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Dynamics of elastoviscoplastic filament stretching

P. Moschopoulos, E. Kouni, K. Psaraki, Y. Dimakopoulos and
J. Tsamopoulos *

We study theoretically the stretching dynamics of a yield stress material that exhibits both elastic and

viscoplastic behavior. The material is confined between two coaxial disks, forming initially a cylindrical

liquid bridge and then a neck when the disks are pulled apart. The material follows the Saramito–

Herschel–Bulkley constitutive model and yields according to the von Mises criterion. We find that

an elongated thin neck is formed when elasticity prevails, connecting the upper and lower parts of the

filamentous bridge. This neck has been observed in breakup experiments of yield stress bridges, but this

is the first theoretical study that predicts it. Earlier numerical and theoretical studies of filament stretch-

ing of yield stress materials failed to do so, because they excluded elasticity from the constitutive model

they used in the simulations. Our results indicate that increasing elasticity leads to shorter pinching times

and filament length than the viscoplastic case. This is caused by the fact that larger areas of the filament

remain unyielded, while they undergo small deformation even before yielding, and only the remaining

smaller yielded areas carry the burden of visible deformation. Our findings suggest that the value of the

yield strain, defined as the ratio of the yield stress to the elastic modulus, should be used with caution to

determine whether elastic effects will affect the filament stretching procedure or not.

1. Introduction

Yield-stress materials are an ambiguous class of non-Newtonian
fluids that flow only when a specific stress threshold is surpassed.
This particular stress threshold, termed ‘‘yield stress’’, is the
distinct property that differentiates these materials from all
others.1 The range of materials categorized as yield-stress
materials is broad. Notable examples are waxy crude oil,2 fresh
cement,3,4 various foodstuffs like mayonnaise,5,6 cosmetic
materials like hair gels, shaving foam, and toothpaste, and
biocompatible hydrogels used in 3D printing.7,8 They exhibit
two kinds of behavior: solid-like when the applied stress is
smaller than the yield stress and fluid-like when the applied
stress surpasses the yield stress.

Historically, elasticity was excluded when yield-stress mate-
rials were investigated. As a result, two distinct material groups
emerged, viscoelastic and viscoplastic. However, excluding
elasticity could not explain and predict many experimental
observations with yield-stress materials. For example, initially
Putz & Burghelea9 and later Holenberg et al.10 reported the
loss of fore-and-aft symmetry under creeping flow conditions
and the occurrence of the negative wake structure behind a
sedimentating spherical particle through a Carbopol gel. In the

case of a bubble rising through a yield-stress material, the
negative wake structure was reported,11 and even more intrigu-
ingly, the bubble attained an inverted teardrop shape.12–14

These experimental observations were clear manifestations
of the elasticity in yield stress materials. To overcome the
deficiency of viscoplastic models, Fraggedakis et al.15 used
the proposed elastoviscoplastic model of Saramito,16 which
was based on the original ideas of Oldroyd.17 They predicted
accurately the loss of the fore-and-aft symmetry and the nega-
tive wake behind the particle. Moreover, Varchanis et al.18

studied experimentally the flow of a Pluronic aqueous solu-
tion in the optimized shape cross-slot extensional rheometer
(OSCER), conducted simulations using Saramito’s model16 and
got excellent agreement between experiments and simulations.
Later, Moschopoulos et al.19 employed a refined version of the
Saramito model that accounted also for strain rate thinning20

and captured the inverted teardrop shape of a bubble, found in
bubble rising experiments in Carbopol solutions. This experi-
mental evidence and the accompanied simulations showed that
elasticity should not be excluded lightheartedly when we inves-
tigate the flows of yield-stress materials, especially in flows with
a predominant extensional deformation.

Filament stretching is another procedure to create an exten-
sional flow field. The easiest way to create such a configura-
tion is to place a small amount of material between two coaxial
disks of equal radius and pull the upper disk vertically. The
material elongates, thins, and, finally, pinches off under capillarity.
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To probe the filament stretching dynamics, especially when we
want to measure very short relaxation times, several well-controlled
processes and instruments exist, like the Capillary Breakup
Extensional Rheometer21,22 (CaBER), the Rayleigh Ohnesorge
Jetting Extensional Rheometer (ROJER)23 and Dripping-onto-
Substrate.24,25 The way the material deforms, and breaks is of
paramount importance for many industrial processes like fiber
spinning, ink-jet printing, 3D printing or spraying fertilizers.
Newtonian22,26 and Generalized Newtonian27 materials have
been investigated already. The literature is richer for visco-
elastic materials28,29 due to their abundance, and importance
in practical applications and the intriguing phenomena that
arise. As viscoelastic materials thin, significant tensile stresses
develop that oppose the necking of the fluid thread. These are
responsible for the increased lifetime of the bridge and for the
appearance of a long and cylindrical thread30,31 that connects
the two pendant drops. Also, for specific material properties
where both elastic and inertial effects are comparable, a second,
small satellite drop grows between the larger beads, which
simulations capture accurately.32,33

The literature focused mainly on determining the so-called
extensional yield stress for viscoplastic materials. Martinie et al.34

and Niedzwiedz et al.35 tried to measure the value of the exten-
sional yield stress experimentally using the CaBER experimental
protocol. However, their measurements did not agree with the
ideal viscoplastic theory that predicted the extensional yield stress

to be
ffiffiffi
3
p

times the shear yield stress. This inconsistency origi-
nated from the contributions of elastic stresses in the Von Mises
criterion, as Varchanis et al.18 explained. Nelson et al.36 studied
yield stress materials that achieved extremely large extensional
deformations and they reported the evolution of the engineering
stress versus extensional strain. On the other hand, Balmforth
et al.37 investigated drips and bridges of different yield-stress
materials and compared their experimental results with the
viscoplastic slender theory they developed. Also, they used this
theory to study the pinching dynamics of yield stress
materials.38 During the last stages before pinching, the break-
up dynamics became universal, and dictated by simple power
laws which depended only on material properties. They pre-
dicted that the scaling laws were the same as the ones for
Generalized Newtonian fluids39,40 and that the yield stress had
almost no effect on the scaling law. Also, Huisman et al.6

studied the pinching dynamics of yield stress materials experi-
mentally. Even though their experimental results demonstrated
that yield stress materials followed the scaling laws of shear-
thinning materials, a small cylindrical neck was formed con-
necting the upper and lower conical parts of the bridge, which
was also found in the experiments of Niedzwiedz et al.35 How-
ever, neither Huisman et al.6 nor Niedzwiedz et al.35 reported
the elastic modulus of their materials. Later, Moschopoulos
et al.41 performed 2D simulations and presented a parametric
study for the bulk and pinching dynamics of the thread in
viscoplastic bridges. Their simulations also verified the pre-
viously mentioned scaling laws for viscoplastic materials.6

However, their simulations did not capture the cylindrical neck
that Huisman et al.6 and Niedzwiedz et al.35 reported.

In this work, we aim to deepen our understanding of the
dynamics of filament stretching of yield stress materials
accounting for the elasticity that these materials possess.
To accomplish this, we undertake a computational study of
an extending elastoviscoplastic bridge. To introduce elastic
effects, we employ the Saramito–Hershel–Bulkley model.20 As a
base material, we use a 0.2% Carbopol solution.12 We monitor the
time evolution of the filament, its minimum radius, velocity, and
the net traction force on the upper plate generated by the imposed
velocity on the upper plate which we maintain constant. Also, we
visualize the yielded/unyielded region inside the material as time
progresses as well as the developed stresses, something that
experiments cannot do until now. We show that at the last stages
prior to pinching, a cylindrical neck develops connecting the
upper and the lower part because viscoelastic stresses prevail
when the strain rate in the neck increases rapidly. We find also
that elasticity decreases the lifetime of the filament compared to
the case where it is absent. Moreover, we perform a detailed
parametric study varying all the important material properties,
like the elastic modulus or the yield stress. For all the examined
cases, we also simulate the corresponding viscoplastic materials
to explore the difference that elasticity induces in filament
stretching dynamics of yield stress materials not only in the
bridge shape but also in the evolution of the minimum radius
and the force on the upper plate.

The present work is organized as follows. In Section 2, the
problem formulation is presented, and the equations and
boundary conditions that govern the problem are introduced.
In Section 3, we review, briefly, the solution method. We dedicate
Section 4 to discussing our 2D results concerning the filament
stretching of elastoviscoplastic materials. Finally, we summarize
our findings in Section 5.

2. Problem formulation

We consider a bridge of an incompressible yield-stress material,
as shown in Fig. 1. The sample is confined between two coaxial
disks of radius R̃; and an initial separation L̃0. Throughout the
remainder of the paper, a tilde (B) denotes a dimensional
variable or parameter, while the absence of one denotes its
dimensionless counterpart. The complex material exhibits an
elastoviscoplastic response characterized by yield stress, ~ty, and
elastic modulus, G̃, and its rheological response is modeled by
the Saramito–Hershel–Bulkley (SHB) model.20 We suppose that
the material yields according to the von Mises criterion.
A dynamically inactive, inert gas surrounds the filament. The
surface tension, ~s, of the fluid/gas interface remains spatially
uniform and constant. At time t̃ = 0, the upper disk starts
suddenly to move upwards with constant velocity, Ũ, in the
vertical direction. Then, the material yields driven by the
continuous stretching, a characteristic neck is formed connect-
ing the upper and lower part of the bridge, and the filament
eventually breaks.

We adopt a cylindrical coordinate system {r̃, z̃, y}, where r̃ is
the radial coordinate, z̃ is the axial coordinate, and y is
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the azimuthal angle. We position its origin at the center of the
bottom disk. The z̃ coordinate is aligned vertically along
the gravity vector, which points in the negative direction,
i.e g̃ = �g̃ez. Also, we assume independence from the azimuthal
angle; thus, we solve for the axisymmetric case. We employ the
non-dimensionalization proposed by Balmforth et al.37,38 as we
did in Moschopoulos et al.41 for the case of viscoplastic
filaments. We use the disk radius R̃ as a characteristic length.
To obtain a characteristic time, we balance the capillary stress,
~s/R̃ with the viscous stress, k̃(1/t̃vc)

n and the resulting viscous-

capillary time scale is ~tvc ¼
~k ~R

~s

 !1
n

; where k̃ is the consistency

parameter, and n is the shear-thinning exponent of the SHB
model.20 Consequently, the characteristic velocity is R̃/t̃vc and
the characteristic stress is defined as k̃(t̃vc)

�n � ~s/R̃. In our
problem, four dimensionless numbers arise: Oh, Bo, Ys, and Ec,
given by:

Oh ¼
~k
1
nffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

~r ~R 3�2
n

� �
~s
2
n�1

q ; Bo ¼ ~r~g ~R2

~s
; Ys ¼

~ty ~R

~s
;

Ec ¼ ~s
~G ~R
¼

~l
~tvc
¼

~l

~k ~R

~s

 !1
n

¼
~l

~k
1
n

~s
~R

� �1
n

(1)

The first one is the Ohnesorge number, which measures the
importance of viscous forces relative to inertia and surface
tension forces. The second one is the Bond number which
shows the importance of gravity compared to capillarity.
The third one indicates the importance of yield stress relative
to capillarity. These three dimensionless numbers arise also

in the context of viscoplastic filament stretching.37,41 The
last one, the elastocapillary number, appears because of the
elastic component of these materials.18,19 It is the ratio of the
relaxation time of the material to the process characteristic
viscous-capillary time.

Based on the previous arguments, the dimensionless
momentum and mass conservation equations take the follow-
ing form:

Oh�2
Du

Dt
¼ = � T þ Bo ez (2)

=�u = 0 (3)

where u is the velocity vector, = is the usual gradient operator,
and T is the Cauchy stress tensor, split into the pressure and
the extra stress tensor as T = �pI + s.

The extra stress tensor follows the SHB model, which can be
expressed in dimensionless form as:

Ec s
rþmax sdj j � Ysð Þ

1
n

s

sdj j
¼ _c (4)

where sdj j ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
0:5sd:sd
p

is the magnitude of the deviatoric part of
the extra stress tensor, sd = s � tr(s)/tr(I), _c = =u + (=u)T is the
deformation rate tensor, and the symbol = over the stress
tensor denotes the upper convected derivative, which is
defined as:

s
r ¼ @s

@t
þ u � =s� =uð ÞT �s� s � =u: (5)

The max term in eqn (4) introduces the von Mises criterion and
dictates whether the material is fluidized or not. When |sd| is
smaller than Ys the max term vanishes, and solid behavior is
followed. Otherwise, the material flows. The yield surface, the
interface between solidified and fluidized material, arises at
|sd| = Ys. The following boundary conditions accompany the
aforementioned system of PDEs. We impose the kinematic and
traction boundary conditions along the free surface Sf(t):

n�(u � um) = 0, on Sf (6)

n � T ¼ 2Hð Þn; on Sf (7)

where n denotes the outward unit vector normal to the free
surface Sf(t), 2H ¼ �=s � n is the mean curvature of the free
surface, =s = (I � nn)�= is the surface gradient operator,

um ¼
@rf
@t

is the velocity of the mesh nodes in the fluid domain,

and rf is the position vector of the free surface, which is given as
rf = her + zez, where h is its radial component and z is its
respective axial one.

We solve for the axisymmetric case here; thus, we impose
the symmetry conditions along the axis As:

ns�T�ts = 0, on As (8)

ns�u = 0, on As (9)

where ns, ts are unit vectors that are normal and tangent to the
As axis.

Fig. 1 Schematic of the flow geometry.
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Also, we impose the no slip and no penetration conditions
along the two disks

u = Uez at z = L (10)

u = 0 at z = 0 (11)

where L = L0 + Ut is the dimensionless disk separation at time t.
We fix the location of the three-phase contact points on the
disks throughout the bridge motion at coordinates (r = 1, z = 0)
and (r = 1, z = L). This setup represents the most common cases
where the roughness of the disks does not allow for any slip of
the material. If we introduce slip, the contact angle dynamics
must be included, which may substantially change the flow
character. However, this is not the purpose of the present work,
which is to elucidate the stretching dynamics of elastovisco-
plastic materials. To this end, we consider only the case with
fixed contact points.

Regarding initial conditions, we assume that the bridge is
initially motionless and under no stress:

u(r, z, t = 0), s(r, z, t = 0) = 0. (12)

Also, we do not study large values of the initial disk separation,
so the material does not yield under its own weight without
stretching. Although the Saramito model permits small, elastic
deformations before yielding, in our study, we assume that the
initial bridge shape is a perfect cylinder:

h(z, t = 0) = 1, 8z A [0, L0]. (13)

3. Numerical implementation
3.1 Finite element formulation

We employ the newly developed finite element formulation for
free surface flow problems by Varchanis et al.42 to solve
numerically the preceding system of equations. It permits using
equal interpolants in all variables by optimally generalizing the
PSPG formulation43 for viscoelastic materials, thus reducing
the computational cost. It also uses the DEVSS numerical
scheme44 to preserve the elliptic nature of the momentum
equations and the SUPG45 formulation to cope with the hyper-
bolic character of the constitutive model equation. Varchanis
et al.42 summarize the weak form of the momentum and mass
balance equations and note essential implementation guide-
lines. This method has been already successfully implemented
for the solution of viscoelastic filament stretching and other
flows of elastoviscoplastic materials, like the flow through the
cross-slot geometry18,46 and the bubble rise problem.19 It has
been used also to solve long-standing problems in viscoelastic
flows, such as the sharkskin instability.47

We approximate all variables with linear, three-node Lagran-
gian basis functions. We use the arbitrary Lagrangian–Eulerian
(ALE) method to track the deformation of the free surface
of the filament as it stretches. We choose the quasi-elliptic grid
generation scheme proposed by Dimakopoulos & Tsamopoulos48

with its corresponding boundary conditions. The computational

domain, which remains undeformed and time-independent,
coincides with the initial shape of the bridge. Regarding its
implementation, the interested reader is referred to the works
of Dimakopoulos & Tsamopoulos,48 and Chatzidai et al.49

3.2 Solution procedure

We discretize the solution domain using triangular elements.
Initially, we create a structured mesh of quadrilateral elements
that are subsequently split into two triangles. We prefer trian-
gles over quadrangles because they accommodate better the
large domain deformations that the stretching introduces.
Next, we perform a systematic mesh convergence study to
determine the spatial discretization required to obtain mesh-
independent results. To this end, we solve a representative case
on three different meshes. We generate the two finer meshes by
sequentially doubling the elements of the previous mesh in
both directions. We find that the optimal mesh, regarding the
accuracy and computational cost, consists of 300 elements in
the axial direction and 100 elements in the radial direction.
We use this discretization to model the whole domain, from
the top to the bottom plate and throughout the simulation.
Hence at any value of the local radius, there are 100 elements
in the radial direction within the filament. The larger number
of elements in the axial direction are necessary to avoid
remeshing procedures which inevitably induce numerical dif-
fusion, while we achieve the same accuracy even when the
bridge has elongated considerably towards the end of each
simulation.

Concerning the time integration, we employ the implicit
Euler method for the first five time-steps. A first-order forward
difference predictor precedes each implicit Euler step. Subse-
quently, we use a second order backward finite difference
method for increased accuracy, preceded by a quadratic extra-
polation for the predicted solution at each time step. We set
the initial time step to 10�3. After 100 time-steps, it varies
accordingly to control the time integration error by requiring
the norm of the truncation error at the next time step to be
equal to a tolerance of 10�5. For a detailed description of the
procedure, the interested reader is referred to Syrakos et al.50

We implement Newton’s iterative method to solve the resulting
non-linear algebraic equations and calculate the Jacobian
entries via finite differences. The iterations of Newton’s
method terminate when the norm of the residual vector falls
below 10�8.

4. Results

In the present study, we examine the bulk dynamics of elasto-
viscoplastic filaments and how the various parameters affect
them. The yielded regions of the bridge are drawn in red, while
the unyielded ones are in blue. We consider that the filament
break-up takes place when the minimum radius reduces to
10�2 times the initial radius. Beyond this minimum radius, the
dynamics of the neck evolve so fast that the bulk shape changes
very little. Thus, the simulations are terminated at this point,
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because they do not provide any additional insight concerning
the bulk dynamics, whereas they become too expensive because
they require finer meshes, longer times and higher computa-
tional cost near the pinching point. Detailed studies of the
pinching dynamics will be pursued in later publications.

As a base material, we choose the 0.2% Carbopol solution of
Lopez et al.12 The parameters of the SHB model for this specific
concentration are determined following a non-linear regres-
sion. The interested reader is referred to Moschopoulos et al.19

for more details. In Fig. 2, we plot the prediction of our EVP
model superimposed on the experimental values, and we
summarize the parameter values in Table 1. It is evident that
the SHB model can accurately reproduce the steady shear
experiments. Unfortunately, Lopez et al.12 did not perform
experiments to measure extensional properties. As Moschopou-
los et al.19 noted in the case of the bubble rise through an
elastoviscoplastic material, when the model parameters were
fitted only on shear data, the elastic nature of the material was
slightly underestimated. Nonetheless, this did not present
problems in understanding how elasticity affects the dynamics
of elastoviscoplastic materials.

We use the value of 0.073 N m�1 for the interfacial tension,
~s, for all simulations. Also, we assume that the disks have a
radius of 3 mm, the upper-plate velocity is 14.8 mm s�1 and the
initial separation is 6 mm. In experimental works,6,37 the
upper-plate velocity varies typically between 0.6–26 mm s�1,
and the initial separation varies between 3–12 mm. Based on
these assumptions, we summarize the dimensionless numbers
corresponding to the base material in Table 2.

4.1 Base case – time evolution

We start our study by investigating the time evolution of the
bridge choosing the value of 0.45 for the dimensionless upper-
plate velocity, and the value of 2 for the initial separation.

Initially, the material liquefies almost entirely because of the
sudden extension (Fig. 3(a)). Small portions of the material
remain unyielded near the lower and the upper plate due to the
no-slip and no-penetration boundary conditions. As time pro-
gresses (Fig. 3(b)), most of the yielded material concentrates
near the neck, where larger elongational and shear stresses
develop due to the conical shape of the neck, as Moschopoulos
et al.41 showed in the case of viscoplastic filaments. The lower
part of the material becomes increasingly unyielded. Also, the
bridge grows to be asymmetric because of the asymmetry in the
motion (only the upper plate is pulled, and inertia is accounted
for) and the gravity force. Later (Fig. 3(c)), stronger necking of
the bridge occurs. At the same time, the accelerating thinning
of the neck is enough to counterbalance the increase of the
height of the filament due to stretching and to conserve the
mass of the material. Stresses drop below the yield stress in
most of the filament because material deforms slightly. Thus,
most of the material becomes unyielded. The neck now carries
the burden of the deformation and shrinks faster to zero. From
Fig. 3(d), we observe that the radius of the lower part increases
slightly even though the material remains unyielded. This is
permitted by the elastoviscoplastic constitutive equation,
which models the unyielded phase as a hyperelastic solid that
deforms elastically even below the yield limit. On the contrary,
this was not observed in the case of viscoplastic filament stretch-
ing41 because viscoplastic models assumed the unyielded material
to remain undeformed disallowing such deformation.

At the last stages prior to pinching (Fig. 3(e)), material
elasticity opposes the abrupt shrinkage of the neck, by devel-
oping significant elastic stresses, which give rise to the observed
elongated neck that connects the upper and lower part of the
filament. Notice that the minimum radius decreases from 0.2 to
0.01 in approximately 0.25 dimensionless time.

This neck structure is typically observed in viscoelastic
filament stretching dynamics29 but was not predicted in earlier
viscoplastic simulations.37,41 Still, it was demonstrated in
experimental works regarding filament stretching of yield
stress materials,6,35 but the ideal viscoplastic theory could not
explain it because it excluded elasticity. For example, for a
concentrated water acrylic paint mixtures (Fig. 16 in ref. 6 and
Fig. 3 (top row) in ref. 35), a long neck was formed connecting
the upper and lower parts of the filament. Another interesting
point is that the yielded areas are not extremely localized very
near the neck but extend inside the lower and the upper part of
the filament. The reason for this is the following: the neck is

Fig. 2 Steady-state flow curve for the 0.2% Carbopol solution of Lopez
et al.12 The symbols represent the experimental data, and the continuous
line represents the model predictions.

Table 1 Rheological parameters found via a non-linear regression for
0.2% Carbopol solution

~ty k̃ n G̃

29.24 Pa 7.893 Pa sn 0.45 169.4 Pa

Table 2 Values of the dimensionless numbers corresponding to the base
case

Oh�2 Ys Bo Ec U L0

0.046 1.25 1.26 0.14 0.45 2
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evacuated extremely fast; thus, the generated axial velocity is
quite large. In conjunction with the intermediate Ys number,
this yields the material near the neck and the evacuating
material penetrates and compresses it. The yielded area in
the lower part of the filament extends much further in the
axial direction than its upper counterpart due to the effect of
gravity which pulls material downwards.

It is important to compare the stretching of an elastovisco-
plastic material with the case of a viscoplastic one with the
same material parameters excluding elasticity. Hence, we set
Ec = 0 to obtain the Hershel–Bulkley (HB) model51 and we
perform the same simulation again. To deal with the stress
indeterminacy that viscoplastic models possess, we employ the
stabilized PAL method.52 The interested reader can find more
information on the implementation of this method in ref. 52.
In Fig. 4(a)–(c), we compare side by side the filament shapes of
the two cases at three instants. For early times (Fig. 4(a)), the
differences between the two materials are small. The EVP
material presents larger unyielded regions because it can
deform elastically prior to yielding compared to the VP case,
where any deformation yields the material. The same pattern
persists for intermediate times (Fig. 4(b)). However, as we
approach pinch-off, larger differences arise, and the VP fila-
ment breaks much later in time. In the examined case, the VP
bridge breaks at a time equal to 5.932, whereas the EVP
counterpart breaks at 4.085. In the VP case, the absence of
elasticity does not permit any deformation below the yield
stress. So, more material yields and drifts upwards, leading to
longer filaments and increasing the pinching time. Moreover,
as time progresses, most of the material becomes unyielded in
the EVP counterpart, as shown in Fig. 3(d). Even though the
solid phase can deform slightly, the accelerating shrinking of
the yielded areas in the neck region compensates mainly for the
filament stretching. Thus, elasticity paves the way for the neck
region to carry alone the burden of deformation. The neck of
the EVP filament shrinks eventually faster to zero compared to

the VP case. We plot the neck shape for both materials at pinch-
off (Fig. 4(d)). The neck of the EVP material is clearly long and
slender like the one observed when viscoelastic materials are
stretched.29 On the other hand, the VP case is neither slender
(n o 0.66) nor long, in accordance with the findings of
Renardy & Renardy53 and Suryo & Basaran40 for power law
fluids. The difference in the pinching times between the two
materials motivate us to reexamine Fig. 2 in the work
of Moschopoulos et al.,41 where they compare viscoplastic
numerical simulations against the experiments of Balmforth
et al.37 Even though the 2D simulations show very good
agreement with experiments regarding the bridge shape, they
predict larger pinching times for both materials, namely
Carbopol solution and Kaolin suspension. Following the pre-
sent study, we suggest that viscoplasticity fails to predict
accurately the pinching times in these cases because elasticity
is excluded.

In Fig. 4(e), we plot the time evolution of the minimum
radius, hmin, for EVP and VP materials to visualize their
differences better. Up to time equal to 3, the evolution of the
minimum radius is approximately the same. After this point,
the thinning of the neck accelerates in the EVP filament for the
reasons explained above, and it becomes abrupt after a value of
the minimum radius equal to 0.1. On the other hand, the
thinning is gradual for the VP counterpart because more
material is yielded, and the fast evacuation of the neck occurs
after the minimum radius reaches approximately the value
of 0.02.

An important quantity to measure during filament stretch-
ing is the applied force on the upper disk. A force balance
relates its value to the stress difference in the fluid, making the
calculation of the extensional viscosity possible. A thorough
analysis of the force balance that includes the effects of inertia
and surface tension is presented in the work of Szabo.54 Also,
the time evolution of the plate force can be used to quantify the
tackiness of a viscoelastic material.55–57 In our case, the normal

Fig. 3 Transient evolution of the filamentous bridge: (a) t = 0.59, (b) t = 1.16, (c) t = 2.14 (d), t = 3.83, (e) t = 4.085 for Oh�2 = 0.046, Bo = 1.26, Ys = 1.25,
Ec = 0.14, n = 0.45, U = 0.39 and L0 = 2. Yielded/unyielded regions are depicted in red/blue color, respectively.
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force, FPL, is obtained from the following expression:

FPL ¼
ð
Ap

n � T � n dAp; (14)

where Ap is the circular area of the upper plate. In Fig. 4(f), we
plot the evolution of the force on the upper plate for both
materials until the minimum radius attains the value of 10�2.
Differences arise between the two. The force increases from
zero, and oscillations are observed, only in EVP. The visco-
elastic stresses are responsible for this initial increase because
they need a finite time to grow. Let us examine closer these
observed oscillations. Their physical origin is similar to
the Rayleigh–Lamb oscillations found in elastic media.58 The
sudden motion of the upper plate generates a perturbation,
an elastic wave, that translates through the medium. When it
reaches the bottom plate, it is reflected there due to the applied
no slip and no penetration boundary conditions and reverses
direction. As it reaches the upper plate again, it pushes it

upwards, aiding its upper motion, and decreasing the required
net traction on the upper plate. During the wave propagation,
the free surface oscillates radially (not seen in Fig. 4(e) due to
the scale of the abscissa). Thus, a transverse wave is generated,
meaning that the direction of the material motion, which is
radial, is perpendicular to the direction of the wave, which is
axial. Transverse waves are also called shear waves. The dis-
covery of shear waves in elastic fluids is not new in rheology.
Buscall et al.59 investigated the viscoelastic properties and the
flocculation of colloidal systems using shear wave propagation,
while Joseph et al.60,61 developed their shear wave speedometer
to measure the relaxation time of many viscoelastic liquids.

At this point, we examine the importance of surface tension
in the propagation of the shear wave. Note that the present
nondimensionalization does not permit excluding capillarity,
because we use surface tension to scale stresses and pressure.
To this end, we use as characteristic velocity the velocity of
the upper plate and we rescale stresses and pressure with the

Fig. 4 Comparison of the stretching of a Viscoplastic (VP) (Ec = 0) and an Elastoviscoplastic (EVP) material (Ec = 0.14) at times: (a) t = 0.75, (b) t = 3.8,
(c) t = 5.932 (break-up time for the VP material, the EVP case is shown at break-up time t = 4.085). The left/right parts of each figure depict the VP/EVP
results, respectively. (d) A close-up of the neck region for both cases at the pinch-off point. The top/bottom parts of the figure depict the VP/EVP results,
respectively. In both cases Oh�2 = 0.046, Bo = 1.26, Ys = 1.25, n = 0.45, U = 0.45 and L0 = 2. (e) Time evolution of the minimum radius for EVP/VP (Ec = 0)
results. (f) Time evolution of the applied force in the upper plate for EVP/VP (Ec = 0) results. Different line styles distinguish between the different cases.
(g) Time evolution of the local extension rate for EVP/VP (Ec = 0) to be read on the left vertical axis and time evolution of the local Weissenberg number
for EVP to be read on the right vertical axis. Different line styles distinguish between the different cases.
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viscous stress scale, namely ~k
~U
~R

� �n

. Note that in this case, the

capillary force is not equal to the viscous stress scale. Now, the

capillary number, Ca ¼
~k

~U
~R

� �n

~R

~s
; arises that divides the curva-

ture terms in the interface force balance (right-hand side of
eqn (7)). Assuming for the sake of the present examination that
Ca is very large, we can neglect the surface tension terms in
the eqn (7) and perform the simulations again. Oscillations
develop also when surface tension is excluded, and we conclude
that it plays a minor role in the propagation dynamics of the
shear wave.

Having clarified the nature of these oscillations, we can also
calculate their period. Up to time equal to 0.9, the elapsed time
between two maxima in the plate force is approximately 0.2
(Fig. 4(f)). As a first approximation, the wave travels a 2L0 = 4
distance during this period, which is the distance from the
upper to the bottom plate and back. Of course, the upper plate
moves constantly upwards, but the total length increase of the
filament up to time equal to 1 is 0.45 which is small compared
to the initial length of the filament (L0 = 2). The shear wave
speed, VSW, is calculated as the square root of the ratio of the

elastic modulus over the density of the material �

ffiffiffiffi
~G

~r

s !
;

which reads in dimensionless form:

VSW ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1

EcOh�2

r
: (15)

For the base case, we calculate it to be equal to 12.46. Thus, as a
first approximation, the theoretical elapsed time for the wave

translation is
2L0

VSW
¼ 0:32; which compares nicely with the 0.2

value found in simulations. Note that if we disregard gravity via
setting Bo = 0, we find the wave period equal to 0.25 from
simulations, which is even closer to the theoretical value.
During this period, the material does not yield because the
upper-plate velocity is small enough. Thus, a viscous dissipa-
tion mechanism does not exist to lessen these oscillations. If we
add numerically a minuscule amount of dissipation in the solid
phase, these oscillations do not appear. As time progresses,
the material yields, and viscous dissipation increases, damping
the oscillations, which cease to exist after a time equal to 1.

On the other hand, the VP material starts from a large force
on the upper plate and then the force decreases gradually.
Here, the material yields immediately following a generalized
Newtonian constitutive law. No oscillations are encountered,
and the force does not increase from zero because elasticity is
excluded. After this initial different response, the forces show a
similar trend as both decrease assuming comparable values.
However, the decrease is steeper for the EVP filament because
smaller yielded areas exist than in the VP counterpart, and the
neck thins faster, which results in a smaller required force
because the upper-plate velocity remains constant. During
the last stages of the stretching, the force even changes sign

becoming negative. Notice that the filament radius has not
reached yet its minimum permitted value in this instance.
Now, capillarity is strong enough to drive the process, and in
conjunction with the strain rate thinning nature of the EVP and
VP materials, the fluid evacuates the neck much faster. At these
moments, the thinning evolves so fast that the location of
the upper plate barely moves upwards. Thus, the evacuating
material ‘‘sees’’ the other parts of the filament as if they are
immobile and compresses them. This compression is why the
upper-plate force changes sign, which denotes that the material
pushes the upper plate in the direction of its motion. Still, the
rate of decrease grows for the EVP, which is not the case for the
VP counterpart. In the latter, the force decreases at a lower rate.

Our results for EVP materials are qualitatively similar to the
experiments by Nelson et al.36 We cannot perform a quantita-
tive comparison because they have not reported the elastic
modulus of the materials they have used. In their paper, they
have plotted the engineering stress, which is related to the
force on the upper plate, versus the extensional strain. The
latter corresponds to the dimensionless time in our plots. Their
figures clearly depict the initial growth of the force on the upper
plate followed by its decrease. However, oscillations cannot be
distinguished, and the rate at which the force decreases is
lower in experiments. The initial, transient oscillations are not
observed in experiments because the solid phase of yield stress
materials possesses viscous dissipation and does not behave as
a hyperelastic solid. We attribute the slower decrease of the
force to the fact that we use the surface tension of water which
is larger than in most yield stress materials. Nelson et al.36 do
not report the surface tension of their materials. Also, the
accurate measurement of surface tension is in fact not easy
because plasticity and the experimental protocol influence the
measured value.62

Having compared the evolution of the force on the upper
plate between EVP and VP material, we choose to make such
a comparison between elastoviscoplastic and viscoelastic mate-
rials. During the filament stretching of viscoelastic bridges,
the measured force decreases but then increases suddenly.63

Viscoelastic materials show strain-hardening effects, and the
extensional viscosity increases considerably.28 The material in
the neck region becomes increasingly difficult to stretch
further, and the unstretched material near the plates becomes
relatively easier to pull, which increases the required force on
the upper plate. However, as Kordalis et al.46 explain, the
microstructure of these EVP materials cannot support strain-
hardening effects, and the extensional viscosity decreases when
the strain rate increases. Thus, the force does not increase
monotonically but reaches a maximum. The same observations
with ours are made in the work of Zhang et al.,64 where they
measured the needed force to stretch the examined yield stress
materials using rough and smoothed plates (Fig. 1 in ref. 64).

A key finding of the present study is the formation of a
cylindrical neck that stems from the increased viscoelastic
response of the material that opposes the sudden shrinkage
of the neck. To support our argument, we track the evolution of
the local extension rate at the location of the minimum radius,
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which is given by:

_elocal ¼ �
2

hmin

dhmin

dt
(16)

In Fig. 4(g), we compare _elocal for EVP and VP materials. In both
cases, the local extension rate remains fairly small until the very
last moments before pinching. Small differences arise during
the initial transient. In the EVP fluid, oscillations are encoun-
tered due to the aforementioned reasons. Also, the extension
rate of EVP material is slightly lower than the VP one. VP
simulations show extensive yielding of the filamentous bridge;
thus, surface tension pushes material inwards. When we
account for elasticity, the material stays unyielded for longer,
and surface tension does not influence the dynamics. Near
pinch-off, the extension rate diverges suddenly, and its value
grows larger for the EVP material _elocal ¼ 1021ð Þ than its VP
counterpart _elocal;VP ¼ 313

� �
. This behavior of extension rate in

EVP material triggers their elastic response, and the thread is
formed. Viscoplastic simulations exclude elasticity, so the
increase in the extension rate does not alter the filament
dynamics. In the same figure, we plot also a locally defined
Weissenberg number, Wilocal, which reads as follows:

Wilocal ¼ ~l �e_elocal ¼ Ec � _elocal (17)

We observe that Wilocal increases 3 orders of magnitude com-
pared to Ec, and it characterizes better the magnitude of elastic
effects near pinch-off.

To understand the extensional flow dynamics further it is
customary to measure the stress field inside the fluid experi-
mentally. Although techniques have been developed to measure
the stress field, like flow birefringence,65,66 and applied success-
fully in viscoelastic flows, they have not been adapted to yield
stress materials. On the other hand, numerical simulation results,
like the present ones, provide insights into the developed stresses.
We compare the contours of the szz, srr, and srz stress components
between the EVP and VP materials in the neck region for
two minimum radius values, hm = 0.2 (Fig. 5(a), (c) and (e)) and
hm = 0.01 (Fig. 5(b), (d) and (f)). Note that the required time for
each filament to reach the selected radius value is different. In all
figures, the left-hand side corresponds to the VP material and the
right-hand side corresponds to the EVP one.

We examine initially the axial stress component, szz, for hm =
0.2 (Fig. 5(a)). In both fluids, szz shows the same variation. Near
the minimum radius, szz is almost independent of the radial
coordinate, but the region that this holds is small. When we
move away from the neck, the radial dependence becomes
apparent. The positive values denote that the material elements
are stretched along the axial coordinate. The difference
between the two materials is mainly found in the value of the
axial stress, which is larger for the EVP material. The increased
stresses arise from the presence of elasticity in the EVP material
and the faster evacuation of the neck, which can be clearly seen
in Fig. 4(e) and (g). Next, we plot the contours of the radial
stress component, srr, for hm = 0.2 (Fig. 5(c)). Again, their radial
dependence fades away when we are near the neck, and they are
negative because the material is compressed radially. Although

the values of the radial component are comparable between the
two materials, they decrease greatly as we move from the neck
region in the EVP case and become positive. For the VP case,
they remain negative around the neck and change sign very far
from it (not shown here). This axial variation of srr is an indirect
consequence of elasticity in the EVP constitutive model. As we
have shown in Fig. 4(b), which corresponds to the case of
hm = 0.2, the unyielded areas in the EVP material are closer
to the neck and act as an ‘‘obstacle’’ that opposes the axial
motion of the material elements. Thus, the material gets slightly
compressed as it reaches the unyielded regions, and a radial flow
develops to satisfy the continuity constraint, leading to positive
radial stresses. We do not observe important differences between
the two materials for the shear stress component, srz, shown in
Fig. 5(e). They are concentrated in the region of maximum free
surface curvature or where the curvature changes fast, which is
very close to the neck region, as Moschopoulos et al.41 have
shown. Once more, the EVP material shows slightly larger shear
stresses resulting from the faster neck evacuation.

Next, we investigate the dynamics of the stress components
when the minimum radius is equal to 0.01. Regarding the axial
stress component (Fig. 5(b)), it increases abruptly during the
final stages prior to pinching in the EVP material and with-
stands the fast evacuation of the neck. As a result, a cylindrical
neck is formed, as shown in Fig. 4(d). We observe that inside
the formed thread, tzz does not vary radially or axially, but it
does so closer to the top and bottom plates. Thus, inside the
neck, we can assume that an almost ideal uniaxial elongation
flow field is developed. In the VP material, the value of tzz is
much smaller than the EVP one. Specifically, in the under-
investigation case, tEVP

zz is equal to 152.46 whereas its VP
counterpart tEVP

zz is equal to 16.12, which results in one order
of magnitude difference. Near the necking region, it does not
vary radially like the EVP counterpart, but we observe axial
dependence as we move away from the point of the minimum
radius.

Differences arise also regarding trr. EVP simulations
(Fig. 5(d)) predict smaller radial stresses than VP ones in the
neck region, where in the latter, the value is four times larger
than the former. Radial stresses are found independent of the
radial and axial coordinates inside the thread for the EVP
material, whereas the filament area that this holds true is
smaller in the VP case. As far as the shear stresses are concerned,
they are much larger in the EVP fluid (Fig. 5(f)) than the VP
counterpart away from the neck. On the contrary, inside the
cylindrical neck they are very small (Fig. 5(f)), strengthening our
argument that a uniaxial elongational flow field is developed in
the EVP case. In contrast, in the VP counterpart, this applies only
in a very confined area around the point of minimum radius.
As we move away from the neck, the sign of the shear stresses
changes both for VP and EVP material (not shown in Fig. 5(f) due
to the magnification around the thread). Right above the locus of
the minimum radius, material moves towards the axis of sym-
metry with negative radial velocity, and at the same time, it has a
positive axial one. When we consider the curvature change in the
region, positive shear stresses arise. However, when we move
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further above, the material continues translating upwards with a
positive radial velocity. So, the shear stresses become negative.
The same arguments apply when we move towards the bottom
plate, but now the axial velocity is negative, resulting in the
opposite sign of the shear stresses.

4.2 Effect of the yield stress parameter

We continue our study by investigating the effect of the yield
stress parameter, Ys, on the bulk dynamics. In Fig. 6(a),
we present the case of Ys = 0.125. We observe that the plastic

nature of the material weakens. The whole material yields except for
a minimal unyielded area around the center of the upper disk. The
shape is qualitatively different from that of a viscoplastic filament,
where the decrease of Ys leads to a simple viscous response and a
very long cylindrical neck.41 The viscoelastic nature of the present
material is not affected by the decrease of Ys, thus the upper and
lower part of the filament are connected with a small, elongated
neck. In addition, the effect of flow asymmetry and gravity are
prominent because the asymmetry of the bridge increases, and the
lower part of the filament resembles a sessile drop.

Fig. 5 Contours of the extra stress tensor components: (a), (c) and (e) correspond to hm = 0.2, and (b), (d) and (f) correspond to hm = 0.01. (a) and (b) axial
stress component, szz, (c) and (d) radial stress component, srr, and (e) and (f) shear stress component, srz. In all panels, the left-hand side shows the VP
case (Ec = 0), and the right-hand side shows the EVP case (Ec = 0.14). In both cases Oh�2 = 0.046, Bo = 1.26, Ys = 1.25, n = 0.45, U = 0.45 and L0 = 2.
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Increasing Ys (Fig. 6(b), which is the case shown in Fig. 3(d)),
a larger portion of the material becomes unyielded because the
developed internal stresses are below the yield limit. Plasticity
also hinders the effect of gravity because the asymmetry
between the upper and the lower part of the filament decreases.

A further increase of Ys makes plasticity predominant, and
the yielded areas concentrate exclusively around the neck.
However, flow asymmetry and gravity are still dominant in
contrast with the case of viscoplastic materials, where their
effect diminishes for large plasticity, and symmetric filaments
are predicted.41 Notice that Ys = 2.25 is the largest Ys we

examine here, which results in EY ¼ 0:32 � ty
G
¼ Ec � YS

� �
.

We choose not to exceed this value of the yield strain because
we prefer our parametric study to follow closely ‘‘real’’ yield
stress materials. It is quite interesting that the length of the
neck increases slightly for Ys = 2.25. As Varchanis et al.18 and
Kordalis et al.46 argue, a large yield strain number (which
corresponds to the case of Ys = 2.25) results in a stronger
elastic response. Thus, the material reacts forcefully with the

sudden decrease of the neck radius that results in the observed
length increase. Still, lengthy, elongated necks like the ones
found in viscoelastic materials cannot be supported by the
elastoviscoplastic theory, because it predicts monotonic
extension-rate thinning, which eventually decreases viscoelastic
stresses.

In Fig. 6(d), we plot the time evolution of the minimum
radius for each case of Ys both for EVP and VP materials. The
time for pinching decreases monotonically as we increase Ys in
the EVP model, but non-monotonically for the VP cases. For
small Ys values, most of the material is yielded and surface
tension drives the evacuation of the liquid from the neck both
in EVP and in VP bridges. For intermediate (Ys = 1.25) values of
Ys, decreasing pinching times are predicted for an EVP mate-
rial, but increasing ones are found for the VP counterpart. This
can be explained as follows: with increased plastic nature, the
elastoviscoplastic material is mainly unyielded in the upper
and lower parts of the bridge. These unyielded parts present
increased viscoplastic resistance to deformation. So, the neck
carries all the burden of stretching and shrinks faster to zero.

Fig. 6 Effect of the dimensionless yield stress on final filament shapes: (a) Ys = 0.125, (b) Ys = 1.25, (c) Ys = 2.25. Yielded/unyielded regions are depicted in
red/blue color, respectively. Oh�2 = 0.046, Bo = 1.26, Ec = 0.14, U = 0.45, L0 = 2, n = 0.45. (d) Time evolution of the minimum radius. (e) Time evolution
of the upper-plate force. In (d) and (e), solid/dashed lines denote the EVP/VP (Ec = 0) results and different color distinguishes between the different Ys.
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However, in the VP material, larger yielded areas are located in
the upper and lower parts of the filament and present an
increased viscous resistance that opposes the thinning of the
neck, resulting in longer filaments. For large enough (Ys = 2.25)
values of Ys, both materials show decreasing pinching times.
Now, the increased viscoplastic resistance of the materials
leads to smaller yielded areas, and the neck thins faster to
zero because it carries alone the deformation burden. Indepen-
dently from the Ys value or from simulating an EVP or VP
material, the minimum radius falls rapidly when it reaches a
critical point (Fig. 6(d)).

We visualize the effect of YS on the upper-plate force in
Fig. 6(e). In the EVP case, the duration of the initial oscillations
depends on Ys. As we increase Ys, greater deformation is needed
for the material to yield, leading to a larger force maximum,
which is also attained later in time. Prior to their fluidization,
these materials are assumed to be Neo-Hookean solids with the
same elastic modulus. The evolution of the force is the same
(even the local oscillation extrema) irrespective of Ys until
yielding, because the shear wave does not depend on Ys

(eqn (15)). However, for small Ys, the filament yields sooner
in time, and the viscous effects damp sooner the oscillations.
In the VP filament, the force attains its maximum value
immediately, which depends on Ys. The increased plastic
nature of the material necessitates stronger forces so that the
material yields and starts to deform. After the maximum force
value of the EVP bridge, the force evolution is very similar
irrespective of the type of material we simulate. Especially
for the smallest Ys (Ys = 0.125), their differences are almost
indistinguishable, except from the last stages prior to pinching,
where we predict a shorter pinching time for the EVP material
for reasons explained in Section 4.1. Also, we observe that the
force decreases faster for the intermediate and large Ys than the
small Ys. For small Ys, the plastic nature of the material cannot
affect the stretching dynamics, and most of the material is
yielded. Thus, most of the material deforms in response to the
imposed stretch, and the neck does not thin fast. This holds
also for the viscoplastic case, but the differences in the slope of
the upper-plate force are much smaller.

4.3 Effect of the pulling velocity

We continue by examining the effect of the upper-plate velocity
when we increase it by an order of magnitude at a time. For the
smallest velocity (U = 0.045), the neck that connects the upper
and the lower part of the filament is smaller than the one found
for U = 0.45. When we increase the velocity, we amplify the
elastic response of the material, and the elongated neck is
longer. This comparison shows how important it is to correctly
characterize the sample and not assume that elastic effects are
not important only from flow experiments, especially if the
extensional flow field is not strong enough. Also, the filament
reaches a somewhat larger height for a larger velocity. The
small upper-plate velocity (Fig. 5(a)) induces small deforma-
tions during the early stages that do not result in extensive
yielding of the material. As a result, a smaller portion of the

filament carries the burden of deformation, and the upper plate
cannot reach the same height as for U = 0.45 (Fig. 7(b)).

However, clearer differences in shape arise when we further
increase the plate velocity (Fig. 7(c)). Now, a prolonged and
distinct neck is formed, and its shape is qualitatively different
from the previous cases. At a time well before break-up, we have
the minimum radius only at one axial location, as in Fig. 7(a)
and (b), but when pinching approaches, the radius of the
bridge develops two minima at two axial positions. As a result,
a satellite drop tends to form between the upper and lower part
of the filament, which we visualize better by plotting the radial
and axial velocity contours side by side near the neck at the
stage prior to pinching in Fig. 7(d). This phenomenon is usually
observed in low-viscosity fluids, but it has not been reported for
viscoplastic materials. The mechanism that leads to the present
structure reads as follows. The increased velocity of the upper
plate amplifies the elastic response of the material, which
opposes the extremely fast evacuation of the neck, so a longer
neck is formed. However, the continuously increasing exten-
sional components of the rate-of-strain tensor decrease the
extensional viscosity of the material and render viscoelastic
stresses weaker. Consequently, inertia grows dominant due to
the large upper-plate velocity, despite the small value of Oh�2

(Oh�2 = 0.046) leading to the formation of the satellite drop
structure. The shape and size of the yielded part of the material
in its lower section does not vary too much, but its size
increases particularly in the highest velocity in the upper part.

In Fig. 7(d), we plot the evolution of the minimum radius of
the bridge. As expected, for small velocities, the filament breaks
later (t E 40). Larger velocities induce increased viscoelastic
forces that drag more material upwards and lead to longer
filaments (Fig. 7(b) and (c)). Nevertheless, material evacuates
the neck faster, resulting in shorter break-up times. Also, VP
materials follow the same trend. Still, the VP filament is
stretched for a longer time and the difference in pinching time
increases with the upper-plate velocity.

We also examine the time evolution of the upper-plate force
(Fig. 7(e)). Here, the initial, transient evolution of the force
depends strongly on the upper-plate velocity, especially in the
EVP material. For small U (U = 0.045) values, the force starts
from a very small but negative value. The free surface has
deformed slightly, and the surface tension pushes material
inwards. However, the viscoelastic stresses do not increase to
oppose the movement of the plate during the early stages of
stretching because the plate velocity is quite small. After some
time, oscillations appear, and they fade away when the material
yields. The corresponding VP case does not predict a negative
force because viscous stresses increase abruptly in response to
the sudden stretching. However, they remain constant for a
longer period. Increasing U (U = 0.45), the oscillations are short
lived in the EVP filament and the force does not start from
negative values. We notice that the forces for both materials
start to decrease approximately at the same time. For very large
values of the upper-plate velocity (U = 4.5), the oscillations are
almost gone in the EVP bridge because the material yields
faster due to the faster stretching. Also, the force does not
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increase from zero but from a finite value because at the first
time step the amplified inertial effects oppose the pulling of the
upper plate. The VP counterpart predicts a very large value
(E42) for the upper-plate force due to inertia effects, which is
not shown in the figure due to the choice in the range of the
ordinate. Also, irrespective of the upper-plate velocity, the force
on the upper plate decreases more abruptly in EVP than in VP
materials.

4.4 Effect of the shear thinning exponent

Next, we examine the effect of the shear thinning exponent on
the stretching dynamics. Fig. 8 shows results for n = 0.2
(Fig. 8(a)), n = 0.3 (Fig. 8(b)) and n = 0.45 (Fig. 8(c)). We choose
not to exceed the critical value of n = 0.5. This choice stems
from the fact that the SHB model predicts extension rate
hardening for n 4 0.5, which the microstructure of yield stress

materials cannot support, as Kordalis et al.46 explain. Decreasing
the shear thinning exponent, we amplify the shear and extension
rate thinning nature of the material. The material around the
neck presents a smaller viscoelastic force for smaller n, which
cannot oppose the effect of the capillary force.

Thus, the neck shrinks faster, and the filament breaks
sooner. We observe that a smaller part of the material yields
for smaller n (Fig. 8(a)) because only the neck carries all the
burden of the deformation, which enables the stresses to relax,
and the material becomes unyielded. Note that an island of
yielded material is predicted to be surrounded by unyielded
regions. This was not predicted in viscoplastic simulations37,41

because the ideal viscoplastic theory did not permit it. For ideal
viscoplastic materials, the strain rate is zero in the unyielded
parts. So, a yielded area where the strain rate is not zero cannot
exist inside an unyielded one. In Fig. 8(d), we plot the time

Fig. 7 Effect of the dimensionless velocity on final filament shapes: (a) U = 0.045, (b) U = 0.45, (c) U = 4.5. Yielded/unyielded regions are depicted in
red/blue color, respectively. Oh�2 = 0.046, Bo = 1.26, Ec = 0.14, Ys = 1.25, L0 = 2, n = 0.45. (d) Close up in the neck region for the case of U = 4.5. The
left/right parts of the figure depict the contours of the axial/radial velocity components, respectively. (e) Time evolution of the minimum radius. (e) Time
evolution of the upper-plate force. In (e) and (f), solid/dashed lines denote the EVP/VP (Ec = 0) results, and different color distinguishes between
the different U.

Soft Matter Paper

O
pe

n 
A

cc
es

s 
A

rt
ic

le
. P

ub
lis

he
d 

on
 0

6 
Ju

ne
 2

02
3.

 D
ow

nl
oa

de
d 

on
 8

/1
/2

02
5 

1:
58

:1
8 

A
M

. 
 T

hi
s 

ar
tic

le
 is

 li
ce

ns
ed

 u
nd

er
 a

 C
re

at
iv

e 
C

om
m

on
s 

A
ttr

ib
ut

io
n 

3.
0 

U
np

or
te

d 
L

ic
en

ce
.

View Article Online

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
https://doi.org/10.1039/d3sm00143a


4730 |  Soft Matter, 2023, 19, 4717–4736 This journal is © The Royal Society of Chemistry 2023

evolution of the minimum filament radius for EVP and VP
materials. We predict that the break-up time monotonically
decreases, when the shear-thinning exponent decreases, as
explained above. Also, the HB model predicts extension rate
thinning. Thus, smaller pinching times are predicted when we
decrease the shear thinning exponent.

The variations of the shear thinning exponent present
minimal alteration in the measured force on the upper plate
(Fig. 8(e)). The predicted initial oscillations are not affected by
its value because the elastic part of the constitutive equation
does not depend on the shear-thinning exponent. For both
materials, the force on the upper plate decreases with a slope
that becomes steeper for smaller values of the shear thinning
exponent because of the amplified extension rate thinning.

4.5 Effect of the elastocapillary number

To examine the effect of material elasticity, we vary the elasto-
capillary number. By selecting a small value (Ec = 0.014 in
Fig. 9(a)), the viscoplastic nature of the material overcomes the

elastic one. This becomes apparent primarily from the absence
of an elongated neck, characteristic of the elastic response, and
from the increased yielded areas. If we increase its value
(Fig. 9(b) and (c)), a prolonged neck is formed, and its length
increases further with larger values of Ec (Fig. 9(c)). We do not
examine values of Ec greater than 0.25 because we do not wish
to exceed the value of 0.32 for the yield strain, Ey, and we are not
aware of yield stress materials that have larger values of Ey.
Another important observation is that larger unyielded areas
exist inside the bridge for increasing Ec number, originating
from the increased elasticity that enables the unyielded regions
to deform much more before they yield. However, this also
affects the break-up time, which decreases monotonically with
increasing Ec values (Fig. 9(d)). This can be explained as
follows. The small Ec value (Fig. 9(a)) corresponds to a material
that can sustain only slight deformations causing the nearly
complete yielding of the filamentous bridge. The yielded mate-
rial drifts upwards more easily, resulting in longer filaments
and later break-up times, which are comparable to the VP case

Fig. 8 Effect of the shear-thinning exponent on final filament shapes: (a) n = 0.2, (b) n = 0.3, (c) n = 0.45. Yielded/unyielded regions are depicted in red/
blue color, respectively. Oh�2 = 0.046, Bo = 1.26, Ec = 0.14, Ys = 1.25, L0 = 2, U = 0.45. (d) Time evolution of the minimum radius. (e) Time evolution of the
upper-plate force. In (d) and (e), solid/dashed lines denote the EVP/VP (Ec = 0) results, and different color distinguishes between the different n values.
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with Ec = 0. On the other hand, as we increase the Ec number, a
smaller portion of the material yields because the solid phase
can sustain larger deformations. When a neck is formed, and
the material inevitably yields around it, its apparent viscosity is
smaller than in the upper and lower unyielded parts of the
filament. Thus, the deformation is concentrated only in the
neck region, and the neck carries all the burden of the stretch-
ing and breaks eventually sooner. This phenomenon resembles
the one presented previously in relation to Fig. 2(c) for Ys = 2.12.

The great decrease of the elastic effects for the small Ec
(Ec = 0.014) value is visualized even better when we plot the
evolution of the upper-plate force in Fig. 9(e). This force grows
suddenly for the elastoviscoplastic material and obtains the
same value as the VP material. Still, there are oscillations that
cease to exist in a short time. After this point, the EVP filament
evolves just like the VP one, and slight differences arise in the
last stages prior to pinching. When we increase the Ec number
(Ec = 0.14 and Ec = 0.24), we amplify the elastic nature of the

material. Thus, the viscoelastic stresses do not develop fast
because the material remembers its previous stress state,
resulting in a slower evolution of the upper-plate force. The
increase of Ec also affects the period of the oscillations, which
increases. This observation follows our argument that these
oscillations are manifestations of a traveling shear wave whose
velocity is given by eqn (15).

4.6 Effect of inertia

Thus far, we did not analyze inertia in depth because its effects
were observed only in the case of a very large velocity (Fig. 7(c))
and only in the last stages before pinching. To examine the
effect of inertia on the bulk dynamics we vary Oh�2. The
importance of inertia depends on the pulling velocity, and
therefore we select a large value of U = 3 for this examination.

In Fig. 10(a), we plot the results for the case of zero inertia
(Oh�2 = 0) and in Fig. 10(b) for the case of Oh�2 = 0.04. Despite
this very small difference, qualitative differences arise between

Fig. 9 Effect of the elastocapillary number on final filament shapes: (a) Ec = 0.014, (b) Ec = 0.14, (c) Ec = 0.24. Yielded/unyielded regions are depicted in
red/blue color, respectively. Oh�2 = 0.046, Bo = 1.26, Ys = 1.25, L0 = 2, n = 0.45, U = 0.45. (d) Time evolution of the minimum radius. (e) Time evolution of
the upper-plate force. In (d) and (e), solid lines denote the EVP results and different color distinguishes between the different Ec. The black, dashed line
corresponds to the VP (Ec = 0) result.
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the two cases. The crucial one is the absence of a satellite drop
between the upper and lower part in Fig. 10(a), because of the
absence of inertia. The filament develops an elongated neck
with only a single point of minimum radius at which the bridge
eventually breaks. On the other hand, two pinching points
appear in the case of Oh�2 = 0.04. If we increase further Oh�2

(Fig. 10(c)), we get a very different bridge shape. The satellite
drop structure is absent. However, if we examine the filament
closer, we find that there is also a second location, at z E 2.9,
which starts to evolve into a second break-up point, but the
bridge breaks before a satellite drop grows. The early dynamics
of the stretching dictate the peculiar shape of the filamentous
bridge. For the large inertia, only the material very close to the
upper plate ‘‘senses’’ the sudden extension. This part deforms
and starts to thin earlier than the rest of the material, and the
pinching point moves closer to the upper plate.

We visualize the effect of inertia on the break-up time by
plotting the time evolution of the minimum radius (Fig. 10(d))
for elastoviscoplastic and viscoplastic materials. Initially, the
radius evolution of the two smaller values of Oh�2 presents the
same behavior, but the radius decreases faster for the larger Oh�2

As explained before, the deformation is not transmitted quickly to
the whole filament for Oh�2 = 0.4, but it is localized only near the
upper part of the material, which deforms earlier and shrinks
faster to zero. However, as time progresses, the increased inertia
decreases the rate of liquid evacuation from the neck, opposing
the breakage driven by capillarity. Thus, we obtain larger break-up
times and longer filaments. These observations hold true both for
EVP and VP materials. However, the effect of inertia in VP
materials is smaller than the one found in their EVP counterparts.

In Fig. 10(e), we plot the force on the upper plate for all
cases. When inertia is absent (Oh�2 = 0), oscillations are not

Fig. 10 Effect of the Ohnesorge number on final filament shapes: (a) Oh�2 = 0.0, (b) Oh�2 = 0.04, (c) Oh�2 = 0.4. Yielded/unyielded regions are depicted
in red/blue color, respectively. Ec = 0.14, Bo = 1.26, Ys = 1.25, L0 = 2, n = 0.45, U = 3. (d) Time evolution of the minimum radius. (e) Time evolution of the
upper-plate force. In (d) and (e), solid/dashed lines denote the EVP/VP (Ec = 0) results, and different color distinguishes between the different Oh�2.
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observed in the case of EVP. For negligible inertia, the shear
wave speed tends to infinity because it is inversely proportional to
Oh�2. So, we need infinitely small time-steps to observe the wave
translation, which we are unable to do. When inertia is increased
(Oh�2 = 0.04) coupled with the large U, the VP simulation predicts
a very high value of the plate force, which decreases rapidly and
follows the typical time evolution observed in previous cases. On
the other hand, the EVP material does not exhibit a significant
increase in the force on the upper plate. Also, the effect of the
shear wave on the upper plate force is minor because the intense
stretch of the material leads to its sooner yielding. The further
increase of Oh�2 (Oh�2 = 0.4) just amplifies inertial effects with-
out changing the previously explained pattern, and again no
oscillations are present. When we increase Oh�2, we decrease
the propagation speed of the shear wave (eqn (15)). However, the

material yields before the wave reaches the upper plate, and
viscous dissipation impedes it.

4.7 Effect of gravity

To investigate the effect of gravity, we choose to vary the initial
separation of the disks. It is common to assess the importance
of gravity by the value of the Bond number. However, the Bond
number based on the characteristic scales we use does not
depend on the height of the filament. Thus, it is helpful to
introduce a modified Bond number, which we define as the
ratio of the characteristic gravity force to a characteristic
capillary force:

Bom ¼
~r~g ~L0

~s= ~R
¼ Bo� L0: (18)

Fig. 11 Effect of the initial separation of the disks on final filament shapes: (a) L0 = 1 (Bom = 1.26), (b) L0 = 2 (Bom = 2.52), (c) L0 = 4 (Bom = 5.04). Yielded/
unyielded regions are depicted in red/blue color, respectively. Ec = 0.14, Bo = 1.26, Ys = 1.25, n = 0.45, U = 0.45. (d) Time evolution of the minimum
radius. (e) Time evolution of the upper-plate force. In (d) and (e), solid/dashed lines denote the EVP/VP (Ec = 0) results, and different color distinguishes
between the different L0.
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So, changes in the initial separation of the disks are reflected in
the value of the modified Bond number.

We plot the results for three different initial separations
(and modified Bond numbers) in Fig. 11. For small separation
or small modified Bond number (Fig. 11(a)), we obtain an
almost symmetric filament because the effect of gravity is
small. As we increase the separation (Fig. 11(b)), asymmetrical
filamentous bridges arise, and a slightly larger area of the lower
part of the filament deforms elastically. For the largest L0 that
we examine (Fig. 11(c)), the effect of gravity is amplified even
more, and the bulkier lower part yields under its own weight.
Thus, the lower part of the bridge sags and extends sideways
beyond the original radius of r = 1. However, the change of the
initial separation does not bring any noticeable differences
regarding the formed neck that connects the upper and the
lower part of the bridge.

In Fig. 11(d), we plot the time evolution of the minimum
radii, which shows a non-monotonic behavior with respect to
the initial separation, irrespective of the presence of elasticity
or not. From L0 = 1 to L0 = 2, the break-up time increases
approximately by 0.25 for the EVP material and by 0.75 for the
VP one, but this pattern is reversed for L0 = 4, where the shortest
break-up time is predicted. We attribute this variation to the
amplified gravitational force, which pulls the material down-
wards, accelerating the evacuation of the neck and the break-up
of the filament.

The initial separation affects the transient response of the
force on the upper plate in the EVP filament, but its effect is
smaller in the VP material. For L0 = 1 with an EVP material, the
oscillations are absent. For small L0, the effective extension rate
(�U/L0) is large, and the material yields sooner in time. Also,
significant shear stresses develop near the plate due to the
small aspect ratio and the applied no-slip condition, both of
which contribute to the fast yielding of the material. Thus, the
short-lived shear wave cannot affect the upper plate force.
When we increase L0, the material remains unyielded for a
longer period. Both the amplitude of the oscillation and the
period increase with increasing L0. Let us explain this behavior
in the framework established in Section 4.1. The period of the
shear wave is proportional to the traveled distance. If we double
it and keep constant the material properties, we expect the
period to double, which we observe if we compare the red and
blue lines in Fig. 11(e). Approximately three maxima of the
upper force for the case of L0 = 2 (red line) develop, where two
maxima are found for the case of L0 = 4 (blue line) for the same
elapsed time, demonstrating period doubling. The increase of
the amplitude in the upper plate force stems from the larger
‘‘resonant’’ cavity formed by the liquid bridge. Regarding the
VP bridge, a larger force is needed to set the plate in motion for
the small aspect ratio (L0 = 1) than the larger ones. As explained
for the EVP counterpart, the higher effective extension rate
yields most of the viscoplastic bridge and the material poses a
greater viscous resistance to the imposed stretching. For the
two larger L0 (L0 = 2 and L0 = 4), the force evolves independently
of the initial aspect ratio, except from the last stages prior to
pinching.

5 Conclusions

We investigated the stretching dynamics of a liquid bridge
composed of yield stress material that exhibits both plastic
and elastic effects simultaneously. We used the Saramito–HB
constitutive equation20 to model the rheological response of
these materials. We selected as a base case for our analysis a
0.2% Carbopol solution.12 We predict that the filament deforms
initially as a hyperelastic solid. The sudden pulling of the upper
plate generates a shear wave that translates through the medium.
When it reaches the upper plate, it aids its upward motion. The
material inevitably yields due to the constant stretching, and the
viscous dissipation damps this wave, and the bridge evolves
almost like a viscoplastic material. However, as the final stages
prior to pinching are approached, a long and slender neck is
formed, which connects the upper and the lower part of the
filament. This structure appeared before in experimental studies
dealing with yield stress materials,6,35 but the ideal viscoplastic
theory cannot explain its presence because it excludes elasticity.
Also, experiments36 show that the measured force on the upper
plate grows gradually in time which agrees with our numerical
results for elastoviscoplastic bridges. However, quantitative com-
parison between our numerical results with the experimental ones
cannot be made because the elastic modulus of the materials is
not reported. In these late stages, when the material evacuation
rate in the pinching point is accelerating, elastic stresses grow
abruptly, and oppose filament pinch-off. These stresses are
responsible also for creating the long neck found in simulations
and experiments of viscoelastic materials.

The effect of elasticity is manifested also in the shape of the
lower unyielded areas, which swell radially as opposed to the
viscoplastic materials. Here, the unyielded areas can deform
prior to yielding because they are assumed to behave as Neo-
Hookean materials. Thus, the permitted, small deformation of
the unyielded materials results in a more curved lower part of
the filament. Also, elasticity leads to shorter pinching times
compared with the case where it is not accounted for. The
shorter times are caused by the larger areas inside the material
that remain unyielded, which produce large differences in the
apparent viscosity between the yielded regions found in the
neck and the rest of the material. Eventually, the neck carries
the burden of deformation and shrinks faster to zero.

We conducted a detailed parametric study varying all the
dimensional parameters governing the dynamics of elasto-
viscoplastic filament stretching. The primary outcomes can be
summarized as follows:
� Increasing the elastic nature of the material results in a

longer neck, connecting the upper and lower parts of the
filament. Still, shorter pinching times are predicted. Larger
elasticity amplifies the growth of the elastic stresses when the
strain rate increases. At the same time, more material remains
unyielded because it can withstand greater deformation before
yielding. Thus, the smaller yielded areas found in the filament
lead to faster evacuation of the neck.
� Increasing material plasticity induces shorter filaments

with shorter pinching times. An elongated neck is formed in all
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cases. We expected the formation of the elongated neck for
large Ys leading to large yield strains based on the arguments of
Varchanis et al.18 and Kordalis et al.46 that large yield strains
result in a stronger elastic response of the material. However,
even for the smallest Ys (eY = 0.0175) case (Fig. 4(a)), elasticity is
unexpectedly still important, and a long neck appears. We can
conclude safely that the yield strain alone cannot indicate
whether elastoviscoplastic materials will show a viscoplastic
behavior or not in filament stretching dynamics. To strengthen
our argument, we simulated a case with smaller Ec, but
with the same yield strain (Fig. 7(a)) as before. For small Ec,
the viscoplastic nature of the material prevails and no neck is
formed.
� For large enough upper-plate velocities, the filament

develops two pinch-off points, despite the small value of
Oh�2. The large strain rates inside the elongated neck lead to
a considerable decrease in the viscoelastic stresses because the
SHB model predicts monotonic strain rate thinning. Thus,
inertia becomes dominant, and the filament breaks in two
points.

In a forthcoming study, we will examine the pinching
dynamics of elastoviscoplastic materials. We will investigate
whether similarity solutions exist in elastoviscoplastic materials,
as in Newtonian,67 viscoplastic,38,41 and viscoelastic31,68 materials.
Also, we will determine the effect of elasticity on the values of the
scaling exponents. Moreover, we will incorporate thixotropy. It has
been shown that the properties of yield stress materials, such as
the yield stress or the elastic modulus, can change and exhibit
a time-dependent behavior. We will explore this and employ
constitutive models proposed in ref. 69 and 70 that include this
mechanism.
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Soft Matter, 2015, 11, 5111–5121.
63 M. Yao and G. H. McKinley, J. Non-Newton. Fluid Mech.,

1998, 74, 47–88.
64 X. Zhang, O. Fadoul, E. Lorenceau and P. Coussot, Phys. Rev.

Lett., 2018, 120, 048001.
65 S. J. Haward and J. A. Odell, Rheol. Acta, 2004, 43, 350–363.
66 S. J. Haward and G. H. McKinley, Phys. Fluids, 2013, 25,

083104.
67 J. Eggers, Phys. Rev. Lett., 1993, 71, 3458–3460.
68 E. Turkoz, J. M. Lopez-Herrera, J. Eggers, C. B. Arnold and

L. Deike, J. Fluid Mech., 2018, 851, R2.
69 S. Varchanis, G. Makrigiorgos, P. Moschopoulos,

Y. Dimakopoulos and J. Tsamopoulos, J. Rheol., 2019, 63,
609–639.

70 Y. Wei, M. J. Solomon and R. G. Larson, J. Rheol., 2018, 62,
321–342.

Paper Soft Matter

O
pe

n 
A

cc
es

s 
A

rt
ic

le
. P

ub
lis

he
d 

on
 0

6 
Ju

ne
 2

02
3.

 D
ow

nl
oa

de
d 

on
 8

/1
/2

02
5 

1:
58

:1
8 

A
M

. 
 T

hi
s 

ar
tic

le
 is

 li
ce

ns
ed

 u
nd

er
 a

 C
re

at
iv

e 
C

om
m

on
s 

A
ttr

ib
ut

io
n 

3.
0 

U
np

or
te

d 
L

ic
en

ce
.

View Article Online

https://doi.org/10.1103/Phys&!QJ;Rev&QJ;Lett.127.088001
https://doi.org/10.1103/Phys&!QJ;Rev&QJ;Lett.127.088001
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
https://doi.org/10.1039/d3sm00143a



