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Diffusiophoresis of a spherical particle
in porous media

Siddharth Sambamoorthy and Henry C. W. Chu *

Recent experiments by Doan et al. (Nano Lett., 2021, 21, 7625–7630) demonstrated and measured

colloid diffusiophoresis in porous media but existing theories cannot predict the observed colloid

motion. Here, using regular perturbation method, we develop a mathematical model that can predict

the diffusiophoretic motion of a charged colloidal particle driven by a binary monovalent electrolyte

concentration gradient in a porous medium. The porous medium is modeled as a Brinkman medium

with a constant Darcy permeability. The linearized Poisson–Boltzmann equation is employed to model

the equilibrium electric potential distribution that is driven out-of-equilibrium under diffusiophoresis.

We report three key findings. First, we demonstrate that colloid diffusiophoresis could be drastically

hindered in a porous medium due to the additional hydrodynamic drag compared to diffusiophoresis

in a free electrolyte solution. Second, we show that the variation of the diffusiophoretic motion with

respect to a change in the electrolyte concentration in a porous medium could be qualitatively different

from that in a free electrolyte solution. Third, our results match quantitatively with experimental

measurements, highlighting the predictive power of the present model. The mathematical model

developed here could be employed to design diffusiophoretic colloid transport in porous media, which

are central to applications such as nanoparticle drug delivery and enhanced oil recovery.

1 Introduction

Diffusiophoresis is the deterministic motion of particles induced
by a surrounding concentration gradient of solutes.1–4 Diffusio-
phoresis comprises an electrophoretic component due to the
electric field induced by a disparity in the diffusivities of the ionic
solutes, and a chemiphoretic component due to the osmotic
pressure gradient associated with the solute concentration gradi-
ent. Motivated by manufacturing colloidal coatings for vehicles,
Prieve et al.5,6 pioneered a theory to predict the diffusiophoretic
motion of a colloidal particle in a concentration gradient of
electrolytes, the so-called log-sensing relation U = Mrlog n, where
the mobility M relates the particle diffusiophoretic velocity U
and gradient of the natural logarithm of the solute concen-
tration n. Since then, much work has been done to characterize
the diffusiophoretic mobility of rigid particles in various
solutes,7–12 the mobility of drops and soft particles,13–20 and
the mobility in confined environments.21–23 In addition to
develop fundamental theories for diffusiophoresis, progress
has been made in devising new applications using diffusio-
phoresis, ranging from mixing and separation of colloids,9,24–40

enhanced oil recovery,41–43 drug delivery,44,45 to water and
surface cleaning.46–48 The strengths of diffusiophoresis are

prominent in two aspects. First, diffusiophoresis can generate
a significant colloid motion on the microscale. For instance,
the diffusivity of a typical ionic solute D B M B 10�9 m s�2 and
the length of the solute gradient L B n/rn B u 10�3 m, giving
U ] 10�6 m s�1. Second, diffusiophoresis can transport
colloids into dead-end pores,49–51 which cannot be achieved
by traditional means such as pressure pumping due to the zero
volumetric fluid flow in the pore by conservation of mass.

However, the majority of work in the literature focuses on
diffusiophoresis in a free electrolyte solution and a theory
for predicting colloid diffusiophoresis in an electrolyte-filled
porous medium is lacking. Porous media are ubiquitous in
artificial and natural settings. For instance, tumor interstitia
are filled with biohydrogels which hinder nanoparticle drug
delivery.44,52,53 Distinct from transport in a free electrolyte
solution, colloids experience friction and retardation as they
travel through a porous medium. As a proof of concept of a
novel nanoparticle drug delivery protocol in biological systems,
recently Doan et al.45 demonstrated and measured diffusio-
phoresis of nanoparticles in a porous hydrogel. Specifically,
they constructed microfluidic dead-end pores filled with col-
lagen hydrogel and an electrolyte solution, mimicking tumor
interstitia. They then generated an electrolyte concentration
gradient across the dead-end pores by flowing an electrolyte
solution of a different concentration past the opening of the
pores. Because of the high aspect ratio of the dead-end pores,
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they assumed that the nanoparticle displacement x(t) and electro-
lyte concentration field n(x,t) are one-dimensional and follow the
integrated log-sensing relation, xðtÞ ¼

Ð
Mr log nðx; tÞdt. They

extracted the mobility by fitting this relation to a theoretically
deduced n(x,t) and an experimentally measured x(t).

Despite the success in inferring the mobility, the experiment45

suffers from several drawbacks. First, it requires tracking the
nanoparticle displacement which is subject to thermal fluctuations
and demands averaging over multiple experiments to minimize
statistical errors. Second, it requires a long time (up to days) to
prepare the gel- and electrolyte-filled dead-end pores and to
observe sufficiently large nanoparticle displacements for inferring
the mobility. Third, and most importantly, the experiments cannot
predict the particle diffusiophoretic motion (mobility). Hence,
there is a need for a predictive theory for the colloid diffusiophore-
tic mobility in a porous medium, analogous to that for colloid
diffusiophoresis in a free electrolyte solution.6

In this work, we develop a mathematical model that can
predict the diffusiophoretic colloid mobility in a porous med-
ium. The model considers a charged colloidal particle under-
going diffusiophoresis in a porous medium subject to a
spatially uniform concentration gradient of a binary monova-
lent electrolyte. We invoke the Debye–Huckel approximation,
which is accurate to model the electric potential of a charged
particle in many practical cases, where f r 50 mV at room
temperature.54 To account for the frictional force exerted by the
porous network on the fluid and particle motion, the porous
medium is modeled as a Brinkman medium55 with a constant
Darcy permeability. We report three key findings. First, we
show that, compared to diffusiophoresis in a free electrolyte
solution, colloid diffusiophoresis could be significantly ham-
pered in porous media due to friction, as reflected in a decrease
in the magnitude of the mobility. Second, we demonstrate that
the variation of the mobility with electrolyte concentration
could be altered qualitatively by the presence of porous media.
Third, our model predictions make quantitative agreements
with experiments45 with no fitting parameters.

The rest of this article is outlined as follows. In Section 2,
we formulate the problem by first presenting the governing
equations and boundary conditions for the fluid and ion
transport as well as the electric potential distribution of the
charged colloidal particle and the surrounding electrolyte-filled
porous media. Then, we conduct a regular perturbation in the
imposed electrolyte concentration gradient to obtain a set of
ordinary differential equations that determine the diffusiophoretic
mobility of the particle. In Section 3, we present our results and
elaborate on the three above-mentioned key findings. In Section 4,
we summarize this study and offer ideas for future work.

2 Problem formulation

Consider a non-conducting particle of radius a and constant
surface charge q (or constant surface potential z) in a static
porous medium with a constant Darcy permeability l2 (l is the
Brinkman screening length), subject to a spatially uniform

concentration gradient of a binary monovalent electrolyte
rnN

i , where i = 1 and i = 2 are the cationic and anionic species,
respectively (Fig. 1). Due to symmetry, the particle translates
with a constant diffusiophoretic velocity U parallel to
rnN

i along the z-direction. The velocity U is an unknown to
be determined. A reference frame moving with U is adopted.

In the steady state, conservation of individual species
requires that

r � ji ¼ 0 with ji ¼ �Dirni �
Dizie

kT
nirfþ niu; (1)

where ji, Di, and zi (with z1 = �z2 = 1) are the flux density,
diffusivity, and valence of the i-species, respectively; e is the
charge on a proton, k is the Boltzmann constant, T is the
absolute temperature, f is the electric potential, and u is
velocity of the electrolyte solution. The electric potential satis-
fies the Poisson equation

�er2f = r = z1en1 + z2en2, (2)

where e and r are the permittivity and space charge density of
the electrolyte solution, respectively. Inertial forces are negli-
gible in colloidal-scale transport. The fluid dynamics is
described by the continuity equation in addition to the Brink-
man equation with an electric body force56–58

r�u = 0 0 = �rp + Zr2u � rrf � Zl�2(u + U), (3)

where p is the pressure and Z is the dynamic viscosity of the
electrolyte solution. The last term in eqn (3) accounts for the
frictional force exerted by the porous medium on the fluid.

To specify the problem, eqn (1)–(3) should be accompanied
with boundary conditions at the particle surface and at location
far from the particle. At the particle surface, r = a, no hydro-
dynamic slip and no penetration of the solvent require that

u = 0. (4)

No penetration of the ionic species requires that

n�ji = 0, (5)

where n is the unit normal vector pointing away from the
particle surface. The surface charge q or the surface potential
z of the particle could be specified, respectively, via

�n�erf = q or f = z. (6)

Fig. 1 A concentration gradient rnN

i of ionic species i induces diffusio-
phoretic motion of a particle of radius a in a static porous medium. The
diffusiophoretic velocity of the particle U is parallel to rnN

i .
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At location far from the particle, r - N, it requires that

u - �U and p - pN, (7)

where pN is a reference constant pressure. The electrolyte
concentration field and its gradient are represented by a
truncated Taylor series

ni - nN

i + rnN

i �r, (8)

where nN

i is the uniform electrolyte concentration in the bulk
and rnN

i �r is associated with the spatially uniform electrolyte
concentration gradient. The position vector r is anchored at
the centroid of the particle. The electrolyte concentration
gradient induces an electric potential gradient to maintain bulk
electroneutrality6,59

�rf ¼ kT

e
bG; (9)

where G = (rnN

1 )/nN

1 = (rnN

2 )/nN

2 and b = (D1 � D2)/(D1 + D2).
We linearize eqn (1)–(9) to probe typical regimes of diffu-

siophoresis, where the electrolyte gradient at the size of the
particle is much smaller than the background concentration.
To this end, we define a small parameter a = |G|a { 1 and
perform a regular perturbation analysis for the dependent
variables

ni ¼ n1 n̂0i þ an̂1i
� �

; f ¼ kT

e
f̂0 þ af̂1
� �

;

u ¼ ek2T2

e2Za
û0 þ aû1
� �

; p ¼ ek2T2

e2a2
p̂0 þ ap̂1
� �

;

(10)

where nN = 2I = z1
2nN

1 + z2
2nN

2 is twice the ionic strength of the
electrolyte. In eqn (10), quantities with carets are dimensionless
and the factors outside the brackets are the dimensional groups
for non-dimensionalizing the left-hand side of the equation,
e.g., ni/n

N is dimensionless. Lengths are non-dimensionalized
by the particle radius a. Substituting eqn (10) into eqn (1)–(9)
furnishes a set of differential equations at different order
of a. In the following, we begin with the leading order [O(1)]
perturbation and will arrive at a set of equations for computing
the diffusiophoretic velocity (mobility) at the O(a) perturbation.
Hereafter, carets are dropped for clarity unless specified
otherwise.

2.1 Leading order perturbation

The leading order perturbation concerns the equilibrium con-
dition where there is no electrolyte concentration gradient and
therefore no fluid flow, u0 = 0. In other words, the momentum
eqn (3) does not provide useful information at the leading order
perturbation. Hence, only the perturbed eqn (1) and (2) and
their boundary conditions are presented below.

The leading order ion conservation and Poisson equation
are

r�(�rn0
i � zin

0
irf0) = 0, (11)

r2f0 = �(ka)2(z1n0
1 + z2n0

2), (12)

where the Debye length k�1 � (ekT/e2nN)1/2 is the length scale
over which the space charge density varies. The leading order
boundary conditions at the particle surface, r = 1, are

n�(�rn0
i � zin

0
irf0) = 0, (13)

�n � rf0 ¼ qea

ekT
� q̂ or f0 ¼ ze

kT
� ẑ; (14)

where q̂ and ẑ denote the non-dimensionalized particle surface
charge and surface potential, respectively. The leading order
boundary conditions far from the particle, r - N, are

n0
i - nN

i and f0 - 0. (15)

Integrating eqn (11) and applying eqn (15) yields the Boltz-
mann distribution of the ionic species, n0

i = nN

i exp(�zif
0).

Substituting this result in eqn (12) furnishes the nonlinear
Poisson–Boltzmann equation, which can be linearized using
the Debye–Huckel approximation as r2f0 = (ka)2f0. Utilizing
eqn (14) and (15), the spherically symmetric equilibrium elec-
tric potential for a particle with a constant surface charge or a
constant surface potential can be obtained, respectively, as

f0 ¼ q̂ exp½�kaðr� 1Þ�
ðkaþ 1Þr or f0 ¼ ẑ exp½�kaðr� 1Þ�

r
; (16)

which establish a relation between the non-dimensionalized
particle surface potential and surface charge as

ẑ ¼ q̂

kaþ 1
: (17)

2.2 O(a) perturbation

The O(a) equations can be simplified and converted to a set of
ordinary differential equations by introducing the c1

i potential,
n1

i =�zin
0
i (c1

i + f1),60 and exploiting symmetry of the problem to
write the dependent variables as61

u1r ðr; yÞ ¼ �
2

r
h cos y; u1yðr; yÞ ¼

1

r

dðrhÞ
dr

sin y;

c1
i ðr; yÞ ¼ C1

i cos y;

(18)

where u1
r and u1

y are the radial and angular components of u1.
The O(a) problem now requires solving for h = h(r) and C1

i = C1
i

(r), which are governed by

d2C1
i

dr2
þ 2

r

dC1
i

dr
� 2

r2
C1

i � zi
df0

dr

dC1
i

dr
þ 2

Pe

Di

df0

dr

h

r
¼ 0; (19)

d4h

dr4
þ 4

r

d3h

dr3
� 4

r2
d2h

dr2
� a

l

� �2
�2

r2
hþ 2

r

dh

dr
þ d2h

dr2

� �

þ ðakÞ
2

r

df0

dr
z1

2n01C
1
1 þ z2

2n02C
1
2

� �
¼ 0;

(20)

where the Peclet number Pe � ek2T2/(Ze2Ds) describes the ratio
of advective to diffusive contributions to ion transport, with Ds

being the diffusivity scale and chosen as the cation diffusivity.
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The O(a) boundary conditions at the particle surface, r = 1, are

dC1
i

dr
¼ 0; h ¼ 0;

dh

dr
¼ 0: (21)

The O(a) boundary conditions far from the particle,
r-N, are

C1
1 - (b � 1)r, C1

2 - (b + 1)r, (22)

h! 1

2
mr; (23)

where m is the non-dimensionalized diffusiophoretic mobility
and relates to the dimensional diffusiophoretic mobility M via

m ¼ U

a
¼ e2Z

ek2T2
M: (24)

Eqn (22) and (23) are set at r - N. To have a well-defined
boundary value problem in a finite domain, we follow prior
work59,60 and set the computational domain to a sphere of
radius R which is concentric to the particle and completely
encloses the particle. At a sufficiently large R, the electric
potential decays to zero asymptotically as (1/r)exp(�kar).
A value R = 1 + 20/(ka) suffices. We solve eqn (19) in this
asymptotic limit, where terms associated with derivatives of f0

vanish, and obtain the following expressions in replacement of
eqn (22)

2C1
1 þ R

dC1
1

dr
¼ 3ðb� 1ÞR; 2C1

2 þ R
dC1

2

dr
¼ 3ðbþ 1ÞR: (25)

For a freely suspended particle, the net hydrodynamic and
electric force is zero on the large sphere of radius R.
A sufficiently large R guarantees that the sphere is electric
force-free. Thus, the constraint here reduces to that the sphere
of radius R should be hydrodynamic force-free

F ¼ 2pR2

ðp
0

r � n sin ydy ¼ 0; (26)

where r = �pI + Z(ru + (ru)T) is the Newtonian stress tensor
and I is the identity tensor. Solving eqn (20) in the asymptotic
limit of vanishing electric potential along with eqn (26) gives

R2 R2g2 þ 3Rgþ 3
� �d2h

dr2

þ R3g3 þ 3R2g2 þ 6Rgþ 6
� �

R
dh

dr
� h

� �

¼ 0 (27)

R2g2 þ 3Rgþ 3
� �

R2d
3h

dr3
þ R Rgþ 4ð Þd

2h

dr2

� 	

þ 3g R2g2 þ 2Rgþ 2
� �

R
dh

dr
� h

� �
¼ 0;

(28)

3

2
m ¼ 3ðRgþ 1Þ

R2g2 þ 3Rgþ 3

dh

dr
þ
3 R2g2 þ 2Rgþ 2
� �
R2g2 þ 3Rgþ 3

h

R
; (29)

where g = a/l. Eqn (27) and (28) replace (23). In sum, we solve
eqn (19) and (20) subject to eqn (25), (27) and (28) for h and C1

i

using the built-in solver NDSolve in Wolfram Mathematica. The

diffusiophoretic mobility could be obtained from eqn (29).
In the limit g - 0, these equations recover those for particle
diffusiophoresis in a free electrolyte solution.59

3 Results and discussion

In this section, we present the diffusiophoretic mobility of a
particle in porous media filled with an electrolyte solution. In
Section 3.1, we present results for porous media filled with
potassium chloride (KCl) solution. Note that electrophoresis is
negligible in a KCl solution due to the small diffusivity ratio,
b = �0.02. Thus, we follow prior work18,59,62,63 and assume b = 0
so that diffusiophoresis is solely due to chemiphoresis. This
enables understanding of chemiphoresis in porous media. In
Section 3.2, we present results for porous media filled with
sodium chloride (NaCl) solution, which has a large diffusivity
ratio, b = �0.21. Both electrophoresis and chemiphoresis con-
tribute significantly to particle diffusiophoresis. In Section 3.3,
we compare our modeling predictions with experiments.

3.1 Diffusiophoresis in porous media with KCl solution

Let us start by examining colloid diffusiophoresis in porous
media filled with a KCl solution. Fig. 2 shows the variation of
the non-dimensionalized diffusiophoretic mobility with the
non-dimensionalized particle surface potential for different
ratios of the Brinkman screening length to particle radius,
l/a. The ratio of the particle radius to Debye length is set as
ka = 10. Physically, l/a can be interpreted as a permeability
parameter. Namely, a large l/a(c1) represents a free electrolyte
solution whereas a small l/a({1) represents a weakly perme-
able porous medium filled with the electrolyte. As an overview
of the figure, the mobility is positive, meaning that the particle
is driven up the electrolyte concentration gradient under chemi-
phoresis. This is because the imposed electrolyte gradient

Fig. 2 Diffusiophoresis in porous media with potassium chloride solution
where b = 0. Variation of the non-dimensionalized diffusiophoretic mobi-
lity m with the non-dimensionalized particle surface potential ẑ for different
ratios of Brinkman screening length to particle radius l/a. The ratio of
particle radius to Debye length ka = 10. Dashed line: a free electrolyte
solution where l/a c 1. Solid lines: electrolyte-filled porous media of
different l/a.
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generates a chemiosmotic flow over the particle surface from
region of high to low electrolyte concentration, and the particle is
moving in the opposite direction under chemiphoresis.1–4

In Fig. 2, the dashed line recovers the particle mobility in a
free electrolyte solution.18,59 The mobility is symmetric with
respect to the sign of the particle surface potential, which is due
to the absence of electrophoresis. The solid lines show the
mobility in porous media with different permeabilities. The
mobility is still an even function of the particle surface
potential, since electrophoresis is still absent. Also, at a fixed
ẑ, the mobility decreases as l/a decreases. This could be under-
stood as follows. Lowering l/a implies a lower permeability of
the electrolyte solution in the porous medium. Thus, there is a
weaker chemiosmotic flow past the particle and, consequently,
particle chemiphoresis is weakened as reflected in a smaller

particle mobility. Alternatively, one could understand this observa-
tion by recognizing that the porous medium introduces additional
hydrodynamic drag to the particle, which scales as (a/l)2,55,64 as
shown in eqn (20). Thus, decreasing l/a lowers the mobility.

Next, Fig. 3(a) shows the variation of the non-
dimensionalized diffusiophoretic mobility with ka for different

l/a. The non-dimensionalized particle surface potential ẑ = �1.
As an overview of the figure, a line of fixed l/a can be interpreted
as fixing the permeability of the porous medium, l, and the size
of the particle, a. Thus, at a fixed l/a, increasing ka implies
increasing k, which can be achieved in practice by increasing

the bulk electrolyte concentration nN (recall that k �
ffiffiffiffiffiffiffi
n1
p

).
In Fig. 3(a), the dashed line recovers the particle mobility in

a free electrolyte solution.18,59 The mobility increases as ka

Fig. 3 Diffusiophoresis in porous media with potassium chloride solution where b = 0. (a) Variation of the non-dimensionalized diffusiophoretic mobility
m with the ratio of particle radius to Debye length ka for different ratios of Brinkman screening length to particle radius l/a. Results are the same for the
non-dimensionalized particle surface potential ẑ = �1 or 1. Dashed line: a free electrolyte solution where l/a c 1. Solid lines: electrolyte-filled porous
media of different l/a. (b) Variation of m with ka for different ratios of Brinkman screening length to Debye length kl. Results are the same for ẑ = �1 or �1.
Dashed line: a free electrolyte solution where kl c 1. Solid lines: electrolyte-filled porous media of different kl. Parameters used in (c) and (d) are the same
as (a) and (b), respectively, except that the non-dimensionalized particle surface charge is fixed, q̂ = �3.5 or 3.5 where their results are the same, instead
of the surface potential.
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increases. This is because, as noted in the above paragraph,
increasing ka implies an increasing bulk ion concentration.
Hence, there are more ions that contribute to a stronger
chemiosmotic flow and therefore stronger chemiphoresis, as
reflected in a larger mobility. The mobility plateaus as ka c 1,
since the chemiosmotic flux saturates in the limit of a vanish-
ingly thin electric double layer. The solid lines show the
mobility in porous media with different permeabilities. At a
fixed ka, the mobility decreases as l/a decreases, consistent
with the explanation provided in Fig. 2. On a different note, we
have conducted separate computations and confirmed that the
mobility of a particle with a constant surface potential ẑ;= 1 is
the same as that shown in Fig. 3(a) for ẑ = �1. This is again due
to the absence of electrophoresis.

Fig. 3(b) shows the variation of the non-dimensionalized
diffusiophoretic mobility with ka for different ratios of the
Brinkman screening length to Debye length kl. The non-
dimensionalized particle surface potential ẑ = �1. As an over-
view of the figure, a line of fixed kl can be interpreted as fixing
the permeability of the porous medium, l, and the concen-
tration of the solution, k. Thus, at a fixed kl, increasing ka
implies increasing the particle radius a, which can be achieved
in practice by using particles of different sizes. The dashed line
recovers the particle mobility in a free electrolyte solution.18,59

In Fig. 3(b), the solid lines show the mobility in porous
media with different kl. For kl Z 1, the mobility first increases
and then decreases with increasing ka, distinct from the
response in a free electrolyte solution. To understand this
non-monotonic response, let us consider the (grey) line with
kl = 40 as an example. Before the mobility rises to a peak, the
particle radius, a, is small compared to the mesh size of the
porous medium (Bl). For instance, at ka = 10, a/l = 1/4.
Physically, the hindrance due to the porous medium is not felt
by the particle. The resulting reduction in mobility is insignif-
icant compared to the enhancement to the mobility due to
increasing ka. Thus, before attaining the peak which corre-
sponds to a/l B O(1), the mobility increases with increasing ka.
Beyond the peak where a/l 4 O(1), the mobility decreases with
increasing ka. This is because the hindrance due to the porous
medium outweighs the enhancement due to increasing ka,
leading to an overall decrease in the mobility as ka increases.

In Fig. 3(b), a peak is not exhibited for kl o 1 (red line). This
is because a/l 4 O(1) for the entire range of ka shown in the
figure. Thus, the hindrance due to the porous medium and the
resulting reduction in mobility dominate the enhancement due
to increasing ka. On a different note, at a fixed ka, lowering kl
decreases the mobility. This is because lowering kl at a fixed ka
implies lowering l/a, which increases the hydrodynamic drag to
the particle and thus lowers the mobility, as explained in Fig. 2.
As an additional remark, we have conducted separate computa-
tions and confirmed that the mobility of a particle with a
constant surface potential ẑ = 1 is identical to that shown in
Fig. 3(b) for ẑ = �1.

Next, let us turn our focus to Fig. 3(c) which shows the
variation of the non-dimensionalized diffusiophoretic mobility
with ka for different l/a. Here, the non-dimensionalized particle

surface charge is fixed q̂= �3.5 instead of the surface potential.
Particles of a constant surface charge are more practically
relevant in some cases,63,65,66 although prior work has focused
on particles of a constant surface potential.8,18,20,59,62 For a
particle with a constant surface charge, its surface potential
decreases with increasing ka [eqn (17)]. In Fig. 3(c), the max-
imum non-dimensionalized potential |ẑ| = 1.7 occurs at ka = 1,
which justifies the use of the Debye–Huckel approximation to
compute the electric potential accurately.54

In Fig. 3(c), the dashed line shows the particle mobility in a
free electrolyte solution. Going from top to bottom of the figure,
at a fixed ka, the mobility decreases as l/a decreases, which is
consistent with the explanation given in Fig. 2. Going from left
to right of the figure, for a line of constant l/a, the mobility is
maximum when ka is the smallest and decreases to zero on
approaching the limit ka c 1. This trend follows from the
relation between the particle surface charge and surface
potential [eqn (17)], where the latter vanishes in the limit of
ka c 1 and so does the mobility. On a different note, we have
conducted separate computations and confirmed that the
mobility of a particle with a constant surface charge q̂ = 3.5 is
identical to that shown in Fig. 3(c) for q̂ = �3.5.

Next, let us look at Fig. 3(d) that shows the variation of the
non-dimensionalized diffusiophoretic mobility with ka for
different kl. The non-dimensionalized particle surface charge
q̂ = �3.5. The dashed line shows the particle mobility in a free
electrolyte solution. Going from top to bottom of the figure, at a
fixed ka, the mobility decreases as l/a decreases, which is
consistent with the explanation provided in Fig. 2. Going from
left to right of the figure, for a line of constant l/a, the mobility
decreases from a maximum when ka is the smallest to zero on
approaching the limit ka c 1. We have conducted separate
computations and confirmed that the mobility of a particle
with a constant surface charge q̂ = 3.5 is the same as that shown
in Fig. 3(d) for q̂ = �3.5.

3.2 Diffusiophoresis in porous media with NaCl solution

Let us turn to examine colloid diffusiophoresis in porous media
filled with a NaCl solution. Fig. 4 shows the variation of the
non-dimensionalized diffusiophoretic mobility with the non-
dimensionalized particle surface potential for different l/a and
ka = 10. The dashed line recovers the particle mobility in a free
electrolyte solution.18,59 Distinct from Fig. 2 for KCl solution,
here the particle mobility in a NaCl solution is asymmetric with
respect to the sign of the particle surface potential due to the
presence of electrophoresis. Specifically, because of the differ-
ence in the diffusivity between the sodium and chloride ions,
an electric field is induced to maintain bulk electroneutrality in
the imposed electrolyte gradient. This electric field induces
electrophoretic motion of the particle, where a negatively
(positively) charged particle is driven up (down) the electrolyte
gradient. However, chemiphoresis is also present and it drives a
particle up the electrolyte gradient, regardless of the sign of the
particle surface potential. Hence, electrophoresis and chemi-
phoresis are both driving a negatively charged particle up the
electrolyte gradient whereas they are acting in the opposite
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direction on a positively charged particle. As a result, for a
positively charged particle where electrophoresis outweighs
chemiphoresis, the particle is driven down the electrolyte
gradient as reflected in a negative mobility. In contrast, for a
negatively charged particle, the mobility is positive and has a
larger magnitude compared to a positively charged particle that
has the same magnitude of surface potential.

In Fig. 4, the solid lines show the mobility in porous media
with different permeabilities. At a fixed ẑ, the magnitude of
the mobility decreases as l/a decreases. This aligns with the
explanation given in Fig. 2, where a small l/a implies a low
permeability of the electrolyte solution in the porous medium.
Hence, there is a weaker chemiosmotic and electroosmotic
flow past the particle. As a result, particle diffusiophoresis is
weakened as reflected in a smaller particle mobility. Also, the
asymmetry of the mobility with respect to the sign of the
particle surface potential persists in the presence of a porous
medium. This implies that varying the permeability of the
porous medium only impacts the magnitude of the particle
diffusiophoretic motion but not its direction.

Fig. 5(a) shows the variation of the non-dimensionalized
diffusiophoretic mobility with ka for different l/a. Let us first
examine the upper quadrant of the figure, which corresponds
to a particle with a constant non-dimensionalized surface
potential ẑ = �1. Recall that the diffusiophoretic mobility
comprises the chemiphoretic and electrophoretic component
and, from Fig. 4, they both drive a negatively charged particle
up the electrolyte gradient. This is confirmed by Fig. 7(a) and
(b) in Appendix A, where we compute the chemiphoretic and
electrophoretic mobilities, and they are positive for the entire
range of ka. In Fig. 5(a), the dashed line recovers the particle
mobility in a free electrolyte solution.18,59 The mobility
increases as ka increases, since there are more ions contribu-
ting to stronger diffusiophoresis. The mobility plateaus in the

limit of thin electric double layer, ka c 1, due to the saturation
of diffusioosmotic flux. The solid lines show the mobility in
porous media with different permeabilities. At a fixed ka,
lowering l/a decreases the magnitude of the mobility but does
not change its sign, consistent with the explanation provided in
Fig. 4.

Let us turn our focus to the lower quadrant of Fig. 5(a),

which corresponds to a particle with ẑ = 1. Recall from Fig. 4
that electrophoresis drives the particle down the electrolyte
gradient and outweighs chemiphoresis that drives the particle
up the electrolyte gradient. This is confirmed by Fig. 7(a) and
(b) in Appendix A where, at particular l/a and ka, electrophor-
esis induces a negative mobility that has a larger magnitude
relative to the positive mobility generated by chemiphoresis.
In Fig. 5(a), the dashed line recovers the particle mobility in a
free electrolyte solution.18,59 As ka increases, the mobility
decreases in magnitude and then plateaus. The solid lines
show the mobility in porous media with different permeabil-
ities. Notably, for l/a o 1, the magnitude of the diffusiophoretic
mobility increases with ka monotonically, which is qualitatively
different from that in a free electrolyte solution. This is due to
the fact that porous media weaken the chemiphoretic and
electrophoretic mobilities to different extents at different l/a
and ka. Physically, this implies that particle diffusiophoresis in

response to a change in the electrolyte concentration (k �
ffiffiffiffiffiffiffi
n1
p

)
in a porous medium could be qualitatively different from that
in a free electrolyte solution.

Next, let us look at Fig. 5(b) that shows the variation of
the non-dimensionalized diffusiophoretic mobility with ka for
different kl. Let us first inspect the upper quadrant of
the figure, which corresponds to a particle with a constant
non-dimensionalized surface potential ẑ = �1. The dashed line
recovers the particle mobility in a free electrolyte solution.18,59

The solid lines show the mobility in porous media with
different kl. Compared to Fig. 3(b), the diffusiophoretic mobi-
lity still increases and then decreases with increasing ka,
although this trend occurs only for kl 4 1 because of the
electrophoretic contribution to the diffusiophoretic mobility.
We show the chemiphoretic and electrophoretic mobility in
Fig. 7(c) and (d) in Appendix A for reference. For kl r 1, the
diffusiophoretic mobility decreases monotonically as ka
increases. The lower quadrant of the figure corresponds to a
particle with ẑ = 1. Due to a competition between chemiphoresis
and electrophoresis, for all kl, the magnitude of the diffusiophore-
tic mobility decreases monotonically as ka increases.

Fig. 5(c) shows the variation of the non-dimensionalized
diffusiophoretic mobility with ka for different l/a. The non-
dimensionalized particle surface charge is fixed instead of the
surface potential. The upper and lower quadrant of the figure
correspond to a particle with q̂ = �3.5 and q̂ = 3.5, respectively.
Although electrophoresis is present here, it only alters quanti-
tatively the variation of the diffusiophoretic mobility with ka
compared to that in a purely chemiphoretic system [Fig. 3(c)].
Specifically, regardless of the sign of the particle surface charge,
the following trends persist. First, at a fixed ka, the magnitude
of the mobility decreases as l/a decreases. Second, at a fixed l/a,

Fig. 4 Diffusiophoresis in porous media with sodium chloride solution
where b = �0.21. Variation of the non-dimensionalized diffusiophoretic
mobility m with the non-dimensionalized particle surface potential ẑ for
different ratios of Brinkman screening length to particle radius l/a. The ratio
of particle radius to Debye length ka = 10. Dashed line: a free electrolyte
solution where l/a c 1. Solid lines: electrolyte-filled porous media of
different l/a.
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the mobility decreases monotonically to zero on approaching
the limit ka c 1.

Fig. 5(d) shows the variation of the non-dimensionalized
diffusiophoretic mobility with ka for different kl. The upper
and lower quadrant of the figure correspond to a particle
with q̂ = �3.5 and q̂ = 3.5, respectively. Same as the conclusion

drawn from Fig. 5(c), the presence of electrophoresis does
not alter qualitatively the variation of the diffusiophoretic
mobility compared to that in a purely chemiphoretic system
[Fig. 3(d)]. At a fixed ka, the magnitude of the mobility
decreases as kl decreases. At a fixed kl, the mobility decreases
as ka increases.

Fig. 5 Diffusiophoresis in porous media with sodium chloride solution where b = �0.21. (a) Variation of the non-dimensionalized diffusiophoretic
mobility m with the ratio of particle radius to Debye length ka for different ratios of Brinkman screening length to particle radius l/a. The non-
dimensionalized particle surface potential ẑ = �1 and 1 in the upper and lower quadrant, respectively. Dashed lines: a free electrolyte solution where l/a
c 1. Solid lines: electrolyte-filled porous media of different l/a. (b) Variation of m with ka for different ratios of Brinkman screening length to Debye length
kl. ẑ = �1 and 1 in the upper and lower quadrant, respectively. Dashed lines: a free electrolyte solution where kl c 1. Solid lines: electrolyte-filled porous
media of different kl. Parameters used in (c) and (d) are the same as (a) and (b), respectively, except that the non-dimensionalized particle surface charge
q̂ is fixed instead of the surface potential. q̂ = �3.5 and 3.5 in the upper and lower quadrant, respectively.
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3.3 Comparison with experiments

As noted in Section 1, recent experiments measured the nano-
particle diffusiophoretic mobility in porous media.45 In this
section, we compare our modeling predictions with experi-
mental measurements. Before discussing the results, we state
the justifications for the comparison. First, our model assumes
a weak electrolyte concentration gradient, |rnN

i /nN

i |a { 1.
This condition is satisfied and can be confirmed by substitut-
ing relevant parameters from experiments as stated below.
Second, our model computes the diffusiophoretic mobility of
a single particle, excluding particle–particle hydrodynamic and
electrostatic interactions. Neglecting these interactions is jus-
tified given the dilute particle suspension employed in experi-
ments, since hydrodynamic disturbance and electric field due
to a particle decay rapidly as 1/r3 and in an exponential manner,
respectively.58 Third, our model neglects particle interactions
with physical confinements, e.g., the dead-end pore walls in
experiments. Neglecting this effect is justified so long as the
particle is far from the confinement.

Fig. 6(a) shows the variation of the dimensional diffusio-
phoretic mobility with the concentration of the collagen gel
(the porous medium). The collagen gel concentration, w, relates
to the permeability via l2 = 30 854w�1.442,52 where the units for l
and w in this relation are nm and mg mL�1, respectively. In
experiments,45 a concentration gradient of potassium acetate of
cin = 1 mM to cout = 0.025 mM over a distance of 800 mm is
imposed to drive particles of radius 100 nm and surface
potential 60 mV into a gel-filled dead-end pore. Utilizing these
experimental parameters, we compute the mobilities with our
model (line) and show them alongside the experimental mea-
surements (circle). Our model predictions capture the experi-
mental data qualitatively, where increasing the collagen
concentration decreases the mobility due to the larger hydro-
dynamic drag to particle. Furthermore, our model predictions

are in close quantitative agreement with experiments. We
attribute the discrepancy to the large particle surface potential,
60 mV, which violates the range of validity of the Debye–Huckel
approximation in our model formulation, namely, |z| r 50 mV
at room temperature.54

Fig. 6(b) shows the variation of the dimensional diffusio-
phoretic mobility with the particle radius. In experiments,45 a
concentration gradient of NaCl of cin = 150 mM to cout = 15 mM
over a distance of 800 mm is imposed to drive particles of
surface potential �21 mV into a gel-filled dead-end pore. The
gel concentration is 2.4 mg mL�1. Again, utilizing these experi-
mental parameters, we compute the mobilities with our model
(line) and show them alongside the experimental measurements
(circle). Since the particle potential is within the range of validity
of the Debye–Huckel approximation, here our model predictions
match excellently with experiments. We propose an explanation
for the discrepancy between our model and experiments in the
two data points on the right as follows. As noted in experiments,45

the significantly lower mobility of the two data points may be due
to the strong particle-gel interactions. Specifically, although the
net charge of the gel was reported as zero in experiments, we
conjecture that any residue net charge of the gel will alter the
electric potential distribution around the charged particle, which
may in turn lower the particle mobility.57,58 This effect is weak
when the particle is small compared to the gel mesh but is more
prominent when the two are comparable in size. Also, a charged
gel will induce diffusioosmosis, which will alter the particle
mobility in a non-trivial manner. Note that accounting for these
effects requires a significant extension of the present model,
including modification of the Poisson equation, the induced
electric potential gradient, and consideration of a diffusioosmotic
flow generated by porous media, which is beyond the scope of this
work on particle diffusiophoresis in uncharged porous media but
warrants future work.

Fig. 6 (a) Variation of the dimensional diffusiophoretic mobility M with the concentration of the collagen gel. A concentration gradient of potassium
acetate of cin = 1 mM to cout = 0.025 mM over a distance of 800 mm is imposed to drive particles of radius a = 100 nm and surface potential 60 mV into a
gel-filled dead-end pore. (b) Variation of M with a. A concentration gradient of sodium chloride of cin = 150 mM to cout = 15 mM over a distance of
800 mm is imposed to drive particles of surface potential �21 mV into a gel-filled dead-end pore. The gel concentration is 2.4 mg mL�1. Solid line:
predictions by present work. Circle: experimental measurements by Doan et al.45
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4 Conclusions

In this work, we have utilized the regular perturbation method
to develop a mathematical model for predicting the diffusio-
phoretic mobility of a colloidal particle driven by a binary
monovalent electrolyte concentration gradient in a porous

medium. Our model is applicable to particles with surface
potential |z| r 50 mV at room temperature. To demonstrate
our model, we have computed and analyzed the diffusiophore-
tic mobility of a particle in porous media filled with potas-
sium chloride solution, where chemiphoresis dominates and

Fig. 7 Diffusiophoresis in porous media with sodium chloride solution where b = �0.21. Variation of (a) chemiphoretic mc and (b) electrophoretic
me component of the non-dimensionalized diffusiophoretic mobility m with the ratio of particle radius to Debye length ka for different ratios of
Brinkman screening length to particle radius l/a. For (a), results are the same for the non-dimensionalized particle surface potential ẑ = �1 or 1. For (b),
ẑ = �1 and 1 in the upper and lower quadrant, respectively. Dashed lines: a free electrolyte solution where l/a c 1. Solid lines: electrolyte-filled porous
media of different l/a. Variation of (c) mc and (d) me with ka for different ratios of Brinkman screening length to Debye length kl. For (c), results are the same
for ẑ = �1 or 1. For (d), ẑ = �1 and 1 in the upper and lower quadrant, respectively. Dashed lines: a free electrolyte solution where kl c 1. Solid lines:
electrolyte-filled porous media of different kl.
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electrophoresis is negligible. We have shown that, compared to
diffusiophoresis in a free electrolyte solution, the particle
mobility could be significantly hampered in porous media
due to additional hydrodynamic drag. Because of the absence
of electrophoresis, the mobility is the same regardless of the
sign of the particle surface charge. We have further computed
and analyzed the diffusiophoretic mobility of a particle in
porous media filled with sodium chloride solution, where
chemiphoresis and electrophoresis both contribute to diffusio-
phoresis. The presence of porous media could still significantly
weaken the particle mobility. However, since the chemiphoretic
and electrophoretic components are weakened to different
extents, the variation of the diffusiophoretic mobility with
respect to a change in the electrolyte concentration in a porous
medium could be qualitatively different from that in a free
electrolyte solution.

We have also compared our model predictions with experi-
ments and demonstrated excellent agreements within the
scope of the model. There are discrepancies between our model
predictions and experiments when assumptions of the model
are violated, such as highly charged particles and charged
porous media. This suggests future work to extend the present
model to incorporate a net charge of the porous media and
account for the modified, fully nonlinear Poisson–Boltzmann
equation.
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Appendix A: chemiphoretic and
electrophoretic components of
diffusiophoretic mobility in porous
media with NaCl solution

Diffusiophoretic mobility, m, could be expressed as a sum of its
chemiphoretic, mc, and electrophoretic components, me, that is,
m = mc + me. In Section 3.2, we utilized this fact to explain the
variation of m in Fig. 5(a) and (b). In this appendix, we discuss
how we compute mc and me, the variation of mc and me, and that
their sum indeed equals to m.

Recall that me arises from the electric field due to the
difference in ion diffusivities, represented by the diffusivity
ratio b. Terms that depend on b reside in eqn (25) only in the
overall calculation of m [solving eqn (19) and (20) subject to
eqn (25), (27) and (28)]. Thus, we exploit the linearity of the
equations12,15 and separate eqn (25) into a part which depends
on b and is associated with me, and a part which does not
depend on b and is associated with mc. In other words, me can be
calculated by replacing eqn (25) with

2C1
1 þ R

dC1
1

dr
¼ 3bR; 2C1

2 þ R
dC1

2

dr
¼ 3bR; (30)

and mc can be calculated by replacing eqn (25) with

2C1
1 þ R

dC1
1

dr
¼ �3R; 2C1

2 þ R
dC1

2

dr
¼ 3R: (31)

Fig. 7(a) shows the variation of mc with ka for different l/a.
The physical interpretations are the same as Fig. 3(a) so we do
not repeat them here. Fig. 7(b) shows the variation of me with ka
for different l/a. The upper and lower quadrant of the figure
correspond to a particle with ẑ = �1 and ẑ = 1, respectively. As
ka increases, the mobility increases in magnitude and then
plateaus due to saturation of the electroosmotic flux in the limit
ka c 1. At a fixed ka, lowering l/a decreases the magnitude of
the mobility due to the additional hydrodynamic drag by the
porous media. Note that the mobility is symmetric with respect
to the sign of the particle surface potential, that is, the mobility
is symmetric about the ka axis. This is because of the fact that
oppositely charged particles subject to the same electric field
are driven into motion with the same speed but in the opposite
direction. On a different note, when adding up mc and me from
Fig. 7(a) and (b), the result indeed recovers the diffusiophoretic
mobility, m, in Fig. 5(a), where Fig. 5(a) is obtained directly
using eqn (25).

Fig. 7(c) shows the variation of mc with ka for different kl.
The physical interpretations are the same as Fig. 3(b) so we do
not repeat them here. Fig. 7(d) shows the variation of me with ka
for different kl. The upper and lower quadrant of the figure
correspond to a particle with ẑ = �1 and ẑ = 1, respectively. The
dashed lines correspond to the mobility in a free electrolyte
solution. The mobility increases in magnitude and then pla-
teaus due to saturation of the electroosmotic flux in the limit
ka c 1. The solid lines correspond to the mobility in porous
media, which varies non-monotonically with ka. This is owing
to the competition between the enhancement of the mobility
due to the electroosmotic flux and the weakening of the
mobility due to hindrance by the porous media. On a different
note, at a fixed ka, lowering kl decreases the mobility, since this
corresponds to lowering l/a and increasing hydrodynamic drag.
By the same reasoning as Fig. 7(b), the mobilities in the two
quadrants in Fig. 7(d) are equal in magnitude but opposite in
sign. Finally, when adding up Fig. 7(c) and (d), the result indeed
recovers the diffusiophoretic mobility, m, in Fig. 5(b).
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