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An exact expression of three-body system for the
complex shear modulus of frictional
granular materials

Michio Otsuki (2 *® and Hisao Hayakawa
We propose a simple model comprising three particles to study the nonlinear mechanical response of
jammed frictional granular materials under oscillatory shear. Owing to the introduction of the simple
model, we obtain an exact analytical expression of the complex shear modulus for a system including
many monodispersed disks, which satisfies a scaling law in the vicinity of the jamming point. These
expressions perfectly reproduce the shear modulus of the many-body system with low strain amplitudes
and friction coefficients. Even for disordered many-body systems, the model reproduces the results by

rsc.li/soft-matter-journal

1 Introduction

The rheological property of densely dispersed grains, e.g.,
granular materials, colloidal suspensions, and emulsions, plays
an important role in physics and engineering. This rheological
property mainly depends on the packing fraction ¢ of the
grains. The materials behave like fluids for ¢ < ¢; with
jamming fraction ¢; and exhibit a solid-like elastic response
above ¢;."”? In the linear response regime (ie., for small
strains), the shear modulus is characterized by the density of
states®™ and satisfies scaling laws.®® However, the linear
response region becomes narrower as ¢ approaches ¢;,'>"
and the nonlinear response becomes relevant due to the plastic
deformation associated with the yielding.">>°

If we are interested in a nonlinear response to an applied
oscillatory shear strain, it exhibits a complicated stress-strain
curve. Although the storage and loss moduli G’ and G” were
originally introduced to characterize the linear viscoelasticity of
materials, they can be used to characterize nonlinear viscoelas-
ticity or visco-elastoplastic responses to applied strains.>' In
this case, G’ and G” are no longer constants but strongly
depend on the strain amplitude y,. In particular, we have
recognized that G’ decreases with 7,'*** and G” remains
non-zero in the low frequency limit**** for densely dispersed
grains.

The theoretical analysis of densely dispersed grains is chal-
lenging as a typical many-body problem in non-equilibrium
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introducing a single fitting parameter.

systems. To date, a few theoretical approaches have been
proposed for systems related to frictionless particles. The
scaling laws for the linear elastic response were derived in
terms of the vibrational density of states.”® The Fourier analy-
sis of particle trajectories helps to generate semi-analytical
expressions for G' and G".*® Unfortunately, these theories
cannot apply to frictional particles because of the history-
dependent contact force.”**

It is helpful to analyze a simple model with small degrees of
freedom to understand the behavior of many-body systems,
including densely dispersed grains. This approach has been
used in statistical mechanics. The mean-field approximation of
the Ising model is a typical example in which the system
contains only one Ising spin under the influence of a self-
consistently determined mean field.*® For atomic liquids, a cell
model, in which a single atom exists in a cage, was used to
derive the equation of state.>”*® The coherent potential approxi-
mation for disordered solids has been used to understand
electronic band structures.”® The effective medium theory
reveals the elastic response of random spring networks.** In
addition, a simple model consisting of two particles was
proposed to reproduce the liquid-solid phase transition.*" The
advantage of such few-body models is that we can obtain exact
solutions. The qualitative behavior of the corresponding many-
body systems can be determined based on the solutions of the
few-body models. Thus, we adopt this approach to determine the
nonlinear responses of the frictional dispersed grains.

This study proposes a model consisting of three identical
particles to describe the mechanical response of jammed fric-
tional granular materials under oscillatory shear. In Section 2,
we introduce the three-body system (TBS). This model can be
analytically solved for low-strain amplitudes and friction
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Fig. 1 Schematics of the ordered MBS (a) and the disordered MBS (b).

coefficients near the jamming point in Section 3. In Section 4,
we demonstrate that the analytical solution reproduces the
storage and loss moduli of many-body systems (MBSs) without
any fitting parameter if there is no disorder in the particle
configuration. Even if disorder exists, a scaling law for the
complex shear modulus for the TBS semi-quantitatively agrees
with the numerical simulations of the MBS by introducing
a fitting parameter. We discuss and conclude our results in
Section 5. In Appendix A, we show the details of the MBS
when the particles are initially placed on a triangular lattice.
The effect of particle rotation is described in Appendix B. In
Appendix C, we derive the analytical expressions for the shear
stress and pressure in the TBS. In Appendix D, we relate the
complex shear modulus with the hysteresis loop of the stress—
strain curve. The details of the disordered MBS are presented in
Appendix E. We present the numerical shear modulus for the
TBS in Appendix F.

2 Three-body system

We consider two-dimensional granular materials consisting
of many grains under oscillatory shear (Fig. 1). Here, the
grains constituting granular materials are modeled as frictional
spherical particles. Moreover, we introduce a system of three
identical particles to simply describe the MBS (Fig. 2). The
MBS can contain polydisperse particles, while we assume
that the TBS is a monodisperse system. In the TBS, the position

ri(t) = (x{t), y{t)) of particle i with diameter d at time ¢ is
given by
3y(0(2))¢ V3¢
(o) = (%%) )
1 —
2 3

Fig. 2 A schematic of the TBS.
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where / is the initial distance between particles. We also
introduce &:= 1 — //d as the compressive strain. The compres-
sive strain & in the TBS corresponds to ¢ — ¢; in the MBS, as
shown in Appendix A. We apply shear strain as

7(0) = yosin 0 (4)

with strain amplitude 7,, phase 0 = wt, and angular frequency
. Note that we need at least three particles to realize a stable
interlocking state.

We adopt the interaction force f; between particles i and j
given by

fi= Py + fPtpH(ry = d), (5)

where ij"“) and fg) denote the normal and tangential forces
between the particles i and j.** The distance between the
particles i and j is r; = |ry| with r; == r; — r; = (x4, ;). Here,
H(x) is Heaviside’s step function satisfying H(x) = 1 for x > 0
and H(x) = 0 otherwise. The normal and tangential unit vectors
are denoted by ny := ryfry = (., nyy) and t; = (—nyy, 1),
respectively. For simplicity, we do not consider the torque
balance and, thus, the rotation of the particles. See Appendix
B for the effect of the rotation.
The normal force is assumed to be

fgl] = 7knu51n) (6)

with the normal elastic constant k, and normal relative dis-
placement ugl] := r; — d. Moreover, the tangential force is
assumed to be

4= min(| F§LufP)sen( 7)), ?)

where fE;) = —ktug); k. denotes the tangential elastic constant,
and p denotes the friction coefficient. Here, min(a,b) selects the
smaller value between a and b, sgn(x) =1 for x > 0, and sgn(x) =

o Lo d
—1 for x < 0. The tangential displacement uE}] satisfies auf;) =

v,(.jl> for | ﬂﬂ < ,ufg‘) with the tangential velocity v,(;) =

Y

d d .
(ar; - a}f,) -t;;, whereas ugj) remains unchanged for |f§;)|

f. We refer to the contact with |fiP| < uf%™ as the stick
contact and the contact with | fg)| > ,ufg»‘) as the slip contact.
The tangential displacement, ug), is initially set to zero.

The (symmetric contact) shear stress is given by

o(05 70, 1) = 005 70, 1) + (05 70, 1) ®)
with the normal component of
1 XiiVij ~(n
o) (050, ) = — D7 T )
N EE
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and tangential component of ¢

© 1 Xi = Vi (0
o (0570, ) = =54 > > -
i

i oj>i

(10)

Here, A corresponds to the area of the system, and we choose
A =+/3%/2 as shown in Appendix A. The pressure is given by

P(0; 70, 1) = ﬁz Z (xXitfijx + Yifiiy)- (11)
i j>i

In the right-hand sides of eqn (9)-(11), we have omitted the
arguments 6, y,, and p. Similar abbreviations are used below. As
we are interested in quasistatic processes, we do not consider
the kinetic parts of ¢ and P and the dependence on w. After
several cycles of oscillatory shear, o(f) becomes periodic. The
storage and loss moduli are given by**

L[ ,
G0 = 7| “d0eOs ) sin0/n. 12)

127[
GG = 2| 0oz ) cos0/. (13

3 Theoretical analysis

Assuming 7y, < & « 1, we analytically obtain G’ and G” for the
TBS. The derivation of the analytical results can be found in

Appendix C.
First, the normal component of the shear stress is given by
V3kay(6)

o (0) = Y0

- (14

The tangential component of the shear stress is given by

G(t)(g) — M (15)
for yo < yc(u) with a critical amplitude
4ukne
(1) = ) 16
vl =31 (16)

which characterizes the transition from stick to slip states in
the contact between the particles. For y, > y.(u), the tangential
component of the shear stress is given by

ukne b1
, 0<6<—=
V3
phne  V3ki((0) —79)  ® n
VORAAY) 7o) Tcep<l
/3 =+ 7 , 7 < < 3 + 0O
s0(9) = { —Hha? Tro<o<=
V3’ T2
ke N3k(p(0) +79,)  3m 3n
Mgt
NG + 4 5 S < 3 + 6O
ukne 3n
, —+ 0 <0< 2m,
V3 2

(17)

This journal is © The Royal Society of Chemistry 2023

View Article Online

Paper
0.2 :
o = 0.00003
8 8
e =0 - |
= =
~ ~
o) (&)
—0.2 ! 0.2 ‘
—1 0 1 -1 0 1
Y/% ¥/
0.2 : 0.2 :
7o = 0.0001 o = 0.001
S S
£ 0 g 0 1
~ ~
o) o)
—0.2 : —0.2 ‘
—1 0 1 -1 0 1
¥/ ¥/

Fig. 3 Scaled shear stress a/yo against y/yo using eqn (4), (8) and (14)-(17)

for various values of yo with ki/k, = 1.0, ¢ = 0.001, and u = 0.01.

where @ = cos (1 — 2y.(1)/70)- Regions withg <0< g + 0 and

3n<9<3n
2~ 2

regions correspond to the slip state. Owing to this transition in
the contact, the stress-strain curve given by eqn (14)-(17)
exhibits a hysteresis loop. Eqn (17) does not exhibit a viscoe-
lastic response but a typical elastoplastic response without
viscous effect.

Fig. 3 shows the scaled shear stress o/y, against the scaled
strain 7y/y, using eqn (4), (8) and (14)-(17) for various values of
yo With ki/k, = 1.0 and u = 0.01. The shape of the scaled stress—
strain curve is characterized by a parallelogram as a typical

+ O correspond to the stick state, and the other

elastoplastic response. As y, increases, the maximum value
= (6/y0)|yp,=1 decreases from a larger value V3kn + k) /4

G'max
to a smaller value v/3k, /4. As shown in Appendix D, the storage
modulus G’ is approximately given by 6,,.x. Hence, the decrease
of Gmax in Fig. 3 indicates the decrease of G’. For y, = 0.00003
and 0.0001, the hysteresis loop exists, but the area of the loop is
negligible for y, = 0.00001 and 0.001. The loss modulus G” is
proportional to the area of the loop, as shown in Appendix D.
Hence, the dependence of the area on y, indicates that there is
a peak in G” as y, increases.

Substituting eqn (8) and (14)—-(17) into eqn (12), we obtain
the storage modulus as

\/g(kn + kt)
4 b
G =
V3
4

(18)
{kn +%(@ —sin @ cos @)}, Yo > Velt)-

As y, increases beyond y.(u), G’ decreases from a higher value to
a lower value. The corresponding behavior has been observed
in the MBS in previous studies.®>*
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Substituting eqn (8) and (14)-(17) into eqn (13), the loss
modulus is given by
0 7o < 7e(w)

GN — 73/(
\/4; H(1—cos? @), 7y > 7.(n).

(19)

The loss modulus G” is zero for y, < 7y.(1t), whereas G” sharply
increases with y, when 7, exceeds y(¢) and decreases to 0 after
a peak. The behavior of G” for the TBS qualitatively reproduces
that of the MBS in previous studies.**
We adopt the abbreviation for the pressure at y = 0 as
Py := P(0 = 0; 70, 1), (20)
which is also obtained as
Py = V3kne. (21)

From eqn (16), (18), (19) and (21), we derive scaling laws for a
given ¢ as

G/ (1, o) = Gog ()% (%) (22)
G (1, 70) = Gy ()" (ﬁ) (23)

where ¢'(x) and ¢”(x) denote scaling functions. The maximum
values of G’ and G” are denoted as Gy, and G, respectively. In
the TBS, they are given as

!

Gy = V3(kn + ki) /4, Gy = V3ki/ (4m), (24)

1, x < Xe,
' (x) = (1 +w>/(l +/’§_) R
9(x) = { (1)77 cos? T'(x), )‘z i ;Z’ z6)

with T(x) = cos™'(1 — 2x./x), S(x) = sin(27(x))/2, and

Xe = 4/(3\/§)

4 Comparison with the MBS

We demonstrate the relevance of the TBS analysis based on the
simulation of a two-dimensional MBS consisting of N frictional
grains. First, we consider a system corresponding to the TBS,
where all the particles are identical and initially placed on the
triangular lattice with a unit length # (Fig. 1(a)). The details are
shown in Appendix A. Next, we consider a bidisperse system
where the number of particles with diameter d is equal to that
of particles with diameter d/1.4, and the particles are randomly
placed with packing fraction ¢ (Fig. 1(b)). The mass densities of
the particles are identical. The details of the disordered MBS
are shown in Appendix E. In both systems, the shear strain
given by eqn (4) is applied for N. cycles using the SLLOD
equation under the Lees-Edwards boundary condition.>* In
the MBS, we replace the normal force as
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Fig. 4 Storage modulus G’ against yo with ki/k, = 1.0 and ¢ = 0.001 for
various values of u. The points represent the results of the ordered MBS.
The thin solid lines represent the analytical result given by eqgn (18). The
vertical dashed lines represent the critical amplitude y.(u) given by egn (16)
for u =107% 1073 1072 107%, and 1 from left to right.

i G (27)

with the normal viscous constant #, and the normal velocity
ij

ym = <%r,- — %rj) - n;; to include the viscous force depending
r

on the relative velocity. The tangential force is replaced by

1§ = min(| FP]uri")sgn( ), (28)
with
F = —(kay) + nol), (29)
where fg-"el) = —knug‘) denotes the elastic part of the normal

force with a tangential viscous constant 7. We measure G, G”,
and P, in the last cycle using eqn (11)-(13). For the ordered
MBS, we use N = 64, k/k, = 1.0, and ¢ = 0.001, whereas N = 1000,
ki/k, = 0.2, and ¢ = 0.87 are used for the disordered MBS. In
both systems, the other parameters are identical: N, = 20, 1, =
Ny = Vmky, and @ = 0.0001y/m/k, with a mass m of larger
particles.

As shown in Fig. 4, we plot G’ for the ordered MBS against y,
with k/k, = 1.0 and ¢ = 0.001 for various values of y as points.

0.15

=1

o u=10"

Ap=10"2
=103
u=10"*

e =00

G"/k‘,,

0.05 H

0 . _
10771071075 10"* 1072 1072 10!
Yo

Fig. 5 Loss modulus G” against yo with ki/k, = 1.0 and ¢ = 0.001 for
various values of u. The points represent the results of the ordered MBS.
The thin solid lines represent the analytical results obtained using eqn (19).
The vertical dashed lines represent the critical amplitude (1) given by
eqn (16) for u = 1074 1073, 1072, 1074 and 1 from left to right.
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Moreover, we plot the analytical results of the TBS obtained
using eqn (18) as thin solid lines. Surprisingly, the results of the
TBS agree with those of the MBS for y, < 0.003 without any
fitting parameters. As 7, increases beyond y.(x) shown by the
vertical dashed lines, G’ for u > 0 decreases and converges to a
constant, which is equal to G’ for u = 0. For larger y,, G’ for the
MBS decreases again, whereas the theoretical G’ for the TBS is
constant. This discrepancy results from the violation of condi-
tion yo « ¢ for the analytical calculation. If we numerically solve
the TBS to obtain G’ without the assumption 7, « ¢, G’
decreases after a plateau again as in the case of MBS, although
its value in the TBS for y, — 0.1 slightly deviates from that of
the MBS, as shown in Appendix F.

As shown in Fig. 5, we plot G” for the MBS on the triangular
lattice against y, with k/k, = 1.0 and ¢ = 0.001 for various values
of u as points. Moreover, we plot the analytical results of the
TBS obtained using eqn (19) as thin solid lines. The analytical
result agrees perfectly with the MBS for y, < 0.003 without any
fitting parameters. As 7, increases beyond y.(1) shown by the
vertical dashed lines, G’ for u > 0 increases from 0 and
decreases after reaching a peak. The peak position of G’
against y, increases with p. Thus, our analytical results fail to
capture the behavior of G” for = 1.

Consider the disordered MBS shown in Fig. 1(b). Fig. 6
shows the scaled shear stress ¢/y, against the scaled strain
/70 in the disordered MBS with ¢ = 0.0001. The maximum value
Omax decreases as y, increases. The area S of the curve is the
largest for y, = 0.00003. It is interesting that stress—strain curves
are not characterized by parallelograms in this case in contrast
to Fig. 3. This means that the disordered configuration of
particles creates an effective viscosity, and thus, the response
to an applied strain becomes visco-elastoplastic.

The behaviors of G’ and G” in the disordered MBS are
similar to those of the TBS as shown in Appendix E. Therefore,
it is expected that the scaling laws in eqn (22) and (23) for a

0.3 0.3

o = 0.000001 o = 0.00003
£ £
£ 0 TE 0 1
~ ~
(&) (<)
—-0.3 —-0.3 ‘
-1 0 1
Y/
0.3 0.3
1o = 0.001
£ £
<& 0 £ 0 /
~ ~
() ()
-0.3 —-0.3 ‘
—1 0 1 -1 0 1
¥/ Y/

Fig. 6 Scaled shear stress a/yo against y/yo in the disordered MBS for
various values of yo with 4 = 0.01 and ¢ = 0.870.
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Fig. 7 (a) Scaled storage modulus G’/G,’v[ against the scaled strain kyo/

(1Po(yo, W) with ¢ = 0.87 and ki/k, = 0.2 for various values of u in the
disordered MBS. The solid line represents the analytical result of the TBS
given by eqgn (25) with ki/k, = 1.5. (b) Scaled loss modulus G”/G/I:,l against
the scaled strain kyyo/(uPo(yo. 1)) with ¢ = 0.87 and ki/k, = 0.2 for various
values of u in the disordered MBS. The solid line represents the analytical
result of the TBS given by eqgn (26) with k/k, = 1.5.

given ¢ in the TBS can be used even in this system with
corresponding ¢. This expectation is verified by Fig. 7, in which
we plot the scaled moduli G’ /G and G /G), against the scaled
strain k¢po/(uPo(yo, 1)) for various values of u in the disordered
MBS. Moreover, we plot the analytical results for the TBS
obtained using eqn (25) and (26) as solid lines, which qualita-
tively reproduce the MBS results for small scaled strain, while
the scaling is apparently violated for large scaled strain. Here,
we choose k/k, = 1.5 for the TBS to fit the second plateau to that
of the MBS. At present, we do not know the relationship
between ¢ and the fitting parameter.

5 Conclusions

We demonstrated the relevancy of a model of the TBS to
describe the complex modulus of jammed frictional granular
materials under oscillatory shear. We obtained the analytical
expressions for the y,-dependence of G’ and G” as shown in
eqn (16), (18), and (19), which predict the y-dependence of the
critical amplitude 7., the decrease of G’, and the peak of G”
above y. for crystalline solids. The analytical expressions lead to
the scaling laws given by eqn (22) and (23). Although we have
ignored the non-affine motion for crystalline solids, these
analytical results quantitatively agree with those of the ordered
MBS. Surprisingly, some characteristic features of disordered
solids for low strain (or high pressure) can be captured. These
results indicate that the analysis of the toy model gives a basis
for understanding the nonlinear rheology of frictional granular
materials under small strain.

Although the values of the plateaus in G’ for disordered MBS
depended on ¢ — ¢;,>° the corresponding values of the TBS are
independent of ¢ — ¢y, as expressed in eqn (18). In addition,
our analytical expressions cannot reproduce the second
decrease of G’ and increase of G” near y, = 10> in the MBS.
The discrepancy should result from the disorder because it
leads to the ¢-dependence of G'.” To include the disorder
effect, we regarded k/k, as a fitting parameter. In previous
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studies on models with small degrees of freedom, e.g., the
coherent potential approximation,®?*3° the corresponding
fitting parameters were self-consistently determined. In future
studies, we will discuss the self-consistent determination of the
parameter for the TBS.

Some researchers are interested in contributions from
higher harmonics characterizing the nonlinear response to
oscillatory shear,?* but the nonlinear viscoelastic moduli char-
acterizing the higher harmonics are negligibly small for
jammed frictionless particles.>® However, the higher harmonics
in the frictional granular materials require further careful
investigation.
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Appendix A: details of Ordered MBS

This section explains the details of the ordered MBS consisting
of monodispersed particles initially placed on a triangular
lattice. We consider a two-dimensional assembly of N frictional
particles in a periodic box with sizes along the x and y direc-
tions L, and L,, respectively. Here, we initially place N = 2N,N,,
particles of diameter d with integers n, and n, at r; as

r= (nxf —L,/2, \/§ny€ — Ly/2> (30)

for 0 < i < N,N, with integers ny, n,, and i = n, + Nyn,. For
NN, < i < 2NyN,, r; is defined as

r= <(nx 1/l = Le/2,V3(n, 4+ 1/2)0 — L},/z) (31)
with i = n, + Nyn, + NyN,. The initial configuration is illustrated
in Fig. 8. We choose L, = N,/ and L, = v/3N,{ with £ = d(1 — ¢).

The position r; and peculiar momentum p; of particle i with
mass m; and diameter d; are driven by the SLLOD equation
under the Lees-Edwards boundary condition as®*

(32)

d . p;
aiT P()yiex + Z;

Fig. 8 Initial configuration of mono-dispersed particles on a triangular
lattice. The red rectangle, including interactions represented by the blue
lines, corresponds to the TBS.
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d
== Opises 1 (53)

where 7(t) = yow cos wt and e, = (1,0) is the unit vector along the
x direction. The interaction force f; is defined as

fi=> (f}(-m”ii +ﬁ§l)’zi)H (dy — i)

J#i

(34)

with d; = (d; + d;)/2, nj = rylryj, t; = (—nyy, nyx), and ry=r, — r; =
(x4, y)- The normal force is given by

P = et + i) (33)
with a normal viscous constant 7, and
vSJ"“) = (v; — v)my, (36)

d
where the velocity of particle i is given by v; = —r;. The follow-
ing model is adopted for the tangential force:

£ = min(| FP|wDsgn( £,

where fiM) = —k,ul? denotes the elastic part of the normal
force. Here,fsjt-) is given by

F = —(kadd + nold) (38)

with a tangential viscous constant .. The tangential velocity
vS}) is given by

(37)

vl = v — v) ¢y (39)

c 1 Lo d 7
The tangential displacement uS}) satisfies aug) = v,(-;> for | f§})| <
1Y, whereas uf) remains unchanged for |fiP| > ufi<). The
tangential displacement ug) is set to zero if i and j are detached.

If all the particles are separated, the packing fraction ¢ for
the ordered MBS is defined as

Z Ttd,*2

¢ = 4L.L,

(40)

Even if contacts exist between the particles, we use eqn (40) by
assuming that the contact length d;; — r; is sufficiently lower
than d;;. Using eqn (40), ¢ is defined as

T
= 41
¢ 2V/3(1 —¢)? (41)
The jamming point of this system is
b
=— 42

with ¢ = 0. The distance from the jamming point is proportional
to ¢ as

¢ =y~ (43)

s
—e
V3
for ¢ « 1.

The shear stress ¢ is defined by eqn (8) in the main article
with the normal component

1 XY o(n)
L.L, Z Z ri i

ioj>i

o — _

(44)
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and tangential component

) SR L D)
2LXL"; Y rl] Jij
The pressure is defined as
1 .
P= HZ Z (xitfij + Viliiy)- (46)
XY >

We use N, = 8, N, = 4, N. = 20, k. = ky, and 5, =9, =
knv/m/ky, where m denotes the mass of a particle with dia-
meter d. This model corresponds to a restitution coefficient e =
0.043. We adopt the leapfrog algorithm considering a time step
of At = 0.05t,. We choose o = 1.0 x 1074\ /k, /m as the quasi-
static shear deformation because G’ and G’ are almost inde-

pendent of o for w < 1.0 x 1073/k, /m.

As shown in Fig. 4 and 5, the behaviors of G’ and G” of the
TBS agree with that of the MBS. We explain the theoretical
background of the TBS. The initial configuration is shown in
Fig. 8; it contains the unit cell represented by the red rectangle
with length /# and height v/3¢/2. It contains interactions
between the three particles represented by blue lines. Here,
we assume that the particles move affinely as

r{t) = r,(0) + 7(0(1)yi(0)ex-

In this case, the corresponding relative distances between the
particles in any unit cell are identical.

In particular, in a unit cell containing particles i = iy, i,, and
i3 with 7; = NxN,, i, = 0, and i; = 1, the positions of the particles
are given by

VMn—(wwm<“y;Lv+fjf&“y;Lv, (48)

(47)

n=(=00F-5-%) @
n = (005 -5-%) 6o

The relative distances between these particles are identical to
those of the TBS, given by eqn (1)-(3), which indicates that the
TBS provides the interaction forces among the three particles.
This system includes 2N,N, unit cells with identical interaction
forces. Hence, the normal and tangential components of ¢ are
given by

= Sy TEES (51)
LXL}" i=iy,in,i3 | j=i1,in,0n r,-/-
(j>1i)
0 = Ny Xi = Vi () 52
7 7L L Z Z ri if ( )

J=iniasi v
(j>1)

XY =il i3
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Fig. 9 Storage modulus G’ against yq for the ordered MBS with u = 0.01

and ¢ = 0.001. The open and filled symbols represent the results of the
particles with and without rotation, respectively.

The pressure is also given by:

N.N,

P =
L.L,

> (xufyx + vifiny) (53)

J=insi,0
(j>1)

i=11,02,03

Using the relation LL,/(2N,N,) = v/3(*/2 corresponding to
A=1/32/2,6™, ¢, and P coincide with eqn (8)-(11). Hence,
if the assumptions of the affine motion, i.e., eqn (48)-(50), are
satisfied, G’ and G” in the ordered MBS coincide with those in
the TBS.

Appendix B: effect of particle rotation

In this section, we illustrate the effect of particle rotation,
which was not described in Appendix A. In the model with
rotation, the tangential velocity vg) is given by

v = i — vty — (dio; + dy)/2 (54)

instead of eqn (39), where w; denotes the angular velocity of
particle i. The time evolution of w; is given by

i

a” =0

(55)

A =102
‘AQ u=1073

=10

G / En
4

0.05 | AA 1

AAAAAAAAAAA %—v\mw‘u

0: - 3
10771076107°10"* 10721072 10~!
Yo

Fig. 10 Loss modulus G” against yo for the ordered MBS with u = 1072,
103,107 107> and ¢ = 0.001. The open and filled symbols represent the
results of the particles with and without rotation, respectively.
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Fig. 11 Loss modulus G” against yo for the ordered MBS with u = 1.0,0.1
and ¢ = 0.001. The open and filled symbols represent the results of the
particles with and without rotation, respectively.

with the moment of md?/8 and torque

T_—Z S

inertia I; =

As shown in Fig. 9, we plot G’ in the ordered MBS with and
without rotation with k/k, = 1.0 and ¢ = 0.001 for various values
of i = 0.01. The values of other parameters are the same as
those in Appendix A. The effect of particle rotation is negligible,
except for the region near 7y,.

As shown in Fig. 10, we plot G” in the ordered MBS with and
without rotation with k/k, = 1.0 and & = 0.001 for = 1072, 107,
107, 107" and 0.00001. The values of other parameters are the
same as those in Appendix A. There are slight deviations in
the peak position near y. between particles with and without
rotation.

In Fig. 11, we plot G” in the ordered MBS with and without
rotation with k/k, = 1.0 and ¢ = 0.001 for u = 1.0 and 0.1.
There are slight deviations in the peak position near y.
between particles with and without rotation even for these
higher p. In addition, the second increase in G” around 7, =
0.1 for particles without rotation disappears for those with
rotation.

Appendix C: analytical calculation of
shear stress and pressure
This section briefly explains the derivation of the normal

and tangential components of shear stress and pressure for a
small value of y,. From eqn (1)-(3), the relative distance ry is

given by
r(0(1)) = (Wz@) (56)
13(000)) = (*”“2” ”) 657)
ras0(0) = (~£,0). 69)
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Substituting these equations into uEJ"l) =
displacements are given by

rj — d, the normal

n V3
3 (1) = —ed +=6(0()) + O(37)), (59)
n \/§
W3 (1) = —ed —=0(0(0) + 0(2’), (60)
u)(t) = —ed. (61)
Substituting these equations into eqn (6), we obtain the normal
force as
n V3
f1(2) = kn < 4 2(0)¢ |, (62)
: V3
15 = ke ( 7(6)¢ ). (63)
f23 = nbd (64)
up to O(yo).

By differentiating eqn (56)—(58) with time ¢, we obtain the
relative velocity as

vlz(l‘) = <w7 0>7 (65)
via(t) = <\ﬂ2( )t ,o), (66)
v,5(0) = (0,0) (67)

d
=—(0(¢)). The tangential unit

with the strain rate 7(60(¢)) Fr

vector is given by

m(z)-( ELRE U ) / il (68)
m(z)z( oY) 15) / ol (@)
£:4(0) = (0, 1), (70)

By considering the inner product of v; and t;, the tangential
velocity is given by

W0 = ~265(00) + 0(1). @
W0 = ~26(00) + 0(1). (72)
v = o. (73)
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If the transition from the stick state to the slip state does not
occur under oscillatory shear, the tangential displacement is
obtained by integrating VS})[t) as

ud(0) = () = —60W) + 06 ()

u$)(t) = 0.(75)Substituting these equations into f(,}) = —ktugv) yields
S =14 = 3k (0(0))/ /4, (76)
f8= (77)

up to O(yo). The condition that the transition does not occur is
satisfied when 1) < uf{d for y = 7,. Using eqn (64) and (77) with
the assumption y, « ¢, the condition is replaced by y, < 7. with
e given by eqn (16).

For yo > 7., there exist regions where ug) is unchanged in the
slip state as

_Hkl:fd’ 0 < 0(0) <g
#k]:d _ 3d(“/(9£ ~ ) g <0< g+ o

ugtz) _ #k;l8d7 3+ <0< 5 (78)

uk}:d - 3d(«,v(ej + y0)7 3775 <0< 3; Lo

_“kl:fd, 37“ +60<0<2rm,
= ufl, (79)
us} = o, (80)

where O satisfies

phoed ] (5+€) 10 _ kyua . (81)

ki 4 Tk

This equation provides @ = cos (1 — 27./y,). Substituting
these equations into fif) = —ku? yields

—ikned, 0 < 0(0) <g
3kd(y(0) —y) = n
_ o — NN 0 il
ukned 7] » 5 < 0 < 5 + O
. 1(? = { pkyed, S-+0O<0< 37“ (82)
3kid(p(0) + 7o) 3n 3n
TtV A0 —_< g
ukned ) \ 3 0< >+ ]
—pkned, 37“—0—@ <6 < 2m,
% =r1, (83)
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fY=o. (84)
The normal component of ¢ in eqn (9) is given by
e™ =61 + oy (85)
with
(n) 1 xX12y12 4
o) = 4 1 (86)
1 1313
ol = 1 . (87)

Substituting eqn (58) and (57) with eqn (64) and (63) into
eqn (86) and (87) and using eqn (85), we obtain ¢ as eqn (14).
The tangential component of ¢ in eqn (10) is given by

¥ =6 + ol (88)
with
) 1 xi? =y
=TT f|2 (89)
¢ 1 x5 — yis?
021)3) T4 flz (90)

Substituting eqn (58) and (57) with eqn (77) into eqn (88), (89),
and (90), we obtain ¢¥) as eqn (15) for y, < y.. Using eqn (84)
and (83) instead of eqn (77), we obtain ¢\ as eqn (17) for y, >

Ve

The pressure, i.e., P, in eqn (11) is defined as
P=P;, + Py;+ Py (91)

with

1
Py = —ryfi"

31l (92)

Substituting eqn (56)-(58) with eqn (62)-(64) into eqn (91) and

(92) with y = 0, we obtain Py(ye, 1) as eqn (21).

Appendix D: relation between shear
modulus and stress—strain curve

In this section, we relate the shape of the stress-strain curve to
the complex shear modulus. The shear stress (0) is expanded
using the Fourier series as

—VOZG sin(nf) + yOZG cos(nf),

where G, and G, with n > 1 denote the higher harmonics,
G' =G, and G"

(93)

= (. By neglecting G, and G, forn > 1,
(0 =m/2) Y
7o Yoly/ze=1

G ~ (94)

= Omax;

which is the maximum value of the scaled stress-strain curve
illustrated in Fig. 3(b). This expression and the scaled stress-
strain curve in Fig. 3(b) explain the decrease of G’ defined by

eqn (18).
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The area S of the curve for o(0)/y, against y(0)/y, is given by
2n
S = J a0k dy(0) a(6)

X 95
o Yo dO %)

Substituting eqn (4) into eqn (95) with eqn (12), we obtain

21
S= J dla(0) cos0/y, = nG", (96)

0
which results in G” = S/n. As y, increases, the area S of the
scaled stress-strain curve in Fig. 3(b) increases first and
decreases later, which explains the y,-dependence of G” pro-
vided by eqn (19).

Appendix E: details of disordered MBS

In this section, we present the details of the disordered MBS.
This model is an extension of the monodisperse model used in
Appendix A, including the dispersion of the particles and
disordered initial configuration.

The system is bidisperse and includes an equal number of
particles with diameters d and d/1.4. To simulate the disor-
dered MBS, we randomly place the particles in a rectangular
box with an initial packing fraction of ¢; = 0.75. The system is
slowly compressed until the packing fraction reaches ¢.>*
In each compression step, the packing fraction is increased
by A¢ = 1.0 x 10~* with an affine transformation. Thereafter,
the particles are relaxed to a mechanical equilibrium state with
the kinetic temperature Tx =) p?/(mN) < Ty. Here, we

1
choose Ty, = 1.0 x 10 %k,d>. After compression, the oscillatory
shear strain given by eqn (4) is applied for N, cycles. In the last
cycle, we measure G’ and G” using eqn (12) and (13) with
eqn (8)—~(10). The pressure, Py(yo, 1) is obtained using eqn (11)
after the last cycle. We use ¢ = 0.87, N = 1000, N, = 20, L,/L, = 1,
ke = 0.2k, and n, = n, = kn/m/ky.

Fig. 12 shows the storage modulus G’ against y, in the
disordered MBS for various values of u. The storage modulus
G’ is almost independent of y, for a small y, and decreases as 7,
increases. The endpoint of the first plateau increases with
except for u = 0. A second plateau of G exists for u = 10"* and
10~°. The behavior of G’ for relatively small y, is similar to that

m=10"
® =102
A p=10"°
uw=10"*
= u=107"

&} e e =0

teed sttt eetieddi iyl
¥ ;. @
s
(] Lo TR

10771075 107> 10=* 1073 1072

Yo
Fig. 12 Storage modulus G’ in the disordered MBS against yo with ¢ =
0.870 for various values of u.
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Fig. 13 Loss modulus G” in the disordered MBS against yo with ¢ = 0.870
for various values of pu.

of crystalline solids as depicted in Fig. 4. On the other hand, the
decrease of G’ for larger y, cannot be captured by the analytical
results of the TBS. Note that G’ for u = 0.1 in the limit y, — 0 is
different from that for ¢ < 0.01, which results from the u
dependence of the jamming point ¢;.

Fig. 13 shows the loss modulus G” in the disordered MBS
against y, for various values of u. For sufficiently small y,, G” is
zero, while G” becomes non-zero as 7, increases. The loss
modulus G” starts to increase for smaller y, as u decreases.
Similar to the case of G’, TBS captures only the behavior of
relatively small y, (see Fig. 5 and 13).

Appendix F: numerical shear modulus
for TBS

In this section, we show the behaviors of G’ and G” in the TBS
without the assumption used to obtain the analytical solution.
Here, we numerically obtain G’ and G” under quasistatic
oscillation using eqn (12) and (13) based on the left Riemann
sum, where the integration of ¥(0), i.e.,

rndO‘P(G), (97)

0

1mp=10°
o u=10"
A =102
u=1073
< p=10""*
O e =0

0 ‘ I B BT
10771075107° 10710721072 10~*

Y0

Fig. 14 Storage modulus G’ against yo with ki/k, = 1.0 and ¢ = 0.001 for
various values of u. The points represent the numerical results of the TBS,
while the thin solid lines represent the analytical result given by egn (18).
The vertical dashed lines represent the critical amplitude y.(1) given by
eqgn (16) for u = 1074 1073, 1072, 107, 10° from left to right.
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Fig. 15 Loss modulus G” against yo with k/k, = 1.0 and ¢ = 0.001 for
various values of u. The points represent the numerical results of the TBS,
while the thin solid lines represent the analytical results obtained from
eqgn (19). The vertical dashed lines represent the critical amplitude y.(x)
obtained from eqn (16) for u = 107*, 1073, 1072, 1072, 10° from left to right.

is approximated as

2

Jhdetp(o) ~ i P(0n)A0

0 n=1

(98)

with A0 = 2n/M and 0,, = (n — 1)A0. We use ¢ = 0.001 and A0 =
5.0 x 107° in our simulation.

As shown in Fig. 14, we plot the storage modulus G’
numerically obtained from the TBS against y, with k/k, = 1.0
for various values of u as points. Moreover, we plot the analytical
results derived from eqn (18) as thin solid lines. The numerical
results agree with the analytical results for y, < 0.003 and
reproduce the second plateau of the MBS shown in Fig. 4.

Fig. 15 shows the loss modulus G” numerically obtained
from the TBS against y, with k/k,, = 1.0 for various values of u as
points. We also plot the analytical results given by eqn (19) as
thin solid lines. The numerical results agree with the analytical
results for y, < 0.003.
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