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Twist and measure: characterizing the effective
radius of strings and bundles under
twisting contraction

Jesse M. Hanlan, *a Gabrielle E. Davisab and Douglas J. Durian a

We test the standard model for the length contraction of a bundle of strings under twist, and find

deviation that is significantly greater than typically appreciated and that has a different nature at medium

and large twist angles. By including volume conservation, we achieve better fits to data for single-,

double-, and triple-stranded bundles of nylon monofilament as an ideal test case. This gives a well-

defined procedure for extracting an effective twist radius that characterizes contraction behavior. While

our approach accounts for the observed faster-than-expected contraction up to medium twist angles,

we also find that the contraction is nevertheless slower than expected at large twist angles for both

nylon monofilament bundles and several other string types. The size of this effect varies with the

individual-string braid structure and with the number of strings in the bundle. We speculate that it may

be related to elastic deformation within the material. However, our first modeling attempt does not fully

capture the observed behavior.

1 Introduction

Taut strings are useful mechanical devices for conveying and
redirecting forces in a wide range of settings, including familiar
machines such as pulleys or capstans. Behavior under twist is
also important in regards to the mechanics of elastic rods and
bundles,1–5 the friction forces that hold yarn together,6–8 and
also the replication, repair, and recombination of DNA.9,10

More specific to this work, pairs and bundles of strings are
also useful based on their contraction and the related ability to
transfer torque under twist. For twisted-string actuators,11–16 as
well as for ‘‘button-on-string’’ or ‘‘buzzer’’ toys,17–19 it is usually
accepted that a straight length contracts with twist according to

L ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
L0

2 � ðryÞ2
q

; (1)

where L0 is the initial length, r is an effective twist radius of the
string or bundle, and y is the axial twist angle of one end with
respect to the other. This may be rationalized via Fig. 1a, where
a helix representing the twisted structure of a string or bundle
is mentally unrolled, forming a right triangle with base L equal
to the contracted length, height ry equal to the rolling distance,
and hypotenuse L0 equal to the initial uncontracted length
given by the arclength of the helix – assumed to be inextensible.

However, fits of eqn (1) to data, where r and/or L0 are adjusted,
are felt to be satisfactory11–13,15,20 even though systematic
deviations are apparent and unaccounted for. Furthermore,
the fitted value of r in terms of geometrical parameters of the

Fig. 1 (a) Schematic depiction of the standard model for the length
contraction of a bundle of strings, eqn (1). Under twist, a straight line
along an imagined cylinder of radius r transforms into a helix, shown here
in green. Mentally unrolling the helix through the twist angle y forms a right
triangle with the hypotenuse equal to the uncontracted length L0, base
equal to the contracted length L, and height ry. The helix angle is given by
cos a = L/L0. For a twisted pair, the helix is usually assumed to represent the
contact line between the two strings.11 (b) Data for contracted length L
versus number of full twists n = y/2p for single-, double-, triple-strands of
0.41 mm diameter nylon monofilament string. Measurement uncertainties
are smaller than the markers, and thus not shown. The dotted curves
represent fits to eqn (1) for small angles. Note that the leading deviation,
first apparent at medium angles, is faster-than-expected contraction.
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system remains unclear. In part this is because fitted values
depend on the range of the data, owing to the systematic
deviation. Compounding difficulties are that real strings are
somewhat extensible, have a braided or core–shell structure, or
are even floofy like yarn,21 so that the geometrical radius is ill-
defined and exhibits complex compaction and deformation
during twist.

Specific values of reported, or assumed, effective twist radii
relating to eqn (1) are as follows. For the case of two strands
twisted together, many authors agree with the proposal by
Shoham11 that the effective twist radius equals the geometrical
radius of a single strand.12,13,15–18,20 For multi-strand bundles,
Guzek et al.12 suggest that the effective radius should be half
the distance between the outermost strands, but note that
many potential packings are possible for a given number of
strands. Palli et al.13 propose instead that only the outermost
strands contribute to twisting, and the effective radius should
be the distance from the center of the packing to the center of
outermost strand. Tavakoli et al.16 suggest that as new strands
are added to a bundle, they attempt to symmetrically pair on
opposite sides of the packing. This gives a unique packing
configuration for any given number of strands, whose effective
twist radius they propose as equal to the radius of the smallest
circle that circumscribes the whole packing. Gaponov et al.14

take a different approach, noting that the radius of a packing
could change under twist and that r(y) be defined from eqn (1)

as rðyÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
L2 � L0

2ð Þ=y2
p

. Notably, their paper is the only one
we are aware of that reports the effective twist radius of a single
strand: r01 E 0.7rE where rE is the Euclidean geometrical
radius.

In this paper, we measure contraction behavior for several
different kinds of strings and for different numbers of strands
per bundle. With this data, we highlight the extent to which
eqn (1) holds and we incorporate two physical effects to
improve agreement with observations. The first is to invoke
volume conservation, which accounts for an initially faster-
than-expected contraction. The resulting increase of bundle
radius with twist angle improves the range over which eqn (1)
holds but goes against a slower-than-expected contraction at
larger twist angles. To model this, we incorporate string exten-
sion during twist, as set by the geometry and spring constant of
the bundle. This improves agreement, but does not fully
account for the slower-than-expected contraction under large
twist. Besides improving upon eqn (1) and highlighting the
need for even further modeling, our work also provides gui-
dance on how to treat experimental data for the purpose of
characterizing string and bundle behavior in terms of an
effective twist radius. We finish by attempting to relate the
twist radii to bundle geometry.

2 Experimental procedures

To critically examine the validity of eqn (1) with constant
twist radius, r = r0, we begin with single-, double- and triple-
stranded bundles of nylon monofilament. This choice avoids

complications due to the internal braid structure of woven
strings. In particular, we used roughly 40 cm length bundles,
with each strand having a Euclidean geometric radius of rE =
0.205 mm. The top of the bundle is tied around a horizontal
post and constant tension is maintained by tying the bottom
end to a 1 kg hanging mass. Nearly the same results were found
for a range of masses, and 1 kg was safely within the tolerance
of many different types of string. A horizontal wooden dowel is
inserted into the bottom knot to hold the string at fixed angular
displacement against two vertical posts. The string is then
systematically twisted, being careful to maintain constant ten-
sion as set by the hanging mass, and its length found with a
tape measure versus increasing twist until the string either
approaches supercoiling or snaps. Uncertainty in each length
measurement is 0.3 mm; all error bars are smaller than the
markers on our plots, and thus not shown. For nylon, by
contrast with the braided strings later in the paper, the material
is sufficiently stiff that the cross section of each string in the
bundle appears by eye to remain circular, even in the single-
stranded case. Images for the double-stranded case are shown
later, in Fig. 3a.

Contraction data for all three bundles are plotted in Fig. 1b.
We see that eqn (1) fits the initial contraction quite well, by
adjusting L0 and r0, if a small-enough range of twist angles is
selected; however, it noticeably deviates at larger twist angles.
Better average agreement may be achieved by fitting over the
whole range, as in prior works, but this gives noticeable
systematic deviation across the whole range. And even more
unfortunately, it gives fitting results for r0 that depend on
fitting range. Thus, eqn (1) with constant effective twist radius
r = r0 can only be trusted for small twist angles, for contractions
less than about 5%.

To further highlight the deviation revealed in Fig. 1b
between eqn (1) with r = r0 and actual behavior, we replot the
data as L2 vs. (y/2p)2, since the base expectation is then a
straight line of form

L2 ¼ L0
2 1� r0y

L0

� �2
" #

: (2)

As seen in Fig. 2a, the data are linear only initially. At medium
and large twist angles they deviate as per Fig. 1b, but now more
obviously. This makes it easier to choose the fitting range for
the initial linear regime, where the slope gives a well-defined
effective radius r0 for the bundle of strings. Fit values for the
effective radii are collected and discussed in a later section
along with results for other string materials. For the three cases
in Fig. 2, at medium twist angles the data all fall below the
prediction, i.e. the contraction becomes faster than expected. At
even larger twist angles, for contractions greater than about
20%, the data generally turn upwards and the contraction
becomes slower than expected. This same behavior can be seen
in Fig. 2b where the data and curves are plotted as (L2 � L0

2)/y2,
which equals the square of the angle-dependent effective twist
radius defined by solving eqn (1) for r. Note that experimental
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results for r(y) equal r0 at y = 0, increase with y at small angles,
and then decrease at large angles.

3 Models and experimental tests

We hypothesize that the initial deviation from constant-r0

behavior, where the contraction is faster than expected such
that r(y) initially increases with y, is due to neglect of volume
conservation. Indeed, a homogeneous solid cylindrical string
like nylon monofilament must thicken if it remains cylindrical
under contraction. We might expect this to hold for bundles
too, as has been remarked upon previously.15 To account for
the conservation of string volume V, we allow the radius r to
increase with contraction according to V = pr2L = pr0

2L0.
Isolating r and substituting into eqn (2) gives

L

L0

� �2

¼ 1� r0yð Þ2

LL0
: (3)

This cubic equation can be solved exactly for L; however,
the result is a bit cumbersome and in principle cannot capture
the slower-than-expected contraction at large twist angles.

Therefore, it suffices to consider the expansion of the exact
solution:

L

L0

� �2

¼ 1� r0y
L0

� �2

�1
2

r0y
L0

� �4

�5
8

r0y
L0

� �6

� r0y
L0

� �8

� . . . (4)

This function is shown by the solid curves in Fig. 2, using the
same r0 and L0 values as before. These curves match the initial
deviation from constant-r0 contraction quite well, with no addi-
tional parameters. This is also seen in Fig. 2b, where the y-axis
represents r2(y), which increases from r0

2 = r(0)2 more rapidly for
the thicker bundles since all lengths are almost the same. It can
also be seen in Fig. 3b, where (L/L0)2 data are plotted versus (r0y)2/
LL0 and found to hug y = 1 �x to larger twist angles, no longer
falling below the line. The improved agreement up to intermedi-
ate twist angles supports our hypothesis that volume conservation
is responsible for the leading correction to eqn (1) with constant
r = r0. We can thus recommend that eqn (4) be used to fit for the
value of r0, in order to characterize the contraction behavior of
unknown bundles, because it matches data over a substantially
larger range.

At larger twist angles, the contraction is generally slower
than expected. We hypothesize that this deviation may be partly
due to the elastic extensibility of the strings, which we model as
follows. If each strand has spring constant k, and the bundle is
held under constant tension T by a hanging mass, then the
untwisted length L0 is greater than the relaxed length L̃0

according to T = Nk(L0 � L̃0). When twisted by y, the helix
length LH grows even further so that the axial components of
the strings’ tensions sum to the bundle tension: T = NTs cos a
where Ts = k(LH � L̃0) is the tension of each strand, a is the helix

angle, cos a = L/LH, and L ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
LH

2 � ðryÞ2
p

is the contracted
length of the bundle (all per Fig. 1a but with hypotenuse LH). In
essence, the strand tensions increase as the helix angle
increases in order to achieve force balance axially. Radially,
the strings’ individual tensions are balanced against string–
string normal contact forces (as a first approximation we ignore
the resulting compressibility, which must decrease the effective
radius and slow the contraction rate). Further using the volume
conservation condition r0

2L0 = r2L, these ingredients combine
to give

L

L0

� �2

¼
1� T

NkL0

1� T

NkL

0
BB@

1
CCA

2

� r0yð Þ2

LL0
(5)

Note that both sides equal one at y = 0, where L = L0. Also note that
this reduces to eqn (3) if there is no extension (T - 0 or k - N).
As before, it is straightforward to develop a series solution:

L

L0

� �2

¼ 1� ð1� tÞ r0y
L0

� �2

�1
2
ð1� tÞð1� 5t=2Þ r0y

L0

� �4

� . . .

(6)

where t = T/(NkL0) is a dimensionless number quantifying
extensibility. Note that T = (Nk)x gives the fractional extension
of the untwisted bundle as x/L0 = T/(NkL0) = t.

Fig. 2 (a) Squared length versus squared twist angle for bundles of
0.41 mm diameter nylon monofilament. Dashed lines represent fits of
the initial contraction to eqn (2), by adjusting r0 and L0; these correspond
to the dashed curves in Fig. 1b. The solid curves represent eqn (4) with the
same values of r0 and L0. (b) Same data and curves, replotted so that the y-
axis represents the effective angle-dependent twist radius, squared, as
defined by eqn (1).
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In order to test this prediction, we first measure the spring
constant for the nylon monofilament. By hanging a range of
masses from one, two, and three stranded bundles and mea-
suring the extension, we find k = 325 � 12 N m�1. This gives a
Young’s modulus of 1.1 GPa, which is within the 0.2–4 GPa
range commonly quoted for nylon materials along with a

Poisson’s ratio of about 0.4. Next, we define a dimensionless
parameter

Y ¼

T

Nk

1

L
� 1

L0

� �

1� T

NkL

(7)

for the extensibility correction to contraction under twist. This
allows eqn (5) to be rewritten as follows, such that eqn (3) is
recovered for Y = 0:

L

L0

� �2

�2Y � Y2 ¼ 1� r0yð Þ2

LL0
(8)

Data should thus fall on the line y = 1 � x when experimental
results for the left-hand side are plotted versus (r0y)2/(LL0). For this
we use the same L0 values but divide the previously-found r0 values

by
ffiffiffiffiffiffiffiffiffiffi
1� t
p

; which according to eqn (8) will ensure the same initial
contraction rate. This analysis is illustrated in Fig. 3c, where we find
that data follow the expectation to slightly larger twist angle than
with the volume-conservation correction alone. As an empirical
guide to the eye, we also include the curve

y = 1 � a tanh[(x/a) + bx2] (9)

where the parameters a = 0.5 and b = 0.6 were obtained by
fitting to the double-strand case. This matches the data better
than using +bx3 inside the tanh( ) function, though it might be
preferable because +bx2 gives a negative leading-order correc-
tion to y = 1 � x.

While our modeling attempts appear to capture physical
effects, there remains considerable deviation at high twist
angles where the contraction is still slower than expected. We

Fig. 3 Length vs. twist angle, scaled using the initial length L0 and fitted
radius r0, for single-, double-, and triple-strands of 0.41 mm diameter
nylon monofilament. In (a), a close up picture of the double-stranded
monofilament is shown under twist at different contractions as labelled. In
(b), this scaling accounts for volume conservation for a contracting
cylinder, and in (c) extensibility is further considered where the correction
parameter Y is given by eqn (7). In both parts, the lines y = 1 �x represents
the respective expectations of eqn (3) and (8) while the dashed curves are
the same guide to the eye, eqn (9), obtained by fit to the double-stranded
data in (c).

Fig. 4 A single strand of nylon boot lace with 1.9 mm geometrical radius
and with brown and yellow components woven together in opposite
chirality. Photographs are for the untwisted case (left), as well as four
different amounts of clockwise and counterclockwise twist; inset numbers
refer to the scaled twist angle squared, (r0y/LL0)2. In a given direction of
twist, one color component tenses while the other relaxes and bows
outward. When twisted in the opposite direction, the color components
swap behavior.
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can only speculate on potential reasons, which could be
addressed by future studies. As a first possibility, the force
balance conditions assumed for modeling extensibility did not
consider static strand–strand friction, which could be mobi-
lized as the bundle is twisted. However, this effect would be
absent for the single-stranded monofilament (though not for
the single-stranded woven strings in the next section). A second
explanation could be the deformation of individual strands
away from circular cross-section due to compressive normal
contact forces. For multiple strands this is induced by com-
pressive strand–strand contact forces, mentioned parentheti-
cally above, as well as by the spatial distribution of stresses
throughout the volume of each strand. For single strands, the
latter is illustrated in Fig. 4 by photographs of a woven nylon
boot lace, where two color components are braided together
with opposite chirality such that the lace itself remains achiral.
Evidently, under twist, this lace does not uniformly expand.
Rather, woven components of the same chirality as the twist
direction contract while the opposite components bow out-
ward, forming a pronounced helical structure. The inner one is
clearly taut, while the other is relaxed. A similar helical struc-
ture actually becomes noticeable for a nylon monofilament
under sufficient twist, but is less pronounced and difficult to
photograph. Such structures belie a non-circular cross section
and a nontrivial pattern of elastic stresses within the material.

4 Various string materials and braids

Using the same data collection and analysis procedures as
above, we now characterize the contraction behavior under
twist for woven strings of six different braid structures and
materials. This includes two kinds of nylon rattail cord, cording
nylon, and Kevlar (all of which are single-component and
achiral), as well as parachute cord (which has an inner core
and outer sheath) and yarn (which has a chiral structure). Due
to the loose/fuzzy/floofy braid structure, the Euclidean geome-
trical radii rE are ill-defined to varying degrees. Also by contrast
with nylon, the cross section of individual strands deforms
under twist – but is beyond our scope to measure. Results for
our best efforts to measure rE, as well as less uncertain results
for the linear mass densities l and spring constants k, are
collected in Table 1.

Table 1 Physical parameters for the various string materials and bundles. The Euclidean geometric radius rE, linear mass density l, and spring constant k
for single strands were all measured directly. The twist radii r0N for N-stranded bundles were obtained by fits to initial behavior for contraction versus twist
angle. Additionally, the maximum twist angles prior to supercoiling were in the range (0.8–0.9)L0/r0N, and the corresponding maximum contractions
were in the range (20–30)%, in all cases

Material rE (mm) l (g m�1) k (N m�1) r01 (mm) r02 (mm) r03 (mm)

Monofilament 0.205 0.058 � 0.001 325 � 10 0.1321 � 0.0002 0.2488 � 0.0008 0.285 � 0.001
Silver rattail 0.89 1.463 � 0.002 760 � 40 0.522 � 0.002 0.855 � 0.002 1.081 � 0.002
Rainbow rattail 0.93 1.482 � 0.002 600 � 30 0.561 � 0.001 0.855 � 0.002 1.190 � 0.002
Cording nylon 0.55 0.470 � 0.004 380 � 10 0.264 � 0.001 0.383 � 0.001 0.528 � 0.001
Kevlar 0.44 0.464 � 0.004 2300 � 100 0.502 � 0.002 0.702 � 0.002 0.814 � 0.002
Parachute 1.07 4.200 � 0.004 2350 � 30 1.36 � 0.01 1.67 � 0.01 1.93 � 0.01
Yarn 1.7 � 0.1 0.666 � 0.003 255 � 10 0.29 � 0.03 0.53 � 0.03 0.67 � 0.03

Fig. 5 Squared length vs. squared twist angle, scaled by initial length L0

and fitted radius r0, for (a) silver colored rattail, (b) rainbow colored rattail,
(c) cording nylon, and (d) Kevlar strings. Each string is made of a different
material, and all but the two rattail strings have different braid structures.
For each string, single-, double-, and triple-stranded strings are plotted as
circles, crosses, and triangles, respectively. The solid black line shows the
leading order linear behavior, while the dashed curves are the same guide
to the eye used for the monofilament, eqn (9).
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In Fig. 5 we display contraction data for the four strings that
are achiral and relatively uniform, and thus expected to be
more ideal. As before, data are collected up to twist angles
where the bundle either snaps or is about to supercoil. The
volume and extensibility corrections are included, so that the
data hug the line y = 1 � x for greater amounts of twist and
enable better measurement of the effective twist radii. The
resulting values, collected in Table 1, are consistent with fits
to eqn (1) at smaller angles. But in all cases, the deviation from
linearity in Fig. 5 is a slower-than-expected contraction that is
more pronounced in comparison with the monofilament case
as judged against same guide-to-the-eye curve shown in Fig. 3.
Note that this nonideality is greatest for Kevlar and smallest for
the rattails, and hence may correspond with internal friction.
Also note that in all four plots the data for different numbers of
strands collapse fairly well onto a materials-dependent curve,
perhaps even better than for the monofilament. This collapse
lends further support to our analysis procedure. Interestingly,
for the cording nylon, the collapsed data asymptotes toward a
constant corresponding to a halt of contraction at large twist
angles. This motivated our earlier choice of a hyperbolic tanh
function as a guide-to-the eye for the deviation from linearity.

Out of curiosity we also investigated three cases where the
string structure is more intricate, shown in Fig. 6. The para-
chute cord (Fig. 6a) is composed of two entirely separate
concentric structures, a central core that is freely surrounded
by an outer sheath, each with a woven braid. The yarn (Fig. 6b
and c) has a chiral braid, and so its behavior is dependent on
the direction of twist. For the parachute and unwinding yarn
cases, the same high degree of collapse is not found. The
internal structure of the strings alters their behavior in the
single-stranded case compared to the double- and triple-
stranded cases. As the number of strands increases, we see
the data begins to collapse, suggesting the behavior is domi-
nated by the inter-strand interaction rather than the individual
strand behavior. We also see this difference disappears in the
yarn if we twist in the same direction as its chirality (Fig. 6c).

5 Effective twist radii

The effective twist radii collected in Table 1 serve to describe
the contraction behavior for small twist angles via eqn (1), and
for somewhat larger twist angles via eqn (5). But what sets their
values? We again focus on the monofilament results to build
intuition. Whereas the other strings in this paper present
idiosyncratic behavior based on braid and material properties,
the monofilament retains a well-defined geometrical structure
and has the strongest adherence to ideality. As outlined in the
introduction, much of the literature suggests that radius of
contraction in the double-stranded case, r2, should equal the
Euclidean radius, rE. For the monofilament we used, rE =
0.205 mm, however, our fit value r02 = 0.249 mm is larger by
more than 20%. To summarize our fitting results for twist radii,

Fig. 6 Squared length vs. squared twist angle, scaled by initial length L0

and fitted radius r0, for (a) parachute cord with a central core, (b) twisting
yarn against its chirality, and (c) twisting yarn with its chirality. For each
string, single-, double-, and triple-stranded strings are plotted as circles,
crosses, and triangles, respectively. The solid black line shows the leading
order linear behavior, while the dashed curves are the same guide to the
eye used for the monofilament, eqn (9).

Fig. 7 Radius of gyration rgN for different number N of strands within a
bundle in terms of the Euclidean geometric radius rE of a single strand. The
expectation for the effective radius of a bundle can be described by
assuming there is an internal core that does not contribute significantly
to the twisting.20 We calculate this value instead using the radius of
gyration, and find good agreement in numerical values for the monofila-
ment case.
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we find empirically that the radius of gyration is a useful length
scale. The radius of gyration defines the radius of a ring with
the same mass and moment of inertia as an object of arbitrary
dimension, and is illustrated for single-, double-, triple-, and
seven-stranded bundles in Fig. 7. This length scale could extend
the notion in literature of a radius below which strands do not
contribute to twisting by continuously defining that threshold.
We also find excellent agreement in experiment; for the double-
stranded monofilament rg2

= 1.22rE = 0.251 mm a close match
to our fit value of r02 = 0.248 mm. This formulation also allows
us to extend a prediction to the single-stranded case, where rg1

=
0.707rE = 0.145 mm, within 0.01 mm of the value we found.
Interestingly, Gaponov et al.14 noted this same phenomenon,
finding the single stranded radius is E0.7 times the geometric
radius, matching the prediction from the radius of gyration.

The monofilament case, having no internal braid structure,
allows us to confidently define the geometrical radius. The rest
of the strings we examined have complicated braid structures;
this leads to an ambiguous definition of a strand radius based
on string packing, material parameters and as yet unidentified
variables. However, we can still make predictions about the
ratios of radii between bundles. In Fig. 8 we plot these ratios,
normalizing all values by the double-stranded case as this is the
most common case described in literature. From left to right in
this figure, we show the single-stranded radius, the geometrical
radius, and the triple-stranded radius respectively. Looking first
at the geometrical radius (center plot), we observe what was
described above. The dashed red line indicates the expectation

found in literature, r2 = rE and the dashed black line for the
expectation from the radius of gyration, r2 = 1.22rE. The mono-
filament agrees strongly, with variance between the other
strands. We see an interesting disagreement between the silver
and rainbow rattails, two strings with identical braid structure
but slightly different materials. We also see that braid structure
does not only cause a decrease in the double-stranded radius,
as the Kevlar has an even larger effective radius than expected
from the radius of gyration. Under twist we may expect a string
to compress to fill space between strands or expand to conserve
volume. As highlighted in Fig. 4, it may do both as chiral
strands in the opposing direction of twist flare out to compen-
sate the strands under tension. The net effect in the silver,
rainbow and cording nylon cases seems to be contraction to a
smaller than expected radius, while the Kevlar expands.

Using the single- and triple-stranded cases, we highlight two
features: first, looking at the monofilaments, the geometrical
expectation from literature seems a better match for ratio
between strands than the radius of gyration. This would
suggest, once a proper effective radius has been defined,
perhaps the unbraided structure does behave closer to ideality
in a geometric packing. Second, across the braid structures
examined in this paper, we see a hierarchy of deviation from
that ideal single-to-double-stranded ratio. This deviation from
the ideal ratio coincides with the deviation from the linear
regime in Fig. 5, with the silver rattail remaining linear over the
largest twist range and Kevlar deviating at very low twist angle.
The same is not seen in the triple-stranded case, where the
Kevlar instead behaves almost ideal to literature expectation.
Perhaps the deviation of single-strand behavior has strong
bearing on the onset of non-linear behavior, even if those
strands may pack geometrically at larger bundle numbers.

6 Conclusions

In this paper we presented contraction versus twist angle data
for a wide range of string materials and for different numbers
of strands in a bundle, and we presented ways to critically
compare observations against the standard model, eqn (1). We
find two distinct types of deviation common to all cases. At
medium twist angles, for contractions in the range of about 5–
20% varying by string, the contraction is faster than expected.
This effect is successfully modeled using volume conservation,
where the bundle thickens as it contracts, and is potentially
important for reducing fitting range-dependent systematic
errors when extracting an effective twist radius from experi-
mental data. Following on from this, we tabulated the effective
twist radii for the range of systems and found that they do not
compare as well with geometrical radii as suggested by previous
investigations. Rather, they compare better with the radius of
gyration. Second, at large twist angles, for contractions beyond
about 15%, the contraction is slower than expected. We uncov-
ered some hints that this is due to elastic effects, both in the
extension of the individual strings in a bundle but also in
compressional deformation due to string–string normal

Fig. 8 Fit and putative radii scaled by double-stranded fit radius, r02.
White label indicates the braid structures (monofilament (M), rattail (S
and R), cording nylon (C), kevlar (K), and parachute cord (P)) and material
(silver rattail (S) vs. rainbow rattail (R)) shown. Strings are grouped by
number of strands used in the bundle, with the double-stranded case
instead comparing against the putative radius, rE, measured optically in the
taut but untwisted case. Dashed black lines indicate expectation from the
radius of gyration, while dashed red lines indicate expectation from
literature. Strings are ordered left to right in descending order of maximum
scaled arc length through which the string contraction remains linear. We
observe in the single stranded case, the deviation from expectation of the
scaled radius, r01/r02, also corresponds to the deviation from linearity.
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contact forces. We modeled the former, but not the latter. This
lack of full understanding, and the empirical but not yet
theoretically-justified findings about the values of the effective
twist radii, may hopefully inspire further theoretical and
experimental work.
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