PIB solutions
used in this study. The boundary line separates rod-climbing from rod-
descending. The 3 wt%, 2 wt%, and 1 wt% solutions satisfy the rod-climbing
condition and climb the rotating rod, while the 0.3 wt% solution does not
satisfy the rod-climbing condition; hence, its interface descends close to
the rotating rod (see Fig. 5).
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discussed in the previous subsection, we artificially modify the
elasticity of the 0.3 wt% PIB solution to change the relative
balance of elastic and inertial effects in the rotating rod
experiment. From bead-spring theory for dilute solutions, we
know that the elasticity in a polymeric solution scales as
C1,0 C 2ZPts, where ZP is the polymer contribution to the
viscosity, and ts is the shear relaxation time. In a dilute
solution, we expect C2,0 = 0. The magnitude of viscoelastic
effects can be varied by either (1) increasing the polymer
concentration or (2) increasing the relaxation time of the fluid.
In the former case, we anticipate that ZP B (C/C*)2.4/(3n�1) for a
semi-dilute entangled solution in a good solvent with n =
0.58826 but the magnitude of second normal stress difference
coefficient will also increase, and the expected functional form
of c0 is not known. However, increasing the shear relaxation
time ts and remaining in the dilute regime can also be achieved
by increasing the solvent viscosity Zs. According to Rouse–
Zimm bead spring theories, the relaxation time will increase
linearly with Zs.

3 We have utilized technique 1 to vary the
elasticity in the PIB solutions so far in this study. It also
explains the weak elasticity in the semi-dilute 0.3 wt% PIB
solution compared to more concentrated ones. Technique 2 is
the standard recipe that has been widely used to prepare highly
elastic fluids at C t C* with a constant viscosity,14,27 also
popularly known as Boger fluids.28 Hence, to augment the
elasticity of the 0.3 wt% PIB solution, we increase the solvent
viscosity Zs by mixing a viscous polyalphaolefin oil (PAO) with
the paraffin solvent, which increases Zs and consequently, tZ

and C1,0, by around two orders of magnitude. We identify this
formulation by the label ‘0.3 wt% PIB Boger fluid’ as it has the
same concentration of PIB as the weakly elastic shear thinning
0.3 wt% PIB solution studied in Section 4.1–4.3 but a higher
viscosity and elasticity.

Fig. 9 shows the dramatic effect of increasing the fluid
elasticity on its rod-climbing ability. For comparison, the
results for the highly elastic 3 wt% PIB and weakly elastic
0.3 wt% PIB solutions are also presented here. The weakly
elastic 0.3 wt% PIB solution, which undergoes rod-descending
due to the dominance of inertial effects, now becomes strongly
rod-climbing when it is ‘‘bogerized’’ (i.e., converted to a Boger
fluid) solely by increasing the solvent viscosity while retaining
the same PIB concentration of 0.3 wt%. In fact, at a rotation
rate of 10 rad s�1, the 0.3 wt% Boger fluid now climbs the rod to
a greater height than the 3 wt% semi-dilute entangled fluid.
This is because of the large value of C1,0, but the very small
value of C2,0 in this dilute solution. We can follow the rotating
rod rheometry protocol established in Section 4 to calculate
C1,0 and C2,0 in the 0.3 wt% Boger fluid. The results are
tabulated in Table 4, and b̂ increases from a value of
b̂exp C 2 � 10�3 Pa s2 for the 0.3 wt% PIB solutions to a value
b̂exp C 0.27 Pa s2. Also shown in the table just for comparison
are results from two previous rod-climbing measurements14,15

of similar PIB-based (PIB molecular weight E106 g mol�1.)
Boger fluids at slightly lower concentrations.

Applying the rod-climbing condition eqn (14) to this 0.3 wt%
Boger fluid reveals that it lies deep in the rod-climbing region

in Fig. 8 with c0 = 0.13 and ra2/C1,0 = 1.55 � 10�2, which
rationalizes the dramatic transition from rod-descending to
rod-climbing that can be engineered into this 0.3 wt% polymer
solution simply by the addition of a viscous solvent.

5. Conclusions

We have revisited the rod-climbing rheometer13 for measuring
normal stress differences in complex fluids in the ‘‘second-
order fluid’’ flow regime, that was originally proposed around
four decades ago.11 In doing so, we integrate its performance
with modern-day torsional rheometers to facilitate self-
consistent predictions of the zero shear rate values of
both the first and the second normal stress coefficients, i.e.,
C1| _g-0 = C1,0 and C2| _g-0 = C2,0, which are often very

Fig. 9 Change in the interface height at the rotating rod (Dh(O,a)) com-
pared to the static rise hs(a) for the 3.0 and 0.3 wt% PIB solutions utilized in
this study compared with a 0.3 wt% Boger fluid. Increasing the fluid
elasticity dramatically enhances rod climbing in the 0.3 wt% Boger fluid.
The weakly elastic 0.3 wt% PIB solution does not satisfy the condition for
climbing (see Fig. 8), and hence, undergoes rod-descending. The dashed
line depicts the rod-descending exhibited by a purely Newtonian fluid
without any elasticity, which arises solely due to the inertial effects and
hence is the lower bound for the Dh vs. O2 curves. Measurements of Dh vs.
O2 curves for a fluid with finite non-zero normal stresses will lie above this
lower bound, although the difference is small on the scale shown here (cf.
Fig. 5). Insets show the interface shapes for 3 wt% PIB and 0.3 wt% Boger
fluid at O = 9 rad s�1.

Table 4 Measurements of the climbing constant b̂ from rod-climbing
rheometry and C2,0 by combining rod-climbing rheometry with the SAOS
measurements from a conventional rheometer (TA instruments ARES-G2)
for the 0.3 wt% PIB Boger fluid (PIB in polyalphaolefin and paraffinic oil)
used in this study. Results from two previous studies14,15 for a similar PIB
Boger fluid (PIB in polybutene and 2-chloropropane) but with different
concentrations are also tabulated for comparison

C (wt%) b̂ (Pa s2) c0 ¼ �
C2;0

C1;0
C1,0 (Pa s2) C2,0 (Pa s2)

0.30 (This study) 0.27 0.13 1.16 �0.16
0.2415 1.68 0.11 6.00 �0.66
0.1014 1.28 0.01 2.65 �0.03
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challenging to determine accurately. The protocol for rotating
rod rheometry presented here involves:

1. Evaluating the first normal stress difference coefficient in
the limit of zero shear rate (C1,0) from SAOS master curve data
by using the asymptotic result from simple fluid theory
C1;0 ¼ limo!0 2G

0=o2.
2. Determining the climbing constant b̂exp of the fluid by

measuring the rate of change of perturbations to the static
interface Dh(O,a) vs. O2, i.e., (dDh/dO2)exp for small O.

3. By equating the value of b̂exp determined experimentally to
the theoretical result (eqn (5)) of the second order fluid theory,
the second normal stress coefficient can then be determined
from the two independent measurements using the relation-

ship C2;0 ¼
1

2
b̂exp �

1

4
C1;0.

We have used this protocol to determine C1,0 and C2,0 of
several PIB solutions in the concentrated and semi-dilute
regimes. We observe c0 = �C2,0/C1,0 o 0.25 for all the PIB
solutions, so all of them should exhibit rod-climbing according
to the original rod-climbing criterion obtained by neglecting
inertial effects24 (eqn (14)). We indeed observe rod-climbing for
the more concentrated solutions; however, the least concen-
trated 0.3 wt% weakly elastic PIB solution exhibited rod-
descending, hinting at substantial inertial effects. Hence, we
have modified the rod-climbing condition by considering the
relative strength of inertial effects compared to the elastic
effects, as quantified by the ratio ra2/C1,0 (eqn (14)). The
modified rod-climbing condition successfully rationalizes the
observed dipping of the free surface for the 0.3 wt% weakly
viscoelastic fluid.

To elucidate the competition between the elastic and inertial
effects in determining whether a given fluid will exhibit rod-
climbing or rod-descending, we deliberately enhanced the elasti-
city of the 0.3 wt% PIB solution by ‘‘bogerizing’’ it through the
addition of a more viscous solvent, i.e., we prepared a 0.3 wt% PIB
Boger fluid. The resulting highly elastic fluid has a higher value of
C1,0 and a lower value of c0. It, therefore, undergoes pronounced
rod-climbing due to the dominant effect of elasticity overwhelming
inertial effects, in marked contrast to the weakly elastic 0.3 wt%
PIB solution.

Thus, we conclude that if a fluid undergoes rod-descending
instead of rod-climbing, it does not conclusively indicate an
absence of elastic effects in a fluid. Weak elasticity might still
be present but is largely masked by the dominance of inertial
effects, resulting in the quadratic but negative variation in the
free surface height we observed with the 0.3 wt.% PIB fluid.
Even in such a case, the weak contributions of C1,0 and C2,0

can still be extracted using the protocol presented in this study
from the negative value of the slope dDh/dO2.

In conjunction with time-Temperature Superposition (tTS)
measurements of a linear viscoelastic master curve of G0(or),
our analysis and results show that the rotating rod experiment
can be very useful in extending measurements of the normal
stress differences in complex fluids to lower shear rate limits,
irrespective of whether they result in rod-climbing or rod-
descending, by allowing for the inertial contributions to the

interface shape and ensuring the rod material is selected such
that the fluid is wetting. Hence, a general description, ‘‘rotating
rod rheometry’’ for this technique, is more apt. Even though we
focus mainly on polymeric solutions in this study, the protocol
presented here can be utilized for various other complex fluids
such as polymer melts, protein solutions, and concentrated
suspensions in the ‘‘second-order fluid’’ flow regime.
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Appendix A: climbing height of a
second-order fluid on a slowly rotating
thin rod

Using modern notation and retaining inertial contributions, this
appendix reproduces a formal derivation of eqn (3) using a
domain perturbation analysis method from the original works
of D. D. Joseph and co-workers.10,11 The problem setup is

Fig. 10 Schematic of the rotating rod problem in a cylindrical coordinate
system (r,y,z) with (er,ey,ez) as the unit vectors in the respective directions.
A thin rod of radius a with its axis along the z-axis rotates around its axis
with a constant rotational velocity O. n and t denote the unit vectors
normal and tangent to the interface z = h(O,r,a).
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depicted in Fig. 10. A thin rod of radius a is submerged in a semi-
infinite pool of a second-order incompressible fluid with density
r, surface tension G, and contact angle a with the rod. The rod is
infinitely long and rotates with a constant angular velocity O. The
fluid surface is exposed to atmospheric pressure pa and deviates
from its initial static shape z = hs(r,a) to a steady profile
z = h(O,r,a) due to the shear flow generated by the rod rotation.
The profile z = h(O,r,a) is determined by the combined action of
normal stresses, inertia, surface tension, and gravity. For an
axially symmetric velocity u = v(r,z)ey + ũ with ũ = u(r,z)er +
w(r,z)ez in the cylindrical coordinates [r,y,z], the continuity and
Navier–Stokes equations with sij as the stress tensor for a second-
order fluid can be written as:

qr(ru) + rqz(w) = 0, (15a)

r u@ruþ w@zu�
u2

r

� �
¼ �@rFþ @rsrr þ @zsrz

þ 1

r
srr � syyð Þ; (15b)

r u@rvþ w@zvþ
uv

r

h i
¼ 1

r2
@rðr2sryÞ þ @zszy; (15c)

r½u@rwþ w@zw� ¼ �@zFþ @rsrz þ @zszz þ
1

r
srz; (15d)

where the stress tensor is given by

s = Z0A1 � 0.5C1,0A2 + (C1,0 + C2,0)A1
2. (15e)

Here F = p + rgz is the pressure head, qi = q/qxi. A1(u) =
(ru + ruT), and A2(u) = (u�r)A1 + A1�ru + ruT�A1 are the first
two Rivlin–Ericksen tensors. The coefficients Z0, C1,0, and C2,0 are
the viscosity, first and second normal stress difference coefficients
of the fluid in the limit of zero shear. The unit normal to the free

interface z = h(O,r,a) is given by n ¼ �h0ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ h02
p er þ

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ h02
p ez

where h0 = dh/dr. The two orthogonal tangential vectors to the

free interface are ey and t ¼ � 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ h02
p er �

h0ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ h02
p ez. The

solution to eqn (15) must satisfy the following boundary
conditions:

No slip at the rod:

u = aOey at r = a. (16a)

No flux normal to the interface:

w � uh0 = 0 at z = h(O,r,a). (16b)

No tangential stress at the fluid interface:

sny = szy � h0sry = 0 at z = h(O,r,a), (16c)

and

snt = h0(szz � srr) + (1 � h02)srz = 0 at z = h(O,r,a).
(16d)

The normal stress jump at the interface is balanced by the
surface tension (G) force:

pa � Fþ szz � h0srz þ rgh ¼ G
r

rh0ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ h02
p
� � 0

at z ¼ hðO; r; aÞ:
(16e)

Contact angle condition:

h0(O,r,a) = cot(a) at r = a. (16f)

Finally, the solution approaches the hydrostatic solution with a
flat free interface as r - N:

h(O,r,a) - 0 as u - 0, and F - 0. (16g)

The free surface problem described by eqn (15) and (16) can be
solved using the domain perturbation method under the con-
dition that the total fluid domain volume is conserved, i.e.,Ð r!1
r¼a rhðO; r; aÞdr ¼ 0. The solution then can be expanded as a

power series:

u

r

F

h

2
6666664

3
7777775
¼
X
i

uðiÞ

rðiÞ

FðiÞ

hðiÞ

2
6666664

3
7777775
Oi: (17)

Substituting eqn (17) in the governing equations eqn (15), we
get the following zero-th order governing equations:

(u(0)�=)u(0) = �=F(0) + =s(0), (18a)

=�u(0) = 0. (18b)

Solution to eqn (18a) and (18b) along with the zero-th order
boundary conditions eqn (16) is given by u(0) = 0, r(0) = 0,
F(0) = pa and recovers the static interface rise h(0) = hs(r,a) which
can be computed by numerically solving:

G
r

rh0sffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ h0s2

p
" # 0

¼ rghs (18c)

subjected to h0sðr ¼ aÞ ¼ cotðaÞ and hs - 0 as r - N.
The zero-th order solution obtained by solving eqn (18) can

be used to solve the following first-order governing equations:

u(0)�=u(1) + u(1)�=u(0) = �=F(1) + =�r(1), (19a)

=�u1 = 0. (19b)

Solution to eqn (19a) and (19b) along with the first order

boundary conditions eqn (16a)–(16g) is given by uð1Þ ¼ a2

r
ey,

r(1) = Z0(=u(1) + =u(1)T) =�Z0a2/r2(erey + eyer), and F(1) = 0. h(1)= 0
since h is an even function of O, and can be computed by
solving:

G rhð1Þ
0

� � 0
¼ rrghð1Þ (19c)

subjected to h(1)0(r = a) = 0 and h(1) - 0 as r - N.
The zero-th and first-order solutions obtained by solving

eqn (18) and (19) can now be used to solve for the following
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second-order governing equations, which give the very first
non-trivial contribution to the interface shape and pave the
path to arrive at the final results used in eqn (3):

ru(1)�=u(1) = =F(2) + =�r(2) (20a)

where r(2) = Z0A1(u(2)) � 0.5C1,0A2(u(1)) + (C1,0 + C2,0)[A1(u(1))]2

giving:

= � rð2Þ ¼ Z0=2uð2Þ � ð0:5C1;0 þ 2C2;0Þ
8a4

r5
er

¼ Z0=2uð2Þ � b̂
8a4

r5
er: (20b)

Thus, the climbing constant b̂ = 0.5C1,0 + 2C2,0 arises naturally
at second order. The solution to eqn (20a) and (20b) is given

by u(2) = 0, rð2Þ ¼ 4a4

r4
C2;0erer þ ðC1;0 þC2;0Þeyey
	 


, and

Fð2Þ ¼ 2a4

r4
b̂� ra4

2r2
. Finally, the normal stress jump balance

eqn (16e) at second-order gives:

G
r

rhð2Þ
0

� � 0
�rghð2Þ ¼ �2a

4

r4
b̂þ ra4

2r2
(20c)

subjected to h(2)0(r = a) = 0 and h(2)(r) - 0 as r - N. To solve
eqn (20c) analytically, it can be rearranged as:

L(H) = M(H) + F(2), (20d)

where H = h(2)/a4, and the operands L(J) = r[r(J)]0�Bo(J)
with the Bond number Bo = ra2g/G, and M(J) = (r � a2/
r)[r(J)0]0. The boundary conditions can be written as H0(r = a) =
0, (H,H0) - (0,0) as r -N. Eqn (20d) can be solved analytically
by successive approximations:

H ¼ H0 þH1 þH2 þ :::;

LH0 ¼ Fð2Þ;

LHnþ1 ¼ MHn ðn ¼ 0; 1; 2Þ:

(20e)

The approximating functions Hn also satisfy the above bound-
ary conditions for H. Finally, using the identity L(r�b) =
(b2 � Bo)r�b one can find the following solutions:

H0ðrÞ ¼
4a2b̂

ð16� BoÞG
4a

ffiffiffiffiffi
Bo
p

�4ffiffiffiffiffiffiffi
Bo
p

r
ffiffiffiffiffi
Bo
p � 1

r4

" #

þ ra2

ð4� BoÞG
1

r2
� 2a

ffiffiffiffiffi
Bo
p

�2ffiffiffiffiffiffiffi
Bo
p

r
ffiffiffiffiffi
Bo
p

" #
;

(20f)

and

H1ðrÞ ¼
X5
i¼1

giðrÞ (20g)

where

g1 ¼
4c1

4� Bo

1

r2
� 2a

ffiffiffiffiffi
Bo
p

�2ffiffiffiffiffiffiffi
Bo
p

r
ffiffiffiffiffi
Bo
p

" #
; (20h)

g2 ¼
16c2 � 4a2c1

16� Bo

1

r4
� 4a

ffiffiffiffiffi
Bo
p

�4ffiffiffiffiffiffi
Bo
p

r
ffiffiffiffiffi
Bo
p

" #
; (20i)

g3 ¼ �
16a2c2

36� Bo

1

r6
� 6a

ffiffiffiffiffi
Bo
p

�6ffiffiffiffiffiffiffi
Bo
p

r
ffiffiffiffiffi
Bo
p

" #
; (20j)

g4 ¼ �
ffiffiffiffiffiffiffi
Bo
p

c3

2
r
ffiffiffiffiffi
Bo
p

lnðr=aÞ þ 1=
ffiffiffiffiffiffi
Bo
ph i

; (20k)

g5 ¼ �
Bo a2 c3

4ð
ffiffiffiffiffiffi
Bo
p

þ 1Þr
ffiffiffiffiffi
Bo
p

1

r2
�

ffiffiffiffiffiffi
Bo
p

þ 2ffiffiffiffiffiffi
Bo
p

a2

� �
; (20l)

c1 ¼
ra2

ð4� BoÞG; (20m)

c2 ¼ �
4a2b̂

ð16� BoÞG; (20n)

and

c3 ¼ �4a
ffiffiffiffiffi
Bo
p

�4c2=
ffiffiffiffiffiffi
Bo
p

� 2a
ffiffiffiffiffi
Bo
p

�2c1=
ffiffiffiffiffiffi
Bo
p

: (20o)

Thus, we can find h(2) C a4(H0 + H1+ . . .).
Solutions to the third and fourth-order problems can also be

obtained but will not be pursued here. In the third order, a
correction to the azimuthal velocity component arises, which
does not contribute to the free surface shape alteration as h is
an even function of O. At the fourth order, the fluid motion
departs from the simple Couette type u = aOey, and velocity
corrections in both the axial and radial directions come into the
picture. Thus, a discernible secondary flow in the (r,z) plane is
observed. The free surface profile is also altered at fourth order.
The solutions at third and fourth order depend on additional
material constants beyond the three already involved in the
second-order problem, which introduces additional unknowns
to be determined. Hence, we stop our analysis at the second
order and derive eqn (3) from the results obtained so far.

In summary, in the small O limit, we can approximate the
interface shape as:

hðO;r;aÞ ¼hð0Þþhð1ÞOþhð2ÞO2þOðO3Þ

¼hsðO;aÞþhð2ÞðO;rÞO2þOðO2aþO4Þþ :::

¼hsðO;aÞþ
4a2b̂

ð16�BoÞG
4a

ffiffiffiffiffi
Bo
p

ffiffiffiffiffiffiffi
Bo
p

r
ffiffiffiffiffi
Bo
p �a

4

r4

 !"

þ ra4

2ð4�BoÞG
a

r2
� 2a

ffiffiffiffiffi
Bo
p

ffiffiffiffiffiffi
Bo
p

r
ffiffiffiffiffi
Bo
p

 !#
O2þOðO2aþO4Þþ :::;

(21)

which at r = a gives eqn (3):

hðO; a; aÞ ¼ hsða; aÞ þ
a

2 Grgð Þ1=2
4b̂

4þ
ffiffiffiffiffiffi
Bo
p � ra2

2þ
ffiffiffiffiffiffi
Bo
p

" #
O2

þOðO2aþ O4Þ þ :::
(22)
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We use this functional form in the main manuscript for our
analysis.
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