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Modelling network formation in folded protein
hydrogels by cluster aggregation kinetics†

Kalila R Cook, a David Head *b and Lorna Dougan *ac

Globular folded protein-based hydrogels are becoming increasingly attractive due to their specific

biological functionality, as well as their responsiveness to stimuli. By modelling folded proteins as

colloids, there are rich opportunities to explore network formation mechanisms in protein hydrogels that

negate the need for computationally expensive simulations which capture the full complexity of

proteins. Here we present a kinetic lattice-based model which simulates the formation of irreversibly

chemically crosslinked, folded protein-based hydrogels. We identify the critical point of gel percolation,

explore the range of network regimes covering diffusion-limited to reaction-limited cluster aggregation

(DLCA and RLCA, respectively) network formation mechanisms and predict the final network structure,

fractal dimensions and final gel porosity. We reveal a crossover between DLCA and RLCA mechanisms

as a function of protein volume fraction and show how the final network structure is governed by the

structure at the percolation point, regardless of the broad variation of non-percolating cluster masses

observed across all systems. An analysis of the pore size distribution in the final network structures

reveals that, approaching RLCA, gels have larger maximal pores than the DLCA counterparts for both

volume fractions studied. This general kinetic model and the analysis tools generate predictions of

network structure and concurrent porosity over a broad range of experimentally controllable parameters

that are consistent with current expectations and understanding of experimental results.

1 Introduction

In the field of colloid and interface science, there is a wide array
of systems that are well approximated as colloidal when con-
sidering their properties and behaviours. These range from
functional colloids in foods which influence dispersibility,
stability and structure,1 the self-assembly of colloidal cube
superstructures,2 to biological systems such as complex inter-
actions of DNA–lipid complexes in gene delivery3–5 or model-
ling bacteria as colloids to understand their morphology,
behaviour6 and eventual formation of biofilms.7,8 To add to
these, folded globular proteins are sometimes also studied
within a colloidal framework,1,9–14 whereby basic definitions
of colloids, they fit the submicron size range (generally sub
10 nm radius, assumed spherical15,16) and can be electrostati-
cally stably dispersed in solution. Globular proteins such as
bovine serum albumin (BSA), for example, are often satisfacto-
rily modelled in solution as hard-sphere colloids, with added

potentials to account for complex attractive and repulsive
interactions between charged proteins such as electrostatics, van
der Waals, hydration and hydrophobic interactions.10,11,13,17–23

Whilst the colloidal approach to proteins is not new,
its application in the context of the growing field of folded
protein-based hydrogels is less explored. Indeed, proteins
have long been utilised as the constituent building block for
hydrogels,24,25 and in common with other systems, protein-
based systems employ two main types of crosslinking strategies:
chemical (irreversible or permanent) and physical (reversible).26

However, gelation is more often initiated by physical methods
of denaturation of the protein e.g. by changing the pH,27

temperature27–29 or electrostatics20 of the system, or rather
gelation progresses by chemical- or force-induced unfolding of
protein domains.30–33 While both partial and full denaturation-
induced protein hydrogel formation can provide a range of
mechanical and structural properties for hydrogels, this approach
can lead to a loss of native globular structure and subsequently a
loss of the inherent protein biological function.20,34,35 In terms of
modelling denaturation-induced protein hydrogel formation, the
potential for treating the systems colloidally may be lost, since new
factors can dominate the system kinetics such as increased
hydrodynamic radius and/or change of conformation to a non-
globular state, complex resultant excluded volume effects36 and
change in inter- and intramolecular interactions, perhaps leading
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to supramolecular aggregation and differences to the bulk proper-
ties of the systems.37 It is therefore recognised that there are
limitations to taking a colloidal view of these systems. However,
as covered comprehensively in the recent review article by
Stradner et al.,13 in the right circumstances, where (quasi)-
spherical globular proteins retain their tertiary conformation,38,39

this approach is appropriate and can bring valuable insight into
the mechanisms leading to observed structures and mechanics of
protein hydrogels across the lengthscales. Indeed, a growing field
has emerged which exploits folded globular proteins for the
creation of hydrogels, using irreversible crosslinking to control
network formation.40,41 For example, the maximum coordination
of folded proteins in gels (defined as the maximum allowed
number of chemical crosslinks per domain) can be controlled by
tuning the number of site-specific binding residues on the surface
of the proteins.42 Such systems lend themselves well to a colloid-
based modelling approach, and there is now a growing body
of literature on the assembly, rheology and structure of such
hydrogels.31,43–45

The benefit of adopting a coarse-grained representation of
proteins is that it allows for network formation mechanisms
to be examined over the full course of gelation, reducing
computationally expensive simulations of complex features of
proteins, such as their secondary structure and so called ‘mecha-
nical clamp motifs’ which confer their mechanical robustness,46

that may be less of interest at larger lengthscales.13 Furthermore,
regarding proteins as colloids grants the use of established models
of cluster aggregation,47–52 allowing for efforts to be focused on
achieving longer simulation timescales to understand how the
networks evolve and how this impacts the final network structure.
Indeed, there are a limited number of works that have used this
concept to model globular protein hydrogels in this way,42,53,54

where keeping the protein monomer unchanged during gelation
enables other important aspects of network formation to be
deconvoluted, such as the effect of different initial size or shape
of the monomer, extent of crosslinking and volume fraction.
However, it seems thus far, there remains a lack of understanding
of the dominant network formation mechanisms on the full
gelation profile of these gels. Recent work by Hanson and Dougan
delves into the structural characteristics obtained by simulating
the formation of folded globular protein-based networks with
variable parameters, such as crosslink length and number, while
keeping the shape of the protein building block unchanged.42

As the binding sites are located explicitly at the surface of each
protein, their local geometric organisation on the surface of the
protein is a parameter of importance. This work highlights the
significant control that can be achieved on the network architec-
ture without needing to substantially change the protein building
block (as is now more often reported30,31,39,43), including by
controlling the mechanical stability of the protein,32,39,55 the aspect
ratio of the building block,56 colloidal linker regions (e.g. length,
flexibility and concentration)42,57,58 and the crosslinking ability
of the protein.59 However, there are still limits to the reaction
timescales that can be explored simply by the computationally
intensive nature of including complex dynamic potentials and
interactions in these molecular dynamic simulations.

Here we present a kinetic lattice-based model which models
folded globular proteins as colloids and simulates their
irreversible chemical crosslinking into gels. By exploiting
the parallels between well-established colloidal models and
globular protein solutions, we have been able to strip back
non-essential complexities in the gelation model by a highly
coarse-grained approach, whilst qualitatively maintaining the
network formation region of the gelation profiles that we observe
in our real experimental systems.32,39,59 Our model is thus inter-
mediate between atomistic simulations and continuum-level finite
element descriptions.60 From the refined simplicity of our model,
we are able to hone in on the effect of changing experimentally
available variables of reaction probability (affiliated with reaction
rate) and protein volume fraction on the development of perma-
nent network architecture up until complete system crosslinking,
even approaching the reaction-limited regime where computa-
tional timescales are at their longest.

From this model, we are able to identify the critical point of
gel percolation and use this to construct a fitting for predicting
the final network structure. By our bespoke equation for fractal
fitting and measurements of final gel porosity, we show that
our predictions on the network structure in the final state
are accurate. Additionally, we demonstrate how the network
structure at the percolation point governs the final network
architecture,61 further showing the predictive power of our
model from early on in the gelation process.

2 Methods
2.1 Modelling cluster–cluster aggregation

2.1.1 The cluster–cluster aggregation model. We have desig-
ned a simple 3D kinetic model for colloidal monomer aggregation
into gels, where each cubic monomer represents a folded globular
protein. The key processes to consider are the random diffusion of
monomers, their collisions and potential crosslinking (aggregation)
into clusters and the subsequent, iterative diffusion and aggre-
gation of these clusters. In order to achieve this, we considered
discrete-time stochastic processes, allowing for complete system
gelation within short computational timescales. Here, we define
gelation as the point at which all monomers and clusters of
monomers are crosslinked together into one final cluster.

The initial parameters are N, the number of monomers in a
cubic, lattice-based simulation box of size L3 with periodic
boundary conditions (PBCs) and cells in discrete units of
monomer diameters. The monomer volume fraction of the
simulation box, f, is set initially by choosing N for a given L,
where f = N/L3. Since L is fixed at 64 for all simulations, N must
differ to give the desired value of f (e.g. a 4% monomer volume
fraction requires N = 10 486 for L fixed at 64). We can confirm
that this chosen L is not subject to finite size effects, and
this data can be found in Fig. S3 in ESI.† R is chosen as
the probability with which adjacent monomers crosslink, ran-
ging from 100% (diffusion-limited cluster aggregation (DLCA))
to 0.2% (approaching reaction-limited cluster aggregation
(RLCA)).
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Initialisation of the system proceeds by trialing random 3D
position coordinates for the N monomers. So long as mono-
mers do not overlap in space, those monomer positions are
‘allowed’. Where any monomer overlaps with another in space,
that position is not allowed, and the position-assigning loop is
trialed again. This loop is repeated until all N monomers have
been situated in the simulation box. At this point, a list of
clusters is initialised with N clusters, each of size one, where
size is measured in number of monomers that form a given
cluster.

2.1.2 Monomer diffusion and cluster aggregation. After
initialisation, the simulation begins with an attempt to move
all monomers (or clusters of size one monomer) by one unit cell
in the first time step. The probability with which a randomly
selected cluster, i, made up of Mi monomers, is successfully
moved in the time step is given as62,63

Pi = M�ai ,

where a = 1/df and df is the fractal dimension of the final gel
with an initial guess of 2.4. This has the overall effect of slowing
the motion of larger clusters over the course of the simulation
(noting also that the probability is directly proportional to the
translational diffusion coefficient of the cluster, D(Mi)

62,63). If a
cluster can be successfully moved based on this probability
(very likely in the initial case of monomers), its direction of
motion is randomly assigned and can be in one of six direc-
tions in the 3D cubic lattice. If the cluster can then be moved
without overlapping onto another, it will finally be moved one
lattice space.

Once an attempt has been made to move every cluster in that
time step, the program checks whether any clusters are adja-
cent, i.e. whether they share a side in the 3D system lattice. Any
clusters that are adjacent will aggregate (merge) with a ‘reaction
probability’, R, as set initially by the user. The simulation time
step then increases by one, and the cluster diffusion and
aggregation process is repeated until the final time step is
reached, where all monomers are incorporated into the perco-
lating cluster.

2.2 Outputs

2.2.1 Percolation point. Percolation (or gelation) can be
defined as the point at which a system-spanning cluster
emerges, marking a sol-gel transition in colloidal systems.64–68

Since this model has periodic boundary conditions, the percola-
tion point here is specifically defined as when a cluster is first large
enough that it traverses the size of the system box in all three
dimensions. Clusters are monitored for percolation at every time
step. Assuming only one cluster can percolate at a time, the size of
the percolating cluster at the critical percolation time is captured
and its growth monitored until it reaches maximal size (fully
‘crosslinked’) by the end of the simulation. Example simulation
snapshots of this course of gelation are presented in Fig. 1a. There
may be a lag time at the beginning of the simulation where the
percolating cluster has no size since it has not formed yet. This
elapsed time is annotated as the ‘percolation time, t’ on the
example simulated gel curve of Fig. 1b, starting at (1) time zero

and ending at (2) the critical percolation point, denoting the
emergence of a non-zero-sized percolation cluster. By (3), the
system is fully crosslinked. This simulated gel curve is also
presented on a log time axis in ESI,† Fig. S1.

By changing the initial conditions variables of f and R, the
progression of gelation and the final gel network structure can
be altered, as shown in Fig. 2a. Fig. 2b shows how the percolation
time and subsequent time for growth of the percolation cluster to a
fully crosslinked network are extended as f is decreased for each
system but R is fixed at 100%. Fig. 2c shows how the percolation
time and further growth are extended when f is instead fixed at
4%, but R is decreased from 100 to 0.2%. Fig. 2b and c are also
presented on log time axes in ESI,† Fig. S1.

2.2.2 Fractal dimensions from box counting. One way to
define the fractal dimension of the system as a whole is using
the Hausdorff–Besicovitch, or box-covering, dimension.69,70

To obtain this dimension at any point in the simulation,
we have written and implemented an additional algorithm to
pave the 3D system with measuring cubes of unit size, r. Out of
the total cubes in the system, those that contain at least any
part of a cluster or a monomer are counted as ‘occupied’, and
this occupancy number, O(r), is recorded. Classically, a ‘geo-
metric step’ box-covering algorithm71,72 is used that begins
with the largest 3D box size of r = system size (cubic number
in units of number of boxes), records the associated O(r) and
then iterates this loop by repeatedly halving the size of r until
the minimum box size is reached (r = 1). Thus any invariance in
the cluster structure across the lengthscales of r, otherwise
known as fractality, can be captured and quantified. In the
original box-covering method, the Hausdorff–Besicovitch frac-
tal dimension, df, can then be obtained simply as the straight-
line gradient of the logs of these measured quantities as such,

df ¼ �
logðOðrÞÞ
logðrÞ :

Halving the box-covering box size in this method leads to
very few data points available for fitting at low r for small
system sizes. Low r data provide the fine-scale fractal dimen-
sion of the network structure (df o 3), whereas it would be
expected that high r data would contribute more to a higher
fractal dimension where the lengthscale becomes so coarse that
the final cluster appears as a homogeneous solid (df - 3).73

Therefore, in order to reliably capture the fine-scale fractal
dimension and the crossover between lengthscales, box-
counting here was instead adapted to capture all box sizes
between r = 1 and the system size, providing a full set of data
points for any system size. Since some of these box sizes lead
to partial boxes near the system boundaries, these partial
boxes are fractionally weighted according to the method of
So, So and Jin.71

Having a uniform sampling of data points over the full
available range of r highlights a curve in the data and the need
for a more advanced fitting function than the straight-line
extraction of the Hausdorff–Besicovitch fractal dimension.
Therefore, we have constructed the following equation that

Soft Matter Paper

O
pe

n 
A

cc
es

s 
A

rt
ic

le
. P

ub
lis

he
d 

on
 2

0 
M

ar
ch

 2
02

3.
 D

ow
nl

oa
de

d 
on

 1
0/

2/
20

24
 9

:2
8:

32
 P

M
. 

 T
hi

s 
ar

tic
le

 is
 li

ce
ns

ed
 u

nd
er

 a
 C

re
at

iv
e 

C
om

m
on

s 
A

ttr
ib

ut
io

n 
3.

0 
U

np
or

te
d 

L
ic

en
ce

.
View Article Online

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
https://doi.org/10.1039/d3sm00111c


This journal is © The Royal Society of Chemistry 2023 Soft Matter, 2023, 19, 2780–2791 |  2783

better fits the data, from which the fine-scale fractal dimension,
df, can be obtained as a fitting parameter:

OðrÞ ¼

L

r0

� �3

þ L

r0

� �df

r

r0

� �3
aþ r

r0

� �df
a

; (1)

where L is the length of the 3D system size, r0 is the lengthscale
in r at which there is a transition to the fine scale and fractal
characteristics emerge and a is the non-zero cross-over width of
this transition, capturing curvature in the data. Plotting logs of O(r)
against r as before and fitting with the log form of eqn (1) allows
for df to be extracted. This two-regime fitting form robustly
interpolates between fractal and non-fractal limits, and examples
of resultant fitted box-covering plots for different volume fraction
and reaction probability conditions are given in ESI,† Fig. S4.

2.2.3 Pore size distribution. The configuration of voids
within the network can be analysed by computational algorithms
employing varying degrees of sophistication depending on the
level of characterisation required, potentially including e.g. the
connectivity between large void spaces or ‘pores,’ and the dia-
meters of ‘throats’ between them.74 A more straightforward first

analysis, sufficient for our purposes, is a basic measure of the
distribution of pore sizes, calculated as follows. For a given
network configuration, L3 spherical pores are placed with centres
on a cubic L� L� L lattice that coincides with the simulation grid.
Each pore diameter is then increased from zero until the pore first
touches any monomer in the network. Pores with diameters less
than the monomer diameter are removed at this stage. All
remaining pores are sorted in order of decreasing diameter and
overlapping pores are removed, starting from the smallest, and
with the smallest of overlapping pairs removed. This generates a
unique distribution of the largest non-overlapping pores, with
varying diameters that can be gathered into the pore size distribu-
tion. The simplicity of this method permits rapid evaluation of a
measure of pore size distribution without requiring significant
implementation or simulation time, and produces a representative
estimate of large pores within the network.

3 Results and discussion
3.1 Network percolation

Colloidal aggregation simulations were run to completion (fully
crosslinked) at monomer volume fractions of 3, 4, 5, 6 and 8%

Fig. 1 (a) Simulation snapshots of a 4% volume fraction system with a monomer–monomer reaction probability of 100%, with the largest cluster at that
point in time presented in green and non-percolating intermediate clusters and monomers presented as black nets. (1) The initial state of randomly
distributed monomers; (2) the critical percolation point at which a cluster has grown large enough that it first spans the three dimensions of the
simulation box; (3) the final, fully crosslinked gel state, determined when the normalised number of monomers in the percolation cluster equals 1.0 (grey
horizontal dashed line). (b) An example raw data curve of change in proportion of monomers in the percolating cluster over time, averaged over 10
simulation runs of a 4% volume fraction system with a monomer–monomer reaction probability of 100%. The time steps at which the simulation
snapshots occur from (a) are denoted, where the elapsed time between (1) and (2), before a non-zero sized percolation cluster first forms, is called the
‘percolation time, t’.
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(representative of experimental folded protein-based hydrogel
volume fractions32,39,59) and each at a wide range of monomer–
monomer reaction probabilities between 0.2 and 100%. From
these simulations, the time at the precise point of percolation
(as by our definition), t, was captured and plotted against
reaction probability, R, for each monomer volume fraction, f.
Example snapshots of some of these simulations at the perco-
lation point are presented in Fig. 3a with the percolating cluster
shown in green and the remaining non-percolating monomers
and clusters presented as black ‘wireframes’. Fig. 3b shows the
percolation time data on a natural log plot, where each data
point represents an average of ten simulation runs of a gelling
system with particular initial parameters of f and R. The first
trend to note is that the onset of percolation happens sooner
with increasing volume fraction across all reaction probabilities
(the data sets shift downwards with increasing volume fraction).
This is as predicted, since a higher volume fraction of monomers
should lead to a higher frequency of monomer–monomer
interactions, leading to faster percolation of the network.

The data sets are fitted with a reciprocal function in its
log form,

ln(t) = ln(A + BR) � ln(R), (2)

where A and B are constants that relate to the reaction and
diffusion limited regimes, respectively. Using this fitting function,

the limiting reaction cases can be realised. As R - 1 (100%),
eqn (2) becomes ln(t) B ln(A + B), so t is constant and no longer
depends on R, as is expected in the DLCA regime. On the other
hand, as R - 0 (0%), eqn (2) becomes ln(t) B ln(A)� ln(R), which,
comparing to the equation of a straight line, gives an inverse
dependence of t on R, as is expected in the RLCA regime (i.e. the
network formation time is entirely controlled by the reaction
probability).

This form of reciprocal fitting, with an inverse unitary power
law scaling between t and R, follows that observed in analogous
experimental folded protein gel systems, where photochemical
crosslinking of bovine serum albumin (BSA) protein units for a
volume fraction of 7.5% yielded a power law fit of gel time with
reaction rate of �1.08 � 0.21.59 Our fitting builds on this
experimental fitting with the inclusion of the B constant term
which accurately models the high R portion of the data sets,
up to 100% reaction probability – beyond that obtained experi-

mentally. Additionally, by taking the criterion that
A

R
4B from

eqn (2), we can obtain a crossover between cluster aggregation

mechanisms as RCO ¼
A

B
. This crossover region is marked for

each volume fraction in Fig. 3b. The dashed black line through
these points is drawn as a guide to the eye, separating the
graph into a RLCA-driven regime to the left of it and DLCA to
the right.

Fig. 2 (a) Simulation snapshots of final, fully crosslinked gels formed from different initial conditions, where f is the monomer volume fraction and R is
the monomer–monomer reaction probability. (b) Change in proportion of monomers in the percolating cluster over time for monomer volume fractions
ranging from 3 to 8%, all for a monomer–monomer reaction probability of 100%. (c) Change in proportion of monomers in the percolating cluster over
time for 4% monomer volume fraction systems ranging from 0.2 to 100% monomer–monomer reaction probabilities. Curves for reaction probabilities
between 15 and 100% are not plotted for clarity since they begin to overlap.
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Fig. 3c more clearly shows the reaction probabilities at
which the crossover between cluster aggregation regimes is
found by fitting eqn (2) for each volume fraction. In its log
form, for this range of volume fractions, we can fit a straight
line with a unitary power law of 1.0 � 0.1. Here we see that
lower volume fractions of monomers exhibit faster turn off
from reaction- to diffusion-limited cluster aggregation i.e. the
transition happens at lower reaction probabilities. This trend is
to be expected, since at lower volume fractions, monomers are
required to diffuse further before meeting another monomer
and potentially aggregating, pushing the system towards the
DLCA regime. Mirroring Fig. 3b, we can again see that the
graph can be separated into regions, where above the dashed
trend line, one would expect gelation mechanisms to happen in
the DLCA regime and below it in the RLCA regime.

As an additional point of interest, another useful quantity
for understanding the network structure at the percolation
point is the cluster size distribution. We observe that this
depends on the reaction probability and present an exemplar
cumulative frequency plot of the cluster size distribution for a
volume fraction of 6% and reaction probabilities of 100 and
0.2% in ESI,† Fig. S2. We find that a power law can be fitted to
the mid-range cluster sizes of the R = 100% data, though further
work would be required to systematically quantify changes to
the cluster size distribution and its scaling.

To more closely examine the effect of monomer volume
fraction on the percolation time, we next plotted this for each
reaction probability in Fig. 4a. For this range of volume frac-
tions, each reaction probability clearly exhibits a strong inverse
linear trend in the percolation times with volume fraction. This
is to be expected, with higher volume fractions of monomers
increasing the frequency of interactions by proximity, leading
to faster percolation of a network across the system box.
We note also that as the reaction probability is increased, the
plots shift towards faster percolation times, as expected, but
also begin to converge, almost overlapping onto each other.
This observation is indicative of reaction probabilities that are
sufficiently high that the gelling systems are pushed into the
DLCA regime – the percolation times have little dependence on
the monomer–monomer reaction probability.49,75,76

From these results, we take the gradients for each reaction
probability to analyse the rate of change in percolation times
with monomer volume fraction in Fig. 4b. Interestingly, we see
that this rate of decrease in percolation time with volume
fraction increases with reaction probabilities (the gradients
get steeper). This relationship itself fits an inverse power law,
with an extracted exponent of 0.078 � 0.004. We currently
have no theoretical basis for this exponent and highlight this
observation as a potential goal for future theory to derive and
explain.

Fig. 3 (a) Simulation snapshots of gelling systems at the percolation point formed from different initial conditions, where f is the monomer volume
fraction and R is the monomer–monomer reaction probability. The percolation cluster presented in green and non-percolating clusters/monomers
presented as black ‘wireframes’. (b) Natural log plot of percolation time, t, versus monomer–monomer reaction probability, R, between 0.2 and 100% for
f between 3 and 8%. Each point is an average of ten simulation runs. The crossover between reaction regimes, RCO, for each f is denoted by open
diamond symbols. The dashed black line is a guide to the eye as a fitting through these points. (c) The reaction regime crossover points taken from (b)
plotted as a function of R versus f and fitted with a straight line. In the log form of this graph, the straight line fit yields a unitary power law of 1.0 � 0.1.
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3.2 Fractal dimensions

For each aggregation simulation run in Section 3.1, box-
covering data of r versus O(r) was collected at the following
three system structures and time points: the percolation cluster
at the percolation point; the full system (percolation cluster and
intermediate clusters) at the percolation point; and the whole
system at the end, fully crosslinked state. From these data,
extracted values for df were then plotted against monomer
volume fraction for extreme values of R, 0.2% and 100%, to
quantify how the network structure differs in the RLCA and
DLCA regimes, respectively. Additionally, df was plotted for
R = 33% to see if, as Fig. 3b (and c) predicts, the system has
entered the DLCA regime for all volume fractions and there-
fore if the network structure starts to correlate with that at
R = 100%. Each graph in Fig. 5 presents all these reaction
probability results for (a) the percolation cluster, (b) the whole
system at the percolation point and (c) the whole system on
the final fully crosslinked states, alongside example simula-
tion snapshots of the network structure for a system with
f = 3% and R = 33%.

Looking at values for df on the whole system at the percola-
tion point and at the end state in Fig. 5b and c, there is clearly a
decrease with volume fraction in all cases. In previous studies,
it is often suggested that, as very high monomer volume
fractions are reached, the system becomes more densely
packed, and so it is expected that the fractal dimension of
the system would increase towards three.77–80 We believe that
our opposite observation is due to our two-regime fit and fractal
dimension extraction method of the box-covering data. As the
volume fraction is increased, we observe that the crossover
from the fine-scale fractal region of the data occurs at smaller
lengthscales of r (see ESI†). As a result, the large-r regime,

where O(r) scales as r�3, increasingly moves to lower r as f
increases, eventually covering the full range of r. Therefore the
expected dimension of three is recovered for high volume
fractions, not by a smooth increase in df, but rather by the
crossover length moving to zero r and the fractal range being
eliminated from the data.

We consider the varied state of the systems at the percola-
tion point in Fig. 5b and c. At the beginning of all simulations,
the system begins with the smallest objects being dispersed
point particles (monomers) with fractal dimensions of zero.
As the monomers aggregate into clusters over time, the fractal
dimension of the system increases from zero. For systems at the
higher monomer volume fractions, the critical percolation
point is reached faster, and thus the measured df at this point
will be lower. Further to this, we note that there is a sizeable
contribution from smaller, non-percolating clusters at the
percolation point which will also act to lower the overall fractal
dimension of the whole system. For the lower monomer volume
fractions, the system takes longer to percolate, by which point
there are fewer of these non-percolating clusters, and thus the
fractal dimension of the system is higher than that at the same
monomer–monomer reaction probability but higher volume
fractions. We also recognise our absolute values of df differ
from those in the literature for similar models that were
calculated without counting partial boxes as here, and fitted
to using a different functional form. However, our discussion is
based on observed trends rather than absolute values, and we
expect these trends to hold independent of the measurement
protocol.

Considering fractal dimensions for just the percolation
cluster in Fig. 5a, there is no clear trend with monomer volume
fraction for any reaction probability. However, it may be noted

Fig. 4 (a) A natural log plot of percolation time, t, versus monomer volume fraction, f, between 3 and 8% for a range of monomer–monomer reaction
probabilities, R, between 0.2 and 100%. Each point is an average of ten simulation runs. The inset simulation snapshots next to their respective data points
(f = 4%, R = 0.2% top and f = 4%, R = 100% bottom) show how the network structure looks quite different at the percolation point for extreme reaction
probabilities. (b) The absolute values for the extracted straight-line gradients from (a) are plotted against ln(R), revealing a weak inverse power law
relationship.
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that overall, the values for df are higher than those observed for
the whole system plots of Fig. 5b and c. If indeed, small clusters
are responsible for decreasing the overall fractal dimensions
observed when the whole system is considered, this may explain
this observation.

Comparing values for df on the whole system at the percola-
tion point and at the end state in Fig. 5b and c, it is clear to see
that the RLCA regime of R = 0.2% yields higher fractal dimen-
sions for all volume fractions, as would be expected for the
dense clustering in RLCA.49,76,81,82 Quantifying this on the end
states, we see that at 3% volume fraction, this increase in fractal
dimension from R = 100% to R = 0.2% is measured as 0.45 �
0.01, and this increase is marginally augmented as the volume
fractions increase up to 0.53 � 0.02 at 8% volume fraction.
Further to this, we recognise the closeness in values for df

between R = 33 and 100% in support of our prediction that
R = 33% systems enter the DLCA regime and thus show similar
structural characteristics to R = 100% systems.

Lastly, we recognise how similar the fractal dimensions are
for all volume fractions and reaction probabilities when look-
ing at the whole system at the percolation point and on the fully
crosslinked state in Fig. 5b and c. Albeit the values being
slightly lower at the percolation point, due to the contribution
of non-percolating clusters, this trend indicates how the net-
work structure at the percolation point largely governs the final
network structure.83,84 This is regardless of the widely varying
non-percolating cluster mass that is yet to add to the

percolation cluster and is dependent on the monomer reaction
probability and volume fraction.

3.3 Pore sizes in final network structure

Building on the results thus far, Fig. 6 shows examples of
largest pore distributions of (a) final-state 4% and (c) 8%
volume fraction systems for an RLCA and DLCA system at
R = 0.2% (left snapshots) and R = 33% (right snapshots),
respectively. It can be seen immediately in (a) that the 0.2%
RLCA gels have larger maximal pores than the DLCA counter-
parts for both volume fractions because of the dense clustering
and corresponding vast inter-cluster spaces. Fig. 6b and d
presents histograms of the largest pore size distributions for
the 4% and 8% volume fraction systems, respectively. These
clearly show how the DLCA regime reaction probability of 33%
yields a distribution of largest pores at smaller radii than at
RLCA at R = 0.2% where the distribution widens and shifts to
larger radii. We note also that pore distributions for R = 100%
are very similar to those at R = 33% for both volume fractions
(refer to Fig. S1, ESI†), as we anticipated from the evidence thus
far that monomer–monomer reaction probabilities between
these values should produce gel structures in the DLCA regime.
Moreover, it is clear that as the volume fraction is increased
between Fig. 6b and d, the largest pore size distributions are
shifted to smaller radii for both reaction probabilities, though
the cumulative count of these distributions are increased
around ten-fold. This is a logical observation, since increased

Fig. 5 Graphs of fractal dimensions, df, averaged over ten simulation runs at volume fractions, f, between 3 and 8% at reaction probabilities, R = 0.2%
(grey), 33% (red) and 100% (blue). R = 0.2% is representative of an RLCA system, while R = 33 and 100% are representative of DLCA systems. Each plot
presents these values at (a) the percolation cluster at the percolation point, (b) the whole system at the percolation point and (c) the whole system at the
end, fully crosslinked state. Example simulation snapshots for a system with initial parameters of f = 3% and R = 33% are presented above each graph to
show how the systems can look different at these different time points and system structures.
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monomer volume fractions would reduce the remaining inter-
cluster space.

4 Conclusions

Colloidal aggregation simulations were completed for a model
of folded protein hydrogels at monomer volume fractions, f,
of 3, 4, 5, 6 and 8% and each at a wide range of monomer–
monomer reaction probabilities, R, between 0.2 and 100%.
From these simulations, we identify the critical point of gel
percolation, explore the range of network regimes covering
diffusion-limited to reaction-limited cluster aggregation net-
work formation mechanisms and predict the final network
structure, fractal dimensions and final gel porosity. The perco-
lation time, t, was captured for each R and f. We reveal two
distinct regions which are described by DLCA and RLCA and a
crossover region between these cluster aggregation mechan-
isms as a function of f. For each R, a clear inverse relation is
observed in the percolation times with f. We explore the
structure of the protein networks in more detail by examining
the fractal dimensions of the percolation cluster, the whole
system at the percolation point and the whole system on the
final fully crosslinked states and show how the final network
structure is governed by the structure at the percolation point,
regardless of the broad variation of non-percolating cluster

masses observed across all systems. An analysis of the pore
size distribution in the final network structures provides details
of largest pore distributions at different reaction probabilities
representative of RLCA and DLCA systems, revealing the RLCA
gels have larger maximal pores than the DLCA counterparts for
both volume fractions studied.

This approach is important because it allows us to explore
the wide design space of network formation in protein hydro-
gels. Such an approach, to explore reaction- and diffusion-
limited cluster aggregation, has proved successful in other
biological systems, including modelling bacteria to understand
their morphology and behaviour and DNA–lipid complexes in
gene delivery. This study on folded protein hydrogels sets the
stage for future studies to exploit cluster aggregation to create
more complex network architectures, including patterned
systems,85–87 which might be explored in applications.

Whilst there is already some understanding of the effect of
reaction rate and colloidal volume fraction on porosity of
gels,88–91 what we present here is a general kinetic model and
analysis tools which allow for accurate prediction of network
structure and concurrent porosity from the initial selection of
system parameters. Gel structures which yield percolating pore
networks (e.g. low monomer volume fractions)90 are important
for applications where diffusion through the gel is important,
such as in drug delivery and nutrient accessibility for in cell-
seeded gels.40,92–98 Pore size and distribution are important

Fig. 6 Snapshots of some fully crosslinked states for (a) 4% and (c) 8% volume fraction (f) gels with monomer–monomer reaction probabilities, R, of
0.2% (left) and 33% (right). Protein monomers are represented as green cubes and pores are represented in blue. Alongside these are the respective
histograms of cumulative count of pore size distributions for 10 final states of crosslinked gels at volume fractions of (b) 4% and (d) 8%.
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considerations in tissue engineering, for example where certain
cell types need pores of particular sizes for effective growth and
tissue regeneration.99,100 Being able to control and reproduce
the properties of porous gel structure is important for regulating
seeded cell properties and behaviour, including proliferation,
migration, differentiation and phenotypic variation.92,93,101 The
ability of our gelation model analyses to predict network structure
and pore size distributions from the outset has apparent potential
in designing and tuning gel properties for such applications.
Furthermore, with additional parameterisation, we expect this
model can be extended to describe a broader range of protein-
based hydrogels.
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