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We propose a classical density functional theory model to study the self-assembly of polymeric
surfactants on curved surfaces. We use this model to investigate the thermodynamics of phase
separation of a binary mixture of size asymmetric miscible surfactants on cylindrical and spherical
surfaces, and observe that phase separation driven by size alone is thermodynamically unfavorable on
both cylindrical and spherical surfaces. We use the theory, supplemented by dissipative particle
dynamics (DPD) simulations, to predict pattern formation on a non-uniform surface with regions of
positive and negative curvature. Our results suggest potential ways to couple surface topography and
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1. Introduction

The spontaneous self-assembly of polymeric surfactants has
long been exploited for the bottom-up fabrication of surfaces
with complex patterns. It has long been known that simple
chemical modifications of the surfactants allow tuning these
patterns’ geometric features down to the nanoscale. More
recently, it has also been appreciated that another way to
control pattern formation is to modify the topography of the
surface on which the surfactant is deposited, which can in
some cases be advantageous.' ™ Notably, because changing the
surface pattern modifies the interaction with the external
environment, this route has been proven useful for a diverse
range of applications, from drug-delivery and biosensing™® to
nanolithography.”

Experimental observation of nanoscale patterns in binary
mixtures of oligomeric surfactants of different lengths on a
spherical nanoparticle* triggered an active discussion and
somewhat heated debate.®® Progress in understanding these
experiments and rational design of nanoscale-pattern-forming
systems relies on the ability to theoretically predict the features

“State Key Laboratory of Organic-Inorganic Composites, Beijing University of
Chemical Technology, Beijing 100029, P. R. China

b Key Laboratory of Soft Matter Physics, Institute of Physics, Chinese Academy of
Sciences, Beijing 100190, China. E-mail: jd489@cam.ac.uk

¢ Songshan Lake Materials Laboratory, Dongguan, Guangdong 523808, China

4 School of Physical Sciences, University of Chinese Academy of Sciences, Beijing
100049, China

¢ Department of Materials, Imperial College London, Prince Consort Road SW72AZ,
London, UK. E-mail: sangiole@imperial.ac.uk

t Electronic supplementary information (ESI) available. See DOI: https://doi.org/

10.1039/d2sm01540d

This journal is © The Royal Society of Chemistry 2023

polymeric surfactants to design surfaces coated with non-uniform patterns.

of the surface patterns formed by the surfactants as a function of
surface topography. To this end, we combine well-established
theories of polymer interactions and polymer brushes to build a
free-energy density functional model describing a system of
polymeric surfactants confined to move on a surface. Within
the framework of classical density functional theory (DFT),'*"
we use our model to predict how surface topography, polymer
size, and chemical identity determine the final self-assembly
pattern. We show qualitatively that the same behaviour in
terms of phase separation is observed on surfaces of uniform
positive mean curvature, ie., spheres and cylinders, and discuss
a sinusoidally modulated surface as an archetypal system
with non-uniform curvature. Dissipative particle dynamics
(DPD) simulations are performed to confirm the validity of our
results in regions of parameter space where the assumptions
of the continuum-based thermodynamic model are difficult
to justify.

The remaining paper is organised as follows. In Section 2,
we present a detailed derivation of the theoretical model,
highlighting its assumptions and thus its range of validity
and accuracy. We also describe the details of the coarse-
grained model used for the DPD simulations. In Section 3, we
explore the thermodynamics of phase separation on surfaces of
uniform, positive curvature, and on a sinusoidally modulated
surface, taken as an archetypal example of the more general
case of surfaces of non-uniform curvature. For the latter
system, we also present results from DPD simulations to test
the qualitative predictions of our DFT model. Finally, we use
our new insights to address the controversy around micro-
phase separation on nanoparticles, and discuss the practical
application of our results in the wider context of materials
science.
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2. Methods

2.1. Theoretical model

Our aim is to provide a model for a binary mixture of polymeric
surfactants that can account for (i) the chemical affinity
between different polymers; (ii) differences in size between
the two types of polymers; and (iii) effects due to the polymers
being grafted on a surface of variable curvature. We consider
one end of each polymer chain to be confined, but free to
diffuse across the surface. This condition is satisfied by many
types of surfactants where the end group is only physisorbed on
the surface, for example, DNA coated colloids where DNA is
chemically functionalised with a cholesteric group at one end,
and then inserted into a lipid bilayer supported on the
surface.'® In practice, we note that our model can be built by
reformulating in continuous space the lattice model for a
binary mixture of polymers of different lengths proposed by
Van Lehn and Alexander-Katz in ref. 14, although in our case we
additionally account for the effects of local curvature. A some-
what similar approach was adopted by Tung and Cacciuto as
mentioned in ref. 15, although here we perform an additional
step to recast the model in the framework of classical DFT,
which allows us to consider a continuous, spatially-varying
density field rather than homogeneous phases only.

As in the previous studies,"®"* we considered two types of
polymeric surfactants with different chain lengths. In particular,
we denote the number of Kuhn segments in the shorter and
longer chains as Ng and Ny, respectively. Hereafter, unless stated
otherwise, the subscripts S and L will be used to refer to
quantities related to shorter (S) and longer (L) chains. Both types
of chains are considered to be in the brush regime, allowing the
use of DeGennes’ blob picture to derive the free energy density as a
function of the local curvature. As we are interested in addressing
potentially non-homogeneous densities of surfactants, we build
a free energy functional whose associated density field is that of
the grafting density of the two polymer chains, g5(x) and a1 (x), x
referring to a generic point on the grafting surface. We further
simplify the problem by considering a fixed overall grafting
density of chains, which we set equal to ¢. In this case, we can
recast our free-energy functional in terms of the local fraction of
long chains ¢;(x), where clearly ;= ¢0,i=S, L, and gy, + g5 = 0.
We then make an ansatz and take the free energy functional to
be dependent only on the local density. We expect this approxi-
mation to improve as the gradients in the density field become
smaller, the case in which one recovers the exact bulk density
functional; in practice, this will occur if the surface curvature
does not change appreciably on the length-scale of the surfac-
tants. Another important aspect to highlight is that our theore-
tical model is an effective 2D theory: the local functional
depends only on the 2D grafting density of the polymeric
surfactants, not on the full 3D density field describing the whole
polymer. On surfaces with spatially varying curvature, we should
expect the theory to work only as long as the brush height is not
much larger than the length-scale on which the surface curvature
varies appreciably. This limitation will become clearer later,
when discussing the form of the curvature contribution to the
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free-energy. It occurs because, in order to write down our simple
analytical functional, we assume that the local environment felt
by a given polymer is the same as that of a polymer grafted on a
surface of constant mean curvature, regardless of the distance
from the surface. However, as one moves away from the grafting
point, the correlation with the underlying surface curvature close
to this point becomes weaker. In other words, the top layer of the
polymer will not know to which surface grafting point and
surface curvature it belongs, and our assumption cannot hold
anymore. With these premises, within this local density approxi-
mation, our free-energy functional can be written as:

Floy(x)] = jAf«bL(x; 0)dA, )

where

f:fmix +fent +fcurv~ (2)

The three terms appearing in eqn (2) have the following form
and physical interpretation. First,

ﬁfmix = 20X¢L(1 - (l)L)y (3)

represents the mixing enthalpy contribution to the free energy
density, in a mean-field approximation. Here f§ = 1/kgT, where
kg and T are Boltzmann’s constant and the absolute tempera-
ture, respectively. The parameter y can be thought of as the
Flory y parameter, where y > 0 for immiscible polymers, and
¥ < 0 otherwise. In practice, y controls the tendency of the two
surfactants to phase-separate. Unlike in Flory’s classical model
for polymer mixtures, y is not a per-monomer quantity, but
rather measures the average interaction between two chains.
In our model, we do not discuss the origin of the value of y, but
treat it as a fully tunable parameter. The second term in eqn (2),

Bfent = ol@rlog(¢r) + (1 — pu)log(l — ¢u)],  (4)

represents the mixing entropy contribution to the free-energy
density in the mean-field approximation, and the third term,
feurvs is the free-energy density of a mixed polymer brush, a
contribution which depends on the underlying curvature of the
surface. A recipe for calculating the brush free energy as a
function of surface curvature for brushes of constant curvature
was first provided for spheres by Daoud and Cotton,'® and then
discussed again by Bug et al.'” and Marques et al.'® also for
more general cases. Using a similar approach, Hiergeist and
Lipowsky'® instead discussed the case of a single-component
brush on cylinders. These models were later extended to a
brush of mixed-length chains by Komura and Safran.>® We refer
the reader to the original publications for detailed derivations,
presenting here a streamlined calculation to highlight the
assumptions required to use these formulas for surfaces of
non-constant curvature. The general idea is to use the Alex-
ander-de Gennes blob model'®*" to calculate the free energy of
a brush. Within this picture, the height of a brush on a flat
surface would be:

h = Nal’eh ", (5)

This journal is © The Royal Society of Chemistry 2023
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Fig. 1 The classic blob picture and scaling illustration applied to a bimodal
polymer brush on a spherical or cylindrical surface. The blob size can be
calculated from the observation that blobs form in such a way to be at
touching distance from each other. Note that for spherical or cylindrical
brushes this leads to a simple formula that only depends on the radial
coordinate, although this is not generally the case (taken from the study by
Komura and Safran).2°

where ayx is the Kuhn length, N is the number of Kuhn
segments of the polymer, ¢, is the blob size, linked to the
grafting density of polymers ¢ by ¢ = ¢, %% and v is the Flory
exponent, related to the statistics of the polymer chain con-
formations. For a polymer in a good solvent, the case we will
assume unless stated otherwise, we take v to be equal to an
approximate (yet quite accurate) value of 3/5.

The brush height on a spherical (hgp,) or cylindrical (hcy)
surface with radius R is given by:

h v
hSph = R|:(1 +ﬁ) *1:| (6)
and
(1 i 2v
+v 1+v
/’lcyl—R <1+W) -1 (7)

Within the blob model, the free energy density of a brush is
given using the following expression:

horush (7) 1

Bfeurv = Nolobso = O'J dr'. (8)

0 <)
In eqn (8), Npiobs iS the total number of blobs in a chain in the
brush, and &(7) is the size of the blob, which depends on the

local curvature at a specific point on the surface. The blob size
can be calculated by considering that the polymer chains

i Note that if a bimodal brush is considered, i.e., for polymeric surfactants where
the two polymers have different lengths like in the case we want to address, two
layers will be formed. The first layer comprises both short and long polymers,
whereas the second layer is made up of only the remainder of the longer
polymers. For the second layer, the effective grafting density is reduced to
det = 0¢py, see Fig. 1 for clarity and Ref. 20 for more details.
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separate into blobs that form a packed structure, see Fig. 1
for reference.

Following this procedure, and considering the general case
of a bicomponent brush, Komura and Safran®® derived the
following formula for the blob size on spherical/cylindrical
surfaces:

Espn,i (r) = 50%7 Espna(r) = 5sph,1(r)¢L’1/2 ©)

Eoya (1) = 50\/% Eepalr) = Ecpi (r)d 12 (10)

which, after some algebra, results in the curvature free-energy
density for a two-component brush:

142v

. 1 1+2u
.churv,Sph(Cyl) = a—KzNSF w gi(y) 3 (11)

where I' = (ax/&,)” is the scaled grafting density, and the scaling
function g;, depends on the surface:

_ v Y
gsph(y =m/R) = ;log(l + ;)

+ ¢ log

)

1+ (/w)(1 + g ™)
I+ (/)

(12)

1

14+v v/(1+v)
gcyl(yE/fll/ZR) =y <1+Ty) -1

1+ o v/(14+v)
{1+—yyy(1+oc¢(L‘ & )}

( 1+ )”/”"]
—(1+ y
14

1
+¢ 322
L y

(13)
where

1 1
1
h] :Nsaﬁéo v

(14)

corresponds to the height of the short component on a flat
surface, and o = (N, — Ng)/Ns is the asymmetry parameter.

In practice, the above procedure'®*® leads to a simple
analytical form only if the mean curvature of the surface is
constant, ie., for cylindrical or spherical surfaces. The general-
isation of this functional to surfaces with non-constant curva-
ture is not trivial; it is not even clear if spherical blobs are a
correct approximation, since the local grafting density (and so
the corresponding blob size) does not vary in the same way in
all directions on the grafting plane. Tung and Cacciuto'’
attempted to resolve this by equating the local curvature free
energy for surfaces of non-uniform curvature with that of a
sphere with radius equal to the local mean radius of curvature.
This approach is a generalization of the constant curvature
case, and while it might work well for almost spherical surfaces,
it is clearly only an approximation and it does not withstand the
consistency test: it does not reproduce exact results (eqn (12)
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and (13)) on cylindrical surfaces. We later consider surfaces
with non-uniform curvature that are locally indistinguishable
from a cylinder and thus cannot be adequately described with
the approach presented in ref. 15. Finally, we notice that
generalisation of our approach to an arbitrary number of
components would be trivial, albeit tedious. As for the two-
component systems, the mixing entropy and enthalpy of many-
component systems can be calculated in the mean-field, while
the curvature-dependent repulsive contribution can be
obtained by summing over the different layers that arise if
polymers of different lengths are considered.

2.1.1. Calculating the equilibrium profile using DFT. Once
a free-energy functional has been established, calculating the
spatially-dependent equilibrium value of the density ¢y (x) can
be trivially performed using (classical) DFT.'>'" In practice, we
need to minimise the free-energy functional via standard func-
tional minimisation, under the constraint that the amounts of
the two polymeric surfactants on the surface are fixed. Using
the Euler-Lagrange procedure, we thus need to minimise the
functional:

Jig) = | riguad+u| gaa=| Liogas )
JA A A

where y is the Lagrange multiplier fixing the fraction of the
long chains in the system, which, following the standard
procedure, is equivalent to solving:

(16)

substituting eqn (1)-(4) and (10)-(13) yields the equation for
¢1(r). We will later study the case of a surface which is locally
cylindrical, in the sense that its curvature only changes along
one direction and is zero in the perpendicular direction. For
such a surface, we obtain the equation:

1

Pen(r) = @i 4 1 )

Jep(or, ) = 2x(1 = 2¢y)

3011 1 +v NG 1 4v \Tw
+EV¢L;{|:1+ ” y(1+a¢L )] —<1+ > y) }

1

l-v - 1+v AN
etz o))

+ oy

(18)

I . . . .
where y = 7 The equivalent expression valid for a spherical
0

surface (which could thus be used to define a spherical-surface
approximation), is reported in the ESLf

Notice that in eqn (18), ¢, depends on the position on the
grafting surface r because of the spatially-dependent radius of
curvature, R(r). Furthermore, notice that both equations pro-
vide an implicit expression for ¢, of the form ¢, = p(¢y), which
must be solved self-consistently. A solution can be found in
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seconds on a standard laptop. We provide a Python implemen-
tation of the code used for this purpose.

2.2. Coarse-grained simulations

2.2.1. Interaction potentials and dynamical equations. In
the mean-field model, we rely on the local density approxi-
mation, and also on the validity of the blob picture implicit in
calculating the curvature-dependent component of the brush
free energy. To address potential pitfalls, especially for surfaces
of non-uniform curvature, we performed additional particle-
based simulations. Each polymeric surfactant is modelled as a
string of connected spherical beads, where connected neigh-
bours interact via the potential

1 r 2
Vbond (") = 5 : kbond : (0_— -1 0) (19)

B
where r is the distance between two bonded beads, g is the
diameter of the bead, used as a unit of length, and kyong is the
spring constant. Following previous works, we choose k =
40ksT.”> The head bead of a polymeric chain is constrained to
move exclusively on the surface. This constraint is imposed via
constrained dynamics as implemented in the widely used mole-
cular dynamics code LAMMPS.*® The surface acts on all beads
with a short-range, distance-dependent repulsive potential:

. B m
Vrep (}’,) = Arep (m) 5

where 7, = {x;, y;, 2} is the position of the tail bead, A;ep, = 1.0kgT
is the energy parameter and B = 1.003 sets the length-scale for
the potential. In eqn (20), d(xy,2) = z — f(xy), where f(x,y)
parametrises the surface. Finally, m = 6 is a positive parameter
that controls the range of the repulsive potential. We model the
non-bonded interactions between the beads via the soft and
purely repulsive DPD potential:

rij )
Amn - ) lngO'
g

0, rij >0

(20)

Vinter (rij) = (21)

where r; is the distance between beads i and j, a, is the
repulsion parameter between surfactants of types m and n:
@11 = Gy = a1,= 18.75kzT. In DPD simulations,?* the force on
atom 7 due to atomj is subjected to conservative, dissipative, and

random forces F§;, Fy, and Fy, respectively, and the total force
7 C ., gD, pR
[=) (Ff +F} +Ff) (22)
J#i
The dissipative force,
Fj = —w°(ry) Fyvi)Fy, (23)
and random force,
F‘}j‘ = O'WR[T‘U)HUTAU, [24)

are related to r-dependent weight functions and 0t is a
randomly fluctuating variable, (0;(t) = 0) and (0;(t)0x(t)) =
(5ik6jl + (Siléjk)é(t — t/).

This journal is © The Royal Society of Chemistry 2023
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The simulation system is in the canonical (NVT) ensemble.
We set the mass to unity, an irrelevant choice considering that
we only evaluate the equilibrium properties of the system,
which are independent of the mass. We fix the surface density
of surfactants to ¢ = 4, following Glotzer et al.”* and study a 1:1
binary mixture of long and short chains. The time step
employed in integrating the equations of motion is set to dt =
10~ *zo, where 19 = \/kgT/mc and each simulation is run for
over 5 x 10° time steps. Periodic boundary conditions are
implemented in x- and y-directions, but not in the z-direction.

2.2.2. Geometry of the surface. In order to study a simple
yet non-trivial system, we chose a sinusoidally modulated sur-
face described using the equation:

f(x,y) =a-sin(k-x) :a-sin(2n;) (25)
where a is the amplitude of the oscillating surface and £ is the
wave number.

Given eqn (25), it is trivial to calculate the mean and
Gaussian curvatures in the Monge representation, which are
given using the following equations, respectively:

_So(L+7) = 2 ifo + (L)
- 2(1+£2 +fy2)%
a-k* - sin(k - x)
2[1 +a* - k? - cos?(k - x)]%

1
E(Kl + K2)

Cmean =

(26)

b =L’ (27)

CGauss = K| " K2 = (] +fx2 +f;v2)2 -

where x; and «, are the maximum and minimum of the normal
curvature at a given point on a surface, f; and f;, i, j = x, y are a
short-hand notation for the first and second derivatives, respec-
tively, of eqn (25). In order to connect to eqn (12), (13) and (18),
we recall that, on a cylinder, the mean curvature is related to

1
the local radius of curvature with Cyean(x,y) = m,
1
whereas for a spherical surface we have Cyean(x,y) = ——.
)= R

For visual reference, the surface height profile and the corres-
ponding curvature for our locally-cylindrical, sinusoidally-
modulated surface are reported in the ESL ¥

We note that in eqn (25), locally, the surface has a curvature
indistinguishable from that of a cylinder, since it is flat in y and
only varies along the x direction. We also note that a sinusoid-
ally modulated surface allows us to have both regions of
positive curvature and regions of negative curvature, which is
required for length-asymmetry-induced demixing of otherwise
perfectly miscible surfactants.'®

In our simulations, we employ combinations of a € {0.25,
0.5, 1,2} and 4 € {10, 20, 40} to characterize different surface
topographies. Fig. 2 presents a representative snapshot of a
configuration from a simulation with (a, 1) = (2, 10) and chain
lengths (Ns, Ny) = (2, 6) (i.e., o = 2).

This journal is © The Royal Society of Chemistry 2023
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Fig. 2 Illustration of the model used in our simulations. Long surfactants
(heads in red and tails in blue) locate in regions of positive curvature, while
short surfactants (heads in yellow and tails in green) locate in regions of
negative curvature.

3. Results and discussion

3.1. Curvature free energy and phase separation

First, let us discuss the form of free energy density contribution
due to the curvature, eqn (11)-(14). Already a qualitative ana-
lysis of its shape is useful to infer a few important properties of
the system. For this reason, we plot this quantity against the
scaling parameter y = /;/R = hyCmean, Which is proportional
to the local mean curvature of the underlying surface. For
illustrative purposes, we make this plot for representative
parameter choices characterising a bimodal brush, for both
spherical ( Sph " solid lines) and cylindrical ( O dashed
lines) surfaces, in Fig. 3 and 4.

The most important thing to note is that for both spheres
and cylinders, the curvature contribution to the local free

4.0

3.0

2.0

1.0

0.0 T T T T
4.0

— y=—001 b)

5fcurV/a%(

3.0

2.0 1

1.0 A

0.0 T T T T
0.0 0.2 0.4 0.6 0.8 1.0

oL

Fig. 3 Curvature free energy density fo, see egn (2), for both spherical
(solid lines) and cylindrical (dashed lines) surfaces as a function of ¢ for
different values of the scaling variable y = hy/R. In both examples, ¢ = 0.5
and the size asymmetry between the two polymeric surfactants is (a) o = 10
(NL:Ns = 11:1) and (b) @ = 1 (N_:Ns = 2:1). Although the free energy
curvature is almost indistinguishable for negative curvatures, it differs
quantitatively for positive values, with the difference increasing for increas-
ing values of the scaling variable, i.e., for increasing curvature.
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Fig. 4 Curvature free energy density f.un, see egn (12) and (13), for both
spherical and cylindrical surface as a function of ¢, for different values of
grafting density . In both examples, the size asymmetry is o = 1 but the
surface curvature is negative in (a) y = hy/R = —0.01 and positive in (b)
y = hy/R = 1. For negative curvature, at least at the grafting densities
considered here, f., is basically indistinguishable between spheres and
cylinders.

82]( ::urv

O¢i?
viour of the second derivative indicates that the curvature
contribution thermodynamically stabilises a mixed homoge-
neous brush with respect to demixing into a linear combination
of two phases of distinct composition.>> Whether or not de-
mixing occurs in practice, depends on the total free energy
density, including the entropy of mixing, eqn (4), which always
favours mixing, and enthalpic contributions, eqn (3), which
favours mixing or de-mixing depending on whether y is negative
or positive, respectively. Unlike the other two terms, the magni-
tude of the curvature term is controlled by both the curvature of
the surface and the size asymmetry between the surfactants. The
curvature term also increases super-linearly rather than linearly
with respect to the grafting density ¢ (considering that ¢ = I'/a’,
see also eqn (11)). Thus, an appropriate choice of parameters can
always be made to induce mixing by making the curvature term
dominating.

De-mixing of immiscible surfactants (y > 0 in eqn (3)) on
cylindrical surfaces was observed by Glotzer et al. using DPD
simulations and experiments on nanowires and nanorods”® but
in their case non-miscible polymeric surfactants y > 0 were
considered; here we show that de-mixing on cylinders can only
be obtained for this type of enthalpic interaction and cannot be
induced by size asymmetry alone. The similarity between our
results for spherical and cylindrical surfaces shows that using
a spherical surface approximation (for cylindrical surfaces) can
be at least qualitatively accurate. In fact, for negative curvatures,

energy is always a convex function ( > 0). This beha-
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the free-energy contributions calculated either using the exact
formula for cylindrical surfaces or the locally-spherical approxi-
mation are basically indistinguishable, with differences smaller
than 1% of the thermal energy. However, for positive curvatures,
visible quantitative differences occur, which increase for increas-
ing (scaled) curvature y and for increasing grafting densities, see
Fig. 3 and 4.

Regarding the reasons behind these differences, we notice
two things. On the one hand, the scaling of the blob size as a
function of the distance from the centre is different between
spheres and cylinders, and it is this difference that ultimately
leads to a difference in the scaling functions y, see eqn (12)
and (13). On the other hand, on a sphere or a flat plane, one
can unambiguously define the blob size based on the local
packing density, which is not true for any other surface,
because the blob size on a general surface would need to
depend on the direction considered (as it is clear by taking
the case of a cylinder). Whereas a more precise treatment of
this ambiguity in the form of a universal functional for the
curvature free energy on an arbitrary surface might be a
useful direction for future research; we notice that the
locally-spherical approximation is rather good and, qualita-
tively, does not change the thermodynamics of the system. In
fact, although a full validation of this approximation is
outside the scope of this work, its prediction is consistent
with the behaviour observed in particle-based simulations
even on (generic) surfaces without cylindrical symmetry, see
the ESL.}

3.2. Surfaces with non-uniform curvature

In the following, we want to use our density functional model to
address the case when the curvature of the grafting surface
varies in space. Although surfaces that are locally indistinguish-
able from a sphere do not exist (they are all spheres), we can
create locally cylindrical surfaces, such as the one defined using
eqn (25) and depicted in Fig. 2. For non-constant curvature,
calculating the exact equilibrium profile can be carried out by
solving eqn (18). Before we do that, let us analyse what we can
expect based on the shape of the curvature free energy. To do
this, we consider the free energy associated with swapping long
and short surfactants between two regions of opposite curva-
tures. We consider a region of negative curvature centred
around 7 and the one with positive curvature centred around
7>, initially with the same composition ¢{" = ¢ (¥1) = ¢ ().
If we swap long surfactants from the negative curvature region
with short surfactants from the positive curvature region, the
local densities at 7 and 7> change ¢ (1) — ¢ (¥1) — A¢. and
because of mass conservation ¢ (r2) — ¢y (72) + A¢y, with
4 > 0. For large enough size asymmetries, the curvature free
energy is the one depicted in Fig. 3a. In this case, the contribu-
tions to the free energy coming from both the positive and
negative curvature regions when de-mixing are negative, and
the system spontaneously tends towards this state, resulting in
regions of positive curvature having a larger ¢; compared to
those of negative curvature. Because the curvature free energy
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can be made arbitrarily large compared to the entropic con-
tribution to mixing, we expect de-mixing to occur even for
otherwise perfectly miscible polymers (y = 0). When the size
asymmetry is not so large (for small parameters ¢, see Fig. 4),
increasing ¢y in a large curvature region and decreasing it in a
low curvature region incurs free energy changes of opposite
sign, and thus whether or not de-mixing occurs depends on
subtler details of the system.

Having made this qualitative analysis, we now turn to a
more quantitative approach, and use eqn (18) to calculate the
equilibrium profile from local DFT theory. In the following
calculations, we analyse the case of ideal perfectly miscible
surfactants where the enthalpic interactions are zero (y = 0).
This is not an important restriction, because positive (negative)
values of y will merely strengthen (weaken) the de-mixing trend
provided at y = 0.

a)
0.6
0.4
a/ag =1
02 /ax
alag =2
alag =4
0:0 1 T T 1
b)
0.6
0.4
X
< 9 — =1
0. — =2
— = 3
0.0 T T T T
0.6
0.4 A
— Mag =40
0.2
— Mag = 60
— Mag =80
0.0 T T T T
0.0 0.2 04 0.6 0.8 1.0
z/A

Fig. 5 Representative density profiles ¢ (x) for a 1:1 binary mixture of
long and short surfactants obtained from the free energy minimisation
procedure for different parameters. In all cases, surfactants are chemically
perfectly miscible (y = 0 in eqn (3)). Stronger deviations from a perfectly
mixed mixture can be induced by (a) increasing the depth of the surface a
(0 = 4 and 4 = 100ay) (b) increasing the size asymmetry between the
surfactants (@ = 2ax and 4 = 60ay) and (c) increasing the wave-vector
describing the underlying surface (a = 2ay, « = 2) (see eqgn (25)).
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Fig. 5 presents representative density profiles for different
asymmetries o and different values of the maximum curvature
of the surface, which we obtained either by changing the
maximum height of the sinusoidal surface or its wavelength,
a and k in eqn (26), respectively. Continuous equilibrium
profiles are obtained, with shorter/longer surfactants segregating
to the regions of negative/positive curvature, as expected.
Noticeably, the strength of segregation of the surfactants
increases with increasing maximum curvature.

It should be noted that the analytical procedure we used to
obtain these profiles is based on solving the Euler-Lagrange
equations minimising the free energy of the system, under the
constraint of a fixed composition and total number of surfac-
tants. This procedure is only valid if the density profile ¢;,
minimising the free energy functional is continuous. We could
not have observed a sharp phase boundary using the under-
lying functional minimisation procedure. Another potential
problem of our approach is that the blob model used to
describe the polymeric surfactant, invoked in the derivation
of the formulas for f,,;, by Komura and Safran, eqn (11)—(14), is
only valid for sufficiently long polymers in the scaling regime.
Thus, the theory is not applicable to large grafting densities
(&0 < ax), nor to short polymers of a few Kuhn segments. The
theory also clearly breaks down if a large negative curvature is
present.§

In order to explore what happens for shorter surfactants,
especially at the high grafting densities achieved in experiments,*
but out of the range of applicability of our formalism, we employ
particle-based simulations. The overview of the observed config-
urations is given in Table 1. Without quantitative evaluation of the
profiles, a rapid glance at the simulation results confirms the
robustness of the behaviour predicted by the theory in its range
of validity. The profiles are continuous without sharp boundary,
i.e., no phase separation. Longer surfactants clearly concentrate
in regions of positive curvature and shorter ones in regions of
negative curvature. At least for the systems simulated, we observe
a relatively high solubility of the short components in the longer
ones and no pure phase (¢, = 0 or ¢y, = 1) is detected, however, in
line with our theoretical predictions, the strength of segregation
again increases by increasing 4, k and o. We highlight that the
aforementioned segregation behaviour is actually quite general
and does not depend on having a locally cylindrical surface. In
fact, the same behaviour is qualitatively observed also on surfaces
where curvature varies concurrently in both x and y directions.
Within our framework, surfaces of this kind could be studied by
making the additional approximation that the polymeric surfac-
tant behaved as if it was grafted on a sphere of the same mean
curvature. In this case, one would have to solve the equivalent of
eqn (18) for spheres, and substitute R with the local mean radius
of curvature of the surface, see the ESL}

§ This is evident because for certain physically meaningful combinations of
parameters, f., can assume non-physical imaginary values, a fact that can also
lead to numerical problems during the self-consistent procedure and does not
allow us to sample all potential parameter combinations.
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Table 1 Representative snapshots of equilibrium patterns, viewed from the top perpendicular to the x—y plane, for different combinations of surface
topographic parameters a and /o, and different surfactant lengths ratio Is:{ for an otherwise perfectly miscible system where the repulsive potential
between beads is the same independent of their type (here, a;; = ax» = a;o= 18.75kgT). The head beads of short surfactants are depicted in yellow,
whereas those for the long surfactants are shown in red (tails not shown for clarity). As the surface absolute mean curvature increases either due to an
increase in a or 4o, and for increasing size asymmetry, microphase segregation becomes more prominent, with the long surfactants concentrating in
regions of high (positive) curvature and short ones in regions of low (and negative) curvature. The corresponding surface densities are reported in the ESI

(ay;‘O)
Is: 1, (1/2, 40) (1/2, 20) (1/2, 10) (1, 40) (1, 20) (1, 10) (2, 40) (2, 20) (2, 10)
2:2
2:6
2:10

As would be expected purely based on symmetry arguments
and because of our local description, regions of the same mean
curvature have the same ¢y, value. However, this is the only real
symmetry in our system, and other symmetries are only appar-
ent from a quick look at the density profiles but fail to hold
under proper quantitative scrutiny. For example, the deviation
of the local composition from the average is larger for negative
curvatures than for positive ones of the same value, or in other
words, the deviation is not anti-symmetric with respect to the
point of zero-curvature. This asymmetry can be measured by
looking at different quantities related to 6(x) = ¢r(x) — ¢, the
deviation of the local density field ¢ (x) from its average value
¢1. More precisely, if we define Smaxmin) = |max(min)((x))],
we can use these latter quantities to gauge the asymmetry in the
segregation of the surfactants in high vs. low curvature regions
via AA = Smax — Omin, plotted in Fig. 6 as a function of
the wavelength of the sinusoidal surface / = 2n/k and «. The
maximum (minimum) value of density is always achieved in the
region of maximum (minimum) curvature. Thus, AA helps
measure the asymmetry in the strength of segregation of long
surfactants between peaks and valleys on the grafting surface.
When AA = 0, the maximum local deviation of ¢, is the same
(but necessarily of an opposite sign, because of mass conserva-
tion) as the (negative) deviation observed in low-curvature
regions, any deviation from zero indicating asymmetry. The
sign of AA also allows to understand whether segregation is
stronger in high (AA > 0) or low (AA < 0) curvature regions.

We observe that the segregation asymmetry is very sensitive
to the underlying surface, growing super-linearly (almost per-
fectly quadratic) as a function of the wave vector 1/, and
approximately linearly as a function of the size asymmetry o.
In this regard, one question that we can ask is whether the
strength and asymmetry of segregation depend separately on
the height of the surface pattern and its wavelength, as mea-
sured using a and 1 in eqn (25), or simply vary as a function of

the maximum achievable surface curvature, Ch3 = g/2k> To
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Fig. 6 Double logarithmic plot of the strength of segregation AA (see
definition in text) as a function of (a) grafting surface wave-length 4
(rescaled by &, = 62 and (b) polymer asymmetry o. In this region,
different power-law behaviours control the growth of these quantities.
Note that by construction, AA cannot grow (shrink) indefinitely but can at
the most reach a maximum(minimum) value of 1(0) and the power-law
behaviour must thus be limited to a specific region of parameters’ values.

answer this question, we report the results of different compu-
tational experiments performed using different combinations
of a and k and plot, i, as a function of Chasn, see Fig. 7 (the
same situation occurs for d.,,,)- As it can be easily observed, the
data collapse on a set of master curves that indeed only depend
on the asymmetry « and not on how the maximum curvature is
achieved. This result is not trivial because the local curvature,
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Fig. 7 Value of dmin as a function of the maximum curvature achieved in
the system, for different values of polymer size asymmetry o. Different
points with the same colours correspond to different combinations of a
and k (see eqgn (25)) at the same level of asymmetry. Clearly, all points
collapse on the same master curve, indicating that it is not the particular
value of (a, k) that controls segregation, but rather their combination into

. . . : 1
the maximum curvature obtained in the system, Ch& = Eakz'

mean

and thus the individual density profiles, cannot be written as a
function of Chas, alone, but require at least two out of three
variables between a, 1 and Chaa,. In other words, profiles with
the same maximum curvature but different values of a and &
can be different and systems with different values of a and & but
the same maximum curvature do not have to exhibit the same
value of ¢y, at a specific point in space. In fact, they generally do
not, except at the points of maximum and minimum curvature,
and hence the collapse of i, (and dp,ax) ON a master curve is
observed.

3.3. Discussion

Our DFT approach is based on classical density functional
theory reformulation of the lattice model developed by Van
Lehn and Katz to study the self-assembly of mixtures of
surfactants on a planar surface."* We present a continuum
version of their theory and additionally incorporate the effect of
local curvature inspired by the work of Cacciuto and co-
workers,">?” while also combining analytical calculations with
DPD simulations. An important difference between these latter
works and ours is that in their model the chains were grafted to
fixed points on the surface, while in our work, the polymers are
mobile. The two studies thus represent similar but distinct
systems with different physics. Our analytical formulation in
terms of a local DFT model allows us to determine the equili-
brium profile of the chains via functional optimisation and in
this regard, it is closer in spirit to that of Egorov®® than that of
Tung and Cacciuto.">*” Egorov studied the phase separation on
cylinders via a field-theoretical approach using self-consistent-
field theory in a mean-field approximation. Our analysis of the
brush free energy and its dependence on curvature predicts
that on surfaces with constant mean curvature, that is, on
spheres and cylinders, size asymmetry alone does not favour
macro- or micro-phase separation; both require an enthalpic
component favouring immiscibility. This result is consistent
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with those obtained by Tung and Cacciuto for spheres as well as
spheroidal surfaces."®

Formation of stripe patterns, i.e., micro-phase separation,
on nanoparticles was first reported in microscopy experiments by
Stellacci and co-workers in 2004." Their observations triggered a
lively discussion around the interpretation of the experiments,*®°
and the physical mechanism behind the observations, which was
explored in various computational studies.*****>?*2” We would
like to point out that the observed stripe patterns in molecular
dynamics or Monte Carlo simulations, both on spherical and
cylindrical surfaces,”>*® and even on planar surfaces,"* might be
due to long-lived metastable configurations, because the free-
energy of different structures was not calculated and compared to
prove their relative thermodynamic stability. In this regard, it is
important to mention that free energy calculations were per-
formed by Cacciuto and co-workers.">?” However, in their simula-
tions, the local concentration of surfactants was assumed to be
that of a perfect phase-separated state (i.e., zero solubility of one
component into another was assumed), while in their analytical
calculations the free energy obtained, for spherical particles, was
not sensitive to the number of stripes, meaning that they could
not possibly distinguish between macro- and micro-phase separa-
tion. Thus, considering an additional positive interface contribu-
tion (not present in these analytical calculations, where only bulk
terms were included), Cacciuto and co-workers’ results do not
support the thermodynamic stability of microphase separation
on spheres (as opposed to macro-phase separation), but only on
surfaces of non-uniform curvature such as oblate or prolate
spheroids.

Here we propose a different explanation for the occurrence
of stripes, based on an analogy with other physical systems. The
self-assembly of immiscible surfactants is a manifestation of
a de-mixing transition and when de-mixing occurs via a nuclea-
tion and growth mechanism, macro-phase separation occurs.
However, if de-mixing occurs within the spinodal region, where
the mixed system is both globally and locally unstable with
respect to de-mixing, phase separation leads to the formation of
stripe-like domains with a characteristic wavelength.?® During
spinodal decomposition, domains coarsen to their equilibrium
macrophase separation with a slow power-law dynamics,*
which can lead to formation of kinetically arrested patterns
similar to stripes. A spinodal decomposition mechanism would
therefore explain not only the morphology of the observed
patterns but also their appearance in experiments, and in
molecular dynamics and Monte Carlo simulations: the patterns
are the kinetically favourable state and, although not thermo-
dynamically stable, their slow relaxation dynamics can make
them appear stable on very long, even experimentally relevant,
timescales. To the best of our knowledge, this connection
between spinodal decomposition and self-assembly of surfac-
tants on curved nano-surfaces has not been proposed before.

Besides exploring the fundamental mechanisms underlying
pattern formation, our results can be implemented in practical
applications. We have shown that size asymmetry can be
exploited to obtain a non-homogeneous surfactant-density
profile, with high-curvature regions populated with a higher
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density of longer surfactants, and vice versa. Using immiscible
surfactants (y > 0) would further enhance these segregation
effects. As confirmed by DPD simulations, the surfactant
density on surfaces with non-uniform curvature is coupled to
the local curvature, which can be used to generate controllable
and predictable chemical patterns with particular properties.
For example, we predict that regions of higher curvature will
contain more of the longer surfactants, and therefore be
covered with a thicker surfactant layer. Thus, when surfactants
are used as a selective barrier (e.g., in chemical etching), high-
curvature regions end up being more protected. We note that
exactly the opposite behaviour is expected for bare surfaces
where regions of high and positive curvature are more exposed
compared to regions of negative curvature, which can only be
achieved with high incidence angles. Furthermore, such segre-
gation induced by size asymmetry and curvature could be used
to enforce a continuous chemical gradient that follows the
underlying curvature profile even when chemically immiscible
polymers are used.

In general, microphase separation can thermodynamically
favour over macroscopic de-mixing, if an energy term exists that
compensates the energy penalty due to the creation of an extra
surface (a line energy in 2D). This situation can be realized on
surfaces of uniform curvature by varying the splay energy of
surfactants at the interface between domains with long vs short
surfactant molecules. The splay term should be negative and
larger in magnitude than the interface penalty, but not so large
as to make the system unstable with respect to formation of
ever smaller domains, which would eventually lead to mixing.
The splay energy is itself non-local in nature, and for this
reason controlling the pattern size by varying the splay energy
is a non-trivial task, making this approach impractical in
applications. In contrast, tuning the substrate curvature is
relatively easy, since the stabilisation of a periodic stripe-like
pattern with respect to macro-phase separation is due to a bulk
energy term, which forces the pattern to follow the underlying
surface. By increasing the maximum curvature of the substrate,
or the size asymmetry between the surfactants, we can control
the degree of segregation of the two surfactants (Fig. 3). Overall,
due to the coupling between the local curvature and the density
field of surfactants, we propose using substrates with con-
trolled and spatially-inhomogeneous curvature as a general
and facile strategy to direct the design of chemical patterns
on nanoscopic surfaces.

4. Conclusions

We have built a continuum model for the density field of a
mixture of polymeric surfactants on a curved substrate based
on classical density functional theory. Using this model, we
discussed the formation of nanoscale patterns in a binary
mixture of surfactants of different lengths, showing that,
although phase separation should not be expected on surfaces
with constant mean curvature, continuous segregation driven
purely by the underlying curvature of the substrate is possible,
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even when in the bulk the two surfactants are chemically
perfectly miscible. More precisely, using a locally cylindrical
surface as an archetypal example, we have shown by free energy
minimisation that size asymmetry between the two polymeric
surfactants can couple to non-homogeneities in the under-
lining local curvature of the surface, preferentially driving long
surfactants to regions of high and positive curvature and
shorter ones to regions of negative curvature. We also discuss
the effect of changing the wavelength and height of the surface
pattern, as well as surfactant size asymmetry, showing in
particular that the strength of segregation in this system only
depends on the maximum (or minimum) mean curvature of the
system, and not on the exact way this curvature is achieved.
To validate our findings, we performed DPD simulations. We
observed that our qualitative analytical conclusions are robust
and transferable to parameter regimes (high grafting densities
and short surfactants) where some of the assumptions used in
building the free energy functional are not a priori justified.

The form of our free energy is not compatible with phase
separation of long-vs.-short surfactants due to size asymmetry
alone, neither on cylindrical surfaces, nor on spherical sur-
faces. We discuss that previous results cannot unequivocally
support the thermodynamic stability of stripe-like patterns on
spherical surfaces compared to macrophase separation, even in
the presence of chemical (enthalpic) immiscibility between
surfactants. However, we speculate that such patterns could
be the kinetic product of a spinodal-decomposition mecha-
nism, which can lead to a slow and potentially kinetically
arrested, long-lived state resembling stripes even on experi-
mentally relevant timescales.

Finally, we discuss the potential value of our results for
applications with polymeric surfactants as coatings. Our con-
tinuum model could be used for a fast qualitative screening of
polymeric surfactants to design chemical patterns.
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