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An extensible density-biasing approach for
molecular simulations of multicomponent
block copolymers

Aravinthen Rajkumar, *a Peter Brommer b and Łukasz Figiel c

A node-density biased Monte Carlo methodology is proposed for the molecular structure generation of

complex block copolymers. Within this methodology, the block copolymer is represented as bead-

spring model. Using self-consistent field theory, a density field for all monomer species within the

system is calculated. Block copolymers are generated by random walk configuration biased by the

density fields. The proposed algorithm then modifies the generation process by taking the global

structure of the polymer into account. It is then demonstrated that these global considerations can be

built into the sampling procedure, specifically through functions that assign a permissible difference in

density field value between relevant monomer species to each step of the random walk. In this way, the

random walk may be naturally controlled to provide the most appropriate conformations. The overall

viability of this approach has been demonstrated by using the resulting configurations in molecular

dynamics simulations. This new methodology is demonstrated to be powerful enough to generate

molecular configurations for a much wider variety of materials than the original approach. Two key

examples of the new capabilities of the method are viable configurations for ABABA pentablock

copolymers and ABC triblock terpolymers.

1. Introduction

Block copolymers represent a class of materials with an enormous
design space. They can assume the large variety of architectures
exhibited by homopolymers1,2 and, for each architecture, may be
further differentiated by the degree of polymerisation and the
chemical details of the monomers comprising the full structure.3

An important property of block copolymers and a defining
feature of many soft matter systems is their tendency to self-
assemble into a variety of morphologies4 via microphase
separation. The thermal and mechanical properties of a block
copolymer material are naturally dependent on the morphology
that the system assumes, but the interplay between the phases
that constitute the self-assembled material can be complex.
For example, a system composed of a copolymer whose blocks
have different glass transition temperatures can lead to the
self-assembly of glassy spheres embedded in a soft rubber
matrix. The resulting material will be a thermoplastic elastomer

whose properties are directly influenced by the underlying
morphology.

It is therefore not difficult to envisage the need to discover
and understand block copolymer structure–morphology–prop-
erty relations. However, the experimental exploration of this
design space is infeasible due to its size. This provides strong
motivation for the development of computer simulation meth-
odologies for block copolymers, specifically for the investiga-
tion of the effects of complex block copolymer architectures on
their end-use properties.

Block copolymers present a range of interesting fundamental
challenges, ranging from the increasingly sophisticated synthesis
and characterization techniques5 to poorly understood mechan-
ical behaviours.6 The capability of building models of a self-
assembled block copolymer system will allow for the detailed
study of such themes.

The problem of devising a simulation approach for the
calculation of structure–morphology–property relations thus
contains two essential aspects, these being the prediction of
morphology from structural information and the simulation
methodologies by which the properties of the predicted mor-
phology are determined.

The first of these aspects, block copolymer morphology
prediction, poses challenges to both its theoretical description
and numerical simulation.7 There are a number of methods by
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which this may be accomplished, ranging from phase field
calculations of the Ohta–Kawasaki model8,9 to self-consistent
field theory (SCFT) and associated methodologies.10,11 The
output of these calculations typically includes a density field
representing the monomers comprising the system. Whilst the
problem of block copolymer self-assembly is relatively well
understood in the case of simple binary systems,12 the problem
of identifying morphologies becomes significantly more inten-
sive with more heterogeneous examples.5,13,14

For the second aspect, molecular simulation emerges as the
natural approach to predicting properties for block copolymers.
A variety of approaches to the molecular simulation of block
copolymers in equilibrium exist,15 but in many systems it is
important to capture dynamical aspects that give rise to physi-
cal crosslinking and thermal motion. One methodology that
incorporates all of these effects whilst preserving efficiency is
coarse-grained molecular dynamics, the use of which has
proven highly successful in studying a variety of polymeric
systems without being encumbered by atomic detail.16–19

When the means for morphology prediction and coarse-
grained molecular dynamics have been selected, the final
remaining step is the process of combining these methodolo-
gies. This is an exceptionally complex problem as the two
methodologies are fundamentally different: the former relies
on a field theory, whereas the latter is based around a discrete
molecular description.

In the present study, we examine an existing solution for this
problem, the node-density biased Monte Carlo algorithm,
which has been successfully applied to diblock and triblock
copolymer systems. We first describe the existing approach by
casting the algorithm into a theoretical perspective, specifically
a means of sampling from a polymer conformation probability
density function. Then, we demonstrate the flaws that render it
unable to model any given linear block copolymer system,
limiting it to only the diblock and triblock copolymer case.
These flaws indicate that it cannot serve as a general simulation
approach for the discovery and study of block copolymer struc-
ture–morphology–property relations. By modifying the probability
distribution described through the theoretical perspective, we
motivate a novel algorithmic approach that operates by immedi-
ately rejecting unrealistic polymer conformations. We demon-
strate the power of our improved algorithm by using it to create
molecular configurations of significantly more complex polymer
structures, such as pentablock copolymers and ABC triblock
terpolymers.

2. Background
2.1. The node-density biased Monte Carlo algorithm

In this work, the general approach used to create initial con-
figurations of coarse-grained block copolymers is a variant of
the node density-biased Monte Carlo algorithm (NDBMC)
proposed by Aoyagi et al.20 The NDBMC algorithm is an elegant
example of a hierarchical calculation methodology in that it
relies upon two methods at differing length and timescales.

Initially, it uses self-consistent field theory (SCFT) to predict
the equilibrium morphology. The result of an SCFT algorithm
typically includes the monomer number density field of the
system: this is then converted into a particle representation by
running a series of biased random walks, where each random
walk builds a polymer monomer by monomer. The biasing
procedure is carried out at each step by generating a random
number between 0 and 1 and comparing said number to the
monomer density of the relevant monomer type at a potential
position. On the occasion that the random number is less than
monomer density, the potential position is accepted. As such,
there is a high likelihood of acceptance of a step when the
monomer density of the desired monomer type is sufficiently
large. In principle, these ideas are not unique to the NDBMC
algorithm: one example of this methodology being used to
guide the placement of molecules in a system can be found in
work by Rodgers et al.,21 where a density field ansatz is used to
study the solubility of alcohol molecules in a mesoscopic model
of the lipid bilayer. On the other hand, a separate example
where SCFT calculations are used to inform an external
potential for the generation of self-assembled diblock copolymer
systems can also be found in Padmanabhan et al.22

It is natural to ask why this scheme is necessary, as all
capabilities required to replicate the experimental procedure
for block copolymer self-assembly are in theory easy to repro-
duce virtually. This replication would entail the random initi-
alization of a large number of block copolymer chains in liquid
form at high temperature, followed by quenching such that
microphase separation is induced.23 This is however unfeasible,
as the timescale in which block copolymers typically undergo
phase separation is many orders of magnitude above what is
currently accessible with molecular dynamics simulations.

The NDBMC algorithm has been successfully used as a
starting point in modelling diblock (AB) and triblock copolymer
(ABA) systems24–26 and serves as an excellent first step to the
main problem of obtaining equilibrium block copolymer structures
in a form amenable to molecular dynamics. It differs in this regard
from theoretically informed coarse-grained simulation (TICG),27,28

another important technique used in the bridging of SCFT to
molecular simulation. The NDBMC algorithm is designed to
build configurations for molecular dynamics, whereas the TICG
approach consists of polymer Monte Carlo simulations whose
configurations are directly motivated from the field-theoretic
Hamiltonian underlying the system. A key difference is that the
former uses a trial move approach solely for the purpose of
building configurations, whereas the latter uses Monte Carlo
moves to actively calculate ensemble averages of the system.
TICG simulations are elegant and exceptionally powerful when
considering polymer systems in equilibrium. Despite the impli-
cit use of d-function interactions, it would not be difficult to
employ similar equilibration routines to develop a realistic
molecular configuration. However, a unique strength of the
NDBMC approach is its indifference to the components that
it uses: there is no real necessity for the use of self-consistent
field theory. In contrast, TICG is built directly from the SCFT
Hamiltonian and is thus dependent on it. For the NDBMC
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algorithm, one might easily use a technique such as the
aforementioned phase-field simulation or a novel scheme that
allows the simulation of nanocomposite systems.29 The
NDBMC algorithm needs only an appropriate field, whereas
most other approaches to multiscale simulation have unavoid-
able dependencies in methodology.

Despite this versatility, we believe that there are a number of
issues that both prevent the adoption of the NDBMC algorithm
as a general technique and limit the level of heterogeneity that
may be explored with it. Essentially, it cannot be used as a
stand-alone technique and must always be employed in tandem
with a means of correction. In order to shed light on the issues
surrounding the algorithm, we will first describe the NDBMC
algorithm through formalism.

2.2. The NDBMC algorithm as a high-dimensional sampling
technique

The NDBMC algorithm can be framed as sampling from the
distribution of possible polymer conformations in an external
field. The external field here is the chemical potential of the
system that drives the constituents to self-assemble.

Defining a polymer configuration as a set of N individual
steps RN = (r1,r2. . .rN), the probability that any given configu-
ration is sampled via the NDBMC algorithm can be written as

PðRNÞ ¼ expð�UðRNÞÞ
Z

(1)

where U(RN) encodes the relevant energies of the system and Z
is the partition function calculated as a sum over all possible
polymer configurations {RN},

Z ¼
X
fRNg

expð�UðRNÞÞ

The majority of theoretical treatments express Z in an
integral formulation, as this form is typically easier to utilize
in analytical calculation. We maintain the summation notation
as a means of motivating a computational method. A single
configuration RN is constructed by first randomly choosing a
starting position within the system volume, carrying out a
density biasing procedure as outlined in the previous section.
The NDBMC algorithm does not employ self-avoiding random
walks, instead opting to treat chains as ideal and allowing
chains to cross over each other. This feature, which is markedly
unphysical, is corrected by gradually introducing excluded
volume in a later simulation stage.

It is to be noted that there are many possible variants of
U(RN) that incorporate a variety of features and models. In the
study in which the NDBMC algorithm was originally used, the
polymer chains were treated as ideal, so any interaction
between beads that are not adjacent on the same chain are
not considered. In combination with the effect of the external
field, the energy can be decomposed as

UðRNÞ ¼
XN
i¼2

U0ðri; ri�1; hÞ þ kBT
XN
i¼1

oðriÞ (2)

where ri is the ith step in the polymer configuration and o(ri) is

the chemical potential. We also define

U0ðri; ri�1; hÞ ¼
0 k ri � ri�1 k¼ h
1 otherwise

�
(3)

where h represents a specified bond length. Whilst a physical
system would require a potential between beads that comprise
the polymer, the potential plays no role in structure generation
other than providing a reasonable value for h. In the original
formulation, h is taken as the minimum of the potential used in
the molecular dynamics simulation. As discussed in Section
5.2, an alternative specification of this energy could be written
in terms of the Gaussian chain model. This is not the manner
in which the original NDBMC algorithm is specified, so we do
not include it here. Regardless, the key feature of this energy is
that only steps of the specified bond length are permitted
within the probability distribution.

We note here that additional aspects of a random walk
model, such as self-avoiding and interactions between solvents
and other non-polymeric objects, may be included in U(RN).
However, these features do not impact the exposition of our
methodology and so we proceed with the simplest case.

The NDBMC algorithm attempts to sample from (1) by
building RN by trialing each ri independently. It should be noted
that whilst (1) makes use of the chemical potential, the NDBMC
algorithm makes use of the number density. The number density
is the conjugate thermodynamic variable of the chemical
potential. The energetic contribution of the chemical potential
is thus solved through the use of SCFT and need not be given
special attention.

2.3. Motivating a new approach

The probability distribution depicted in (1) is of dimension D =
3N. The smallest and largest use-cases for chain generation
with the NDBMC algorithm in literature are N = 40 and N = 120
respectively, leading to dimensional spaces of D = 120 to D =
360. It is worth mentioning that these are relatively small
coarse-grained chains, with recent block copolymer simula-
tions investigating cases as large as N = 800.30

The total number of possible configurations for even rela-
tively small chains is enormous, yet within the set of possible
samples there exist many that would not be suitable for
molecular dynamics simulation. As such, (1) as written is not
a suitable probability distribution from which to sample con-
figurations for the purpose of simulation. In information-
theoretic terms, one might describe (1) to have a higher entropy
than what would be useful for the task of sampling random
walks for molecular simulation. When specifically considering
the distribution of the configuration of a polymer subject to an
external field, an unsuitable sample will manifest as chains with
a number of segments that reside in regions of unfavorable
chemical potential as illustrated in Fig. 1. Statistically, these
segments are insignificant. A very large number of samples
should in theory tend to a reasonable configuration. However,
as a molecular dynamics simulation can only run on a single
configuration, the statistical properties of an ensemble of con-
figurations is not particularly useful. With this in mind, a useful
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outcome of any algorithm bridging SCFT with a molecular
simulation is not necessarily one that succeeds in reproducing
the density profile obtained by the self-consistent field calculation.
In the NDBMC algorithm, the role of the self-consistent field
calculation is primarily used to predict the likely morphology that
the system finds itself in.

Monte Carlo simulations use rejection as an integral algo-
rithmic component. Rejection plays a important part in ensur-
ing that the samples drawn from a probability distribution are
not outliers. Whilst the NDBMC algorithm possesses a mecha-
nism for local rejection in that single bead position is rejected
based on its local number density, the quality of the walk
overall is not considered. The rejection of a single bead position
based on local number density plays a large part in guiding the
configuration from one region to another, but it does not
guarantee that the configuration itself is likely according to (1).

The NDBMC algorithm possesses a unique flaw that man-
ifests as a tendency of generating substandard configurations.
Consider a symmetric (A)N(B)N diblock copolymer, comprised
of generic monomer types A and B and with a degree of
polymerisation 2N. As per the NDBMC method, the random
walk configuration representing the A block will eventually find
itself in a region where the chemical potential is favorable to
type A beads. Naturally, one would expect that the Nth bead will
have through gradual maximisation found itself in an A-type
rich region. However, the (N + 1) th bead is of the B-type. As
such, the first bead of the type B block will find itself in an
initial position that is wholly unsuited to it. Even in such an
unsuitable position the algorithm will continuously generate
potential new positions until by chance a random number is
generated such that it is lower than the number density. The
aforementioned lack of rejection becomes a serious flaw in this
situation.

This situation is illustrated in Fig. 2 and is an unavoidable
complexity that emerges at the junction between two blocks. It
must be noted that this flaw is amplified when dealing with
more complex architectures.

A workaround for these problems exists in the form of an
artificial potential that directly uses the predicted number
density field to drive phase separation. This is the approach

used in the original use-case of the NDBMC algorithm. This
method would be highly effective for smaller chains, but it falls
victim to the overarching problem that necessitates the use of
SCFT in the first place: chains subjected to a potential still
move through reptation, which we have already established is
prohibitively slow in most cases. Even if chains treated as ideal
at first and are allowed to pass through each other when
undergoing a relaxation procedure, the process of incorporat-
ing excluded volume into the system is exceptionally challen-
ging and time-consuming due to the enormous energies that
most coarse-grained potentials will exhibit upon intersection.

Fig. 1 Illustration of a good sample (left), a poor sample (centre) and a very poor possible sample (right). As can be seen, a good sample is one where
type A and type B beads are mostly contained within their own areas, whereas a bad sample is typically the opposite. The NDBMC algorithm is powerful
enough to avoid providing samples like those on the right figure. However, it should be noted that due to the inherent flaws discussed in the following
sections, the algorithm typically tends towards bad configurations.

Fig. 2 An illustration of the main flaw of the NDBMC algorithm. One
configuration is numbered and exaggerated for emphasis, with the red
beads representing type A monomers and the blue beads type B mono-
mers. Here, the type A beads from 1 to 17 gradually find themselves in an
region that is predicted to be rich in A monomers via SCFT. This is an
instance of the algorithm working as expected. However, the 18th bead is
of type B and due to previous steps will also find itself in a type A rich
region. The algorithm will correct for this and lead the configuration to
a type B rich region, but a significant number of type B beads will
necessarily be left in a type B region. This implies the additional problem
of ensuring that the A block of the polymer contains enough beads to
reach a type A region.
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Further, when the NDBMC algorithm returns a poor configu-
ration for sufficiently long chains, a given chain segment may
be pulled to multiple regions of favorable chemical potential,
which drastically increases any equilibration time. The NDBMC
algorithm cannot be expected to fare well in situations more
complicated than a copolymer melt composed of more than
two monomer types. Taking a terpolymer as an example, the
gradients of monomer density calculated by SCFT are typically
more gradual than what is typical from diblock monomer
densities. Gradual changes in a density profile permit a far
larger number of configurations to traverse it, leading to a
larger number of possible configurations. This, like before,
manifests as a very high likelihood of sampling lower-quality
chains. The aforementioned problem involving poorly placed
junction monomers is also exacerbated, as there are more
opportunities for the junction monomers to find themselves
in unsuitable positions. The density-driven potential is also
limited in its ability to correct the configuration, as the poor
configurations obtained by the NDBMC algorithm are usually
too far from the SCFT number density prediction to be
corrected.

It is important to realise that these difficulties are the result
of the drastic difference in scale between SCFT and CGMD.
Despite dealing with the same system, they are fundamentally
different paradigms that are built on disparate frameworks for
the representation of polymers. This can be motivated by
imagining a configuration in which a large number of chains
are sampled from (1): that is, where the number of polymers
Np - N. In this situation, the number density of the mono-
mers will be exactly equal to the monomer density field
predicted by SCFT. However, this fictitious configuration will
still contain a large number of monomers in regions that are
not suitable for the associated monomer type, even if the
statistical features of the configuration are accurate.

It should be noted that these are flaws specific to the
NDBMC algorithm. When attempting to bridge the scale
between SCFT and MD, the thermodynamic aspects of a field-
theoretic calculation and a molecular dynamics calculation
must be in agreement. For a truly multi-scale approach,
this agreement is imperative. The aspects pertaining to this
multiscale modelling approach are discussed further in
Section 5.2.

Notwithstanding these barriers and despite advancements
in the twenty years since its first demonstration, we believe that
the NDBMC algorithm is the most versatile method developed
so far to model block copolymer morphologies with molecular
simulation. It is attractive as a practical problem-solving
approach in that it depends on no specific theoretical or
technological developments: like all good software, the indivi-
dual components that it is composed of may be upgraded or
indeed replaced entirely with a new and more suitable methods.
Despite the discussed flaws, it serves as an appropriate starting
point for the development of newer and more involved algo-
rithms. In the subsequent section, we discuss two techniques
that may be employed to tackle more complex systems than the
previously discussed copolymer structures.

3. Methodology
3.1. Construction of a more useful probability distribution

We have justified that (1) is unsuitable for the purpose of sampling
random walk configurations. Our specific reason for this is the
excessively high number of configurations permissible through the
energies described in (2) that are not useful when subjected to
molecular dynamics simulation. It would thus be desirable to
construct a new probability distribution by reducing the entropy
of (1): this could be carried out by incorporating additional
information about the random walk that we would expect from
an intuitive understanding of the system. Specifically, we would
expect that a sampled random walk representing a single block in a
copolymer should follow some trends regarding the position of the
monomers that constitute the junction. These monomers should
be located at a region where the chemical potential is favorable to
both of the monomer types of each block. In practice, this is a
region where the number densities of two different types, ri(r) and
rj(r), are at least approximately equal at a position r. We will refer to
these regions as density interfaces.

The concept of a density interface motivates a measure that
can be exploited when considering a means of biasing a
random walk. The introduction of such a bias would naturally
result in a more appropriate distribution than (1). First, we
define the density difference of a given point as

Dij(r) = ri(r) � rj (r) (4)

Naturally, Dij(r) = 0 at a density interface. For a given random
walk configuration, the density difference at the kth step can be
written as a sequence DN

ij :[1,N] - R, where

DN
ij (k) = {Dij(rk)|rk A RN} (5)

The values of DN
ij (k) can be associated with the desired

behaviour of the chain. Without loss of generality, we will only
consider a single block in a polymer chain. As illustrated in
Fig. 3, we would expect three regions where the behaviour of the
chain constituting a block takes on distinct characteristics.
� In the first region arbitrarily specified by the set of bead

numbers [0,a), the chain should be driven away from an inter-
face and deeper into a region that is favorable to it. This could
be interpreted as a region in which the density difference is
gradually maximised for k A [0,a).
�When in second region, specified as [a,b], the chain should

be discouraged from entering a region that is not favourable to
it. Otherwise, it should be able to travel freely in order to
maintain random walk behavior.
� Finally in third region, specified by (b,N], the chain should

be driven away from a region favorable to it and back to an
interface. In contrast with the first region, the density differ-
ence should be gradually minimised for the values k A (b,N].

These constraints motivate the existence of a function f (k)
such that

DN
ij kð Þ4 f kð Þ ð8kÞ 2 0; a½ Þ

0 � DN
ij kð Þ � f kð Þ ð8kÞ 2 a; b½ Þ

DN
ij kð Þ � f kð Þ ð8kÞ 2 b;N½ Þ

(6)
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An example of such a function is depicted in Fig. 4, as well as the
constraints that the functions helps to enforce. This function can
now be used to define a new energy in the same vein as (3),

UMDðRNÞ ¼
Xa�1
i¼0

UA þ
Xb
i¼a

UB þ
XN
i¼bþ1

UC (7)

where

UAðkÞ ¼
0 DN

ij ðkÞ � f ðkÞ

1 otherwise

(

UBðkÞ ¼
0 0 � DN

ij ðkÞ � f ðkÞ

1 otherwise

(

UCðkÞ ¼
0 DN

ij ðkÞ � f ðkÞ

1 otherwise

(

When (7) is added to the existing energies outlined in (2),
polymer chains that do not satisfy the specified behaviour
expected are automatically removed from the original probability
distribution. The entropy of the resulting distribution is signifi-
cantly reduced, but the chains that may be sampled from it are
guaranteed to have reasonable configurations for the purpose of
molecular dynamics simulation.

There are two issues that must be considered before using
this methodology. First, it is important to recognize that there
is a fundamental difference in the nature of UA and UC in that
the latter is a necessary condition. The segment must find itself
terminating at a region that is favorable to both types. However,
UA has no such requirement and should in principle allow a
much wider variety of chain conformations. It would thus be
unrealistic to demand that every single chain within a polymer
melt follow the conditions outlined by a single form of the
domain of f (k) that pertains to UA. However, the general
tendency that the segment chains tend towards regions denser
to their type must be satisfied. A reasonable approach would be
to generate a different form of f (k) for every chain comprising a
melt, where the initial domain varies with respect to a statistical
distribution. This is however difficult to implement, as any such
statistical distribution must be carefully derived. Instead, we
present a faster and simpler approach to accomplish the same
effect in Section 3.1.

Secondly, it should also be noted that this technique essen-
tially breaks down on the final block of a copolymer chain, as
there is no next type along the chain by which the density
difference may be computed. However, the final block is not
required to fulfil the characteristics outlined for the three
specified regions. As such, the basic NDBMC algorithm is
sufficient to guide the configuration of the last block, with
the additional benefit that the steps involving the final block
are essentially guaranteed to begin at a density interface.

Fig. 3 Example of the characteristics of a desirable configuration sample.
Outlined in yellow, green and blue respectively are the beads that roughly
correspond to the first, second and third regions discussed in the text. The
numbers and colours roughly depict the density difference of various
regions within the volume. Depicted is a copolymer configuration
composed of two types A and B, where A is coloured blue and B is coloured
red. The first bead a of the configuration is of type A and should ideally begin
within a region of high blue density. Here it begins near an interface, the
colour of which is pink. The random walk should then proceed deeper into
the blue region and, after a period of being allowed to roam within that
region, should eventually return to the interface where both a beads and b
beads are equally likely. This allows for a seamless transition from a beads to
b thenceforth. Note that, as the beads from a to c are the final beads of a full
chain, there is no need to identify regions.

Fig. 4 Example of a random walk constrained via a function f (k), where
the dotted red line depicts an idealisation of the density difference values
attained by a random walk and the bold black line is a depiction of a
generic concave function f (k). The red regions within the plot depict
regions of density difference that the random walk is not allowed to enter.
An interface gap has been included in this particular function, as discussed
in Section 3.2. Note that this is just one example of f (k): many possible
functions may be generated that capture the previously mentioned
characteristics.
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3.2. Sample generation

The new probability distribution would be sampled from in
a similar way as the NDBMC algorithm, although with the
additional condition such that the positions of the polymer
configurations are forbidden from accessing density values that
do not agree with the constraints used to form (3).

In the previous subsection we outlined the requirement that
the initial domain [0,a) of f (k) should not be as strictly constrained
as the domain [b,N). Our methodology for implementing this
difference is to allow for a significantly more lenient Monte Carlo
move in the domain [0,a). In the previous development we have
operated under the assumption that any move not satisfying the
conditions outlined in (7) is rejected outright. In our implementa-
tion, this is still the case for the second and third domains.
However, for the first domain, the random walk is allowed to
enter an unfavorable region of density difference with the caveat
that all steps will be subject to the standard Monte Carlo move of
the original NDBMC algorithm. Conversely, a step that occurs in a
favourable region is accepted automatically and will thus never be
rejected. This is an effective means of biasing the first region and
thus satisfies the issues raised.

There are a number of additional features that we have made
to the sampling procedure that are not incorporated in the
constructed distribution of the previous section. These features
are primarily centred around software design: they are intended
to improve the speed and applicability of structure generation.

The first of these features is the use of the self-avoiding walk
rather than the typical ideal walk combined with energy mini-
misation. Self-avoiding walks are slower to generate, but typically
require very little post-processing when compared to energy
minimisation. In our experience, it is typically faster and less
resource intensive to use self-avoiding walks in lieu of equili-
brating chains that interact via the potentials described in the
next section. There are however limitations that self-avoiding
walks introduce. The closer a configuration is to an ideal walk,
the better the quality of the sample obtained from the new
probability distribution. Further, self-avoiding walks become
progressively harder to sample when attempting to create a melt
structure. This is due to the gradual incorporation of excluded
volume. The implementation of self-avoiding walks and the
manner in which this implementation is extended to include a
SCFT calculation is discussed in the appendix. We note however
that it is not strictly necessary to run our version of the NDBMC
algorithm with self-avoiding walks. There is nothing wrong with
the approach of using ideal walks and gradually introducing
excluded volumes into the system. This method benefits from
the extensive work carried out regarding the equilibration and
relaxation of polymer melts, including schemes developed after
the original NDBMC approach was first published. One such
scheme proposed by Parker and Rottler31 consists of the use of
soft repulsive potentials derived from the free energy functional.
There are however important considerations to take into account
when this method is used. The rate at which the excluded
volume is introduced to the system has direct effect on the chain
statistics32 of the system and care must be taken to ensure that
these are preserved.

Given the apparent strictness of the constraints incorpo-
rated in the new probability distribution, it is from a computa-
tional perspective unwise to follow them exactly. There are two
ways in which we may relax the constraints in order to improve
the sampling speed of a polymer configuration. Firstly, in the
formulation of the conditions (6) that the function f (k) must
follow, the idea of the density interface is implicitly included by
setting the lowest value of f (k) to be 0. This is extremely strict,
as it only allows the random walk to begin and end on the two-
dimensional surface upon which the density interface is
defined on. It is therefore desirable and indeed more realistic
to introduce an interface gap comprised of a range of values
that a walk might start and finish. Such a function can be seen
in Fig. 4.

A second means by which the constraints of the new
distribution may be relaxed is the way the chain reacts when
it reaches the boundary defined by f (k). In our implementation,
we have allowed the random walk configuration to step outside
the boundary and temporarily find itself in a region outside of
the conditions imposed by (6). However, we do not allow the
chain to go any further, requiring it to return to an allowed
value of DN

ij (k) immediately on the next step. This significantly
improves the speed at which configurations may be sampled.

As justified in Section 2.3, the NDBMC algorithm does not
contain a mechanism that allows for sample rejection. There
are of course many ways in which rejection could be built into
the algorithm. For example, if the algorithm fails to generate a
valid position after a sufficiently large number of attempts, the
configuration can be rejected. However, this rejection proce-
dure does not serve to provide better samples. It will only
prolong the amount of time required for a valid sample to be
generated. With the stricter constraints motivated within this
work, a rejection based upon the global validity of a configu-
ration presents itself naturally.

We do not outright reject the configuration, instead employ-
ing retraction. Here, a random walk configuration that has
become arrested during generation may remove up to half of its
current configuration and begin at a previously attained posi-
tion. Retraction is preferable to outright rejection, as it serves
as a method of salvaging a configuration that may have
required a non-negligible amount of time to build. In practice,
retraction is carried out after a user-defined number of failures.

A hitherto-unanswered question is the form of the function
f (k) specified in (6). This is a flexible condition and there are
likely a variety of possible solutions, but we have opted to use
the very simplest: a piece-wise function constructed of three
linear sub-functions,

flinearðkÞ ¼ ðDmax
ij � DgapÞ �

k

a
k 2 ½0; aÞ

1 k 2 ½a; b�

N � k

N � b
k 2 ½b;NÞ

8>>>>>><
>>>>>>:

(8)

where Dmax
ij is the maximum value of (4) for two types within a

simulation and Dgap is the interface gap mentioned previously.
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This is an admittedly crude example, but it allows for quick and
reasonably accurate structure generation. It is possible to set
the value of Dgap to be negative, as this allows the chain to enter
deeper into the interface and will naturally result in more
tightly placed beads.

It may be noted that the essential goal of the biasing
function is to constrain the value of the density difference with
respect the stationary points of the density profile, but one
might wonder why the density difference needs to be considered at
all. A more useful measure might be the gradient of a single density
profile. Using a method close to the well-known gradient descent
algorithm would still perform the basic function of directing a
random walk to a region where it is most appropriate. An effective
way of constructing f (k) might take the form of incorporating the
gradient of a single density profile and systematically introducing
regions and conditions for when the minimisation might occur.
Indeed, the gradient and higher order derivatives of a density
profile can even be linked to the free energies of the block
copolymer system and ensure close thermodynamic consistency
between any sampled random walk configurations.

Relying on the gradient to build f (k) may work exceptionally
well for copolymers composed of two monomer types, but will
typically be less effective when considering systems with more
monomer types such as the terpolymer case. This is because
in the latter situation, the minima of a single density field
will correspond to the maxima of multiple other density fields.
To illustrate, an ABC terpolymer may begin at an A-type mono-
mer dense region and find itself in a minimum where the
density of C-type monomers is maximized instead of that of
B-type monomers. Our solution necessarily takes into account
the correct minima by working on minimizing density differ-
ences rather than the density itself. We believe that the local
density difference between the current type and the next type
on a chain is the most effective way of incorporating this
additional information without relying on more expensive
global methods.

3.3. Molecular dynamics simulations

Once the structure is generated via the previously described
method, molecular simulations may be carried with the myriad
methodologies developed for polymer simulation. As justified
in the introduction, we have opted to use molecular dynamics
simulations to calculate the physical properties of the system.

The fundamental tool required to convert a random walk
into a macromolecule fit for simulation are coarse-grained
interatomic potentials. To this end, we employ the finitely
extensible nonlinear elastic (FENE) model to capture inter-
actions between beads that are neighbors on the same chain.

E ¼ �0:5KR2
0 ln 1� r

R0

� �2
" #

þ 4e
s
r

� �12
� s

r

� �6� �
(9)

Here we use the same parameters for the FENE potential as
those in the Kremer–Grest model.33

Another standard consideration in any kind of molecular
simulation is the requirement that the constituent particles

should not overlap with each other. A time-tested solution to
this requirement is to use the Lennard-Jones potential,

ELJ ¼ 4e
s
r

� �12
� s

r

� �6� �
(10)

for this purpose. There are a number of issues that may have to
be considered when taking this approach,34 but in general the
Lennard-Jones potential serves its purpose well. In our simula-
tions, we have opted to use the same value for particle size
employed in the original NDBMC formulation, where s = 1.
We use this value for convenience, but it is possible to use other
values for s as calculated via any standard coarse-graining
approach.

In simulations of block copolymers, the Lennard-Jones
potential allows for an additional benefit in that it provides a
driving mechanism for phase separation. There are multiple
ways in which the parameters of the Lennard-Jones potential
may be modified in order to capture this effect. In previously
cited studies by Aoyagi, phase separation between the two
phases A and B is achieved by setting different values of
numerical cutoff distance of (10): self-assembly is driven by
directly controlling the effect of the attractive component of the
Lennard Jones potential. By setting the cut-off distance of (10)
to the potential minimum, the beads within the system may be
made to repel each other exclusively.

In another study by Parker and Röttler,30 the same kinetic
behavior is accomplished by changing the dispersion energy eAB

between two different types A and B. Here, the differences in
the depth of potential wells between particles are used to drive
phase separation. We have opted to use the second approach,
as there is a direct relationship to the dispersion energies and
the Flory Huggins parameter. In work by Chremos et. al.,35 a
linear relation is proposed between the Lennard-Jones para-
meters and the Flory–Huggins parameter such that

w = a/T + b, (11)

where

a(eBB,eAB) = 9.8eBB � 18.4eAB + 8.6

b(eBB,eAB) = �4.6eBB + 6.9eAB � 2.4

where the value of eAA. These relations have, for our purposes,
worked for a number of cases, specifically those at a low
temperature. Whilst possible, we do not in this work apply
(11) inversely – that is, beginning from a value for the Flory–
Huggins parameter and obtaining Flory–Huggins parameters.
There is nothing implicitly incorrect about this approach, as for
any given temperature T there are an infinite number of values
for eBB and eAB that could provide a desired value of w,

9:8

T
� 4:6

� �
eBB þ 6:9� 18:4

T

� �
eAB ¼ w� 8:6

T
� 2:4 (12)

However, it must be noted that any values for the Lennard-
Jones parameters obtained in this way run the risk of represent-
ing systems that are nothing more than toy models that have
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unrealistic physical properties. This issue is elaborated upon in
Section 5.3.

4. Results

In this section we compare our algorithm with the original
NDBMC algorithm and demonstrate additional useful features
that emerge from our own methodology. We focus exclusively on
the BCC morphology, as this morphology is by far the most difficult
to reproduce using the standard approach of the NDBMC method.
This is because a random walk must successfully be driven to a
spherical region, the locations of which being significantly more
specific than other morphologies. We only perform simulations
for the ABA triblock copolymer, as this system has a range of
parameters already used in previous research. Further, we demon-
strate how our algorithm is successfully able to build configura-
tions for significantly more complex systems, such as those
comprised of pentablock copolymers and ABC triblock terpolymers.
The last case, whilst being novel in own right, is also a demonstra-
tion of what may be possible for more complex morphologies. BCC
configurations can in principle be obtained through the use of
centro-symmetric potentials whose minima correspond to the
minima of the density fields obtained from the SCFT calculation.
However, potentials are less effective for gyroidal morphologies and
as can be seen in the final example it is common for ABC block
copolymers to have features common to both gyroidal phases and
spheroid phases. We demonstrate that our method is versatile
enough to deal with any of these configurations.

4.1. ABA triblock copolymer

In this section, we first produce the initial guesses for the ABA
triblock morphology for different chain lengths with the old
NDBMC algorithm. We use ideal walks to remain faithful to the
original methodology. It should be noted that ideal walks
will always produce configurations that accurately reproduce
density profile described by the biased distribution, although
this occurs at the cost of minimisation time. Even despite the
benefits of using ideal walks, the original algorithm demon-
strates a number of serious issues that are exacerbated at
shorter chain lengths. In Fig. 5, we juxtapose these results with
the output of our improved algorithm. As can be seen, our
method provides excellent initial guesses for configurations for
molecular simulation. It is to be noted that our method, despite
being perfectly able to run and indeed provide slightly better
results with ideal walks, uses fully self-avoiding walks. As such,
all of the results produced from our algorithm require minimal
equilibration. For all blocks, the parameters used for (8) are
a = 0.2, b = 0.8 and Dgap = 0.05: little quantitative difference was
observed for slight variations of these parameters. The Flory–
Huggins parameter used to generate the underlying SCFT
simulation is w = 62.18, which corresponds to a simulation
with eAA = 1.0, eBB = 0.5 and eBA = 0.2 at T = 0.15 in Lennard-
Jones units. The original algorithm results are computed using
walks of length N = 100 (top left), N = 1000 (middle left) and
N = 2000 (bottom left). On the right column, walks are of length

N = 100 (top right), N = 500 (middle right) and N = 1000 (bottom
right). The chains being samples are symmetric ABA triblock
copolymers with number fraction fA = 0.2 and fB = 0.8, where A
represents the red spherical region and B represents the blue
matrix region.

As can be seen, there is little use in comparing samples from
the original NDBMC algorithm until a sufficiently high number
of beads is reached: all samples are of exceptionally poor
quality. When N = 1000, however, the beads demonstrate a
vaguely BCC morphology, which improves markedly when N
reaches a much higher number. On the other hand, our
algorithm is so effective that it provides an essentially perfect
BCC configuration with just N = 100 beads. Indeed, it can very
clearly be seen that a chain length of N = 100 is in fact
unrealistic at the given volume, as the chain is not long enough
to cover the entire box: note however that the fundamental
reason for this lack of reality is discussed in Section 5.2. This
demonstrates that our method is powerful enough to operate in
even sub-optimal conditions, although this confers the respon-
sibility of choosing reasonable chain lengths onto the user. As
we have used self-avoiding walks for our version of the NDBMC

Fig. 5 Comparison of results with the old NDBMC algorithm (left column)
and our variant of the same algorithm. All results were obtained by sampling
within a box of volume 70smin � 70smin � 70smin, where smin = 21/6 – this
value is justified in the appendix. All simulations make use of a total of
200 000 beads. For denser systems, the soft phase composed of blue beads
has been removed for visibility purposes.
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algorithm, we have not simulated chains of length N = 2000, as
this would result in too many beads being crammed into the
space-limited red regions for a single random walk. The
extreme limit of our approach occurs when a single A block
of just one copolymer configuration occupies all available space
in a bead. However, this is markedly unrealistic given the
enormous molecular weights that such a polymer configuration
would require.

We also employ values used in previous simulations to
demonstrate just how effective this approach is when molecular
simulations are carried out. As can be seen in Fig. 6, the hard
phase depicted with blue beads naturally coalesces into a nearly
perfectly spherical structure. No potentials or in-simulation
tools have been used to achieve these spherical beads: they
emerge naturally from thermal motion. It should however be
noted that in this situation, it appears that the temperature
required by (11) to achieve a Flory–Huggins parameter is in fact
too low. Despite starting our simulations at a temperature of
0.2kbT, we found that raising the temperature in our simula-
tions up to 0.29 as in previously cited work still maintains the
BCC configuration and the spherical form taken by the hard
phase. This is likely an indication of a discrepancy in the semi-
empirical law, a fact which is discussed in Section 5.3.

4.2. ABABA pentablock copolymer

There are markedly few studies regarding the pentablock
copolymers in a self-assembled state. In this result, we demon-
strate the viability of our method to the generation of such
molecular configurations. It should be noted however that, in
this example, the Flory–Huggins parameter w was not motivated
by the values of the Lennard-Jones parameters: we began by
finding a value of w that results in self-assembly for a penta-
block copolymer. Self assembly was easily achieved by using a
Flory Huggins parameter w = 100. The results, shown in Fig. 7,
are quantitatively similar to the ABA triblock copolymer case
albeit with larger beads. Molecular dynamics simulations have
not been performed on this sample, as clarification on appro-
priate values for the Lennard-Jones parameters is necessary.
The parameters used for the A block were (8) are a = 0.1, b = 0.9

and Dgap = �0.05: we selected these values the ensure that the
chain could, if required, pass entirely through an A-type region
if necessary. For the B block, we used the same parameters as in
the ABA system.

4.3. ABC triblock terpolymer

Like the previous case, there are very few studies of the ABC
triblock terpolymer melts in which the primary methodology
relies on molecular dynamics. We present a valid configuration
for an ABC triblock terpolymer in Fig. 8. The Flory–Huggins
parameters used are wAB = 13, wBC = 13 and wCA = 35: these
parameters were selected because of the certainty with which

Fig. 6 The blue spherical regions naturally emerged within 100 000 time-
steps, resulting in a perfectly ordered and phase-separated BCC configu-
ration. The left configuration is the N = 100 chain and the right simulation
is for the N = 1000 chain. All simulations were run using the Nosé–Hoover
thermostat beginning at a temperature T = 0.15. However, the BCC
structure remained unchanged for temperatures up to T = 0.29.

Fig. 7 The results of a sampled pentablock configuration. All results are
obtained from sampling within a box of volume 84smin � 84smin � 84smin,
where smin = 21/6. A single chain with N = 999 beads is displayed on the
right, with a hundred and fifty such realisations leading to the system on
the right. As can be seen, the single chain actively travels to the regions
that are appropriate for the bead types, which is not a feature of the
original NDBMC method. All walks are self-avoiding. Any perceived brid-
ging between red spheres is a result of two-dimensional projection: the
system has been verified to possess no such intersections. The total
number fractions for this system are fA = 0.25 and fB = 0.75. This means
that a single A block has a number fraction of fA = 0.083 and a B block has
number fraction fB = 0.375.

Fig. 8 A simulation of an ABC triblock terpolymer phase composed of
2200 chains composed of N = 200 beads. All results are obtained from
sampling within a box of volume 72smin � 72smin � 72smin, where smin =
21/6 The red phase is significantly less phase-separated than the previous
example. This is due to the similarity in number density profile with the
blue phase in the majority of the volume. The yellow phase, however, is
well separated: this can be seen on the left. The total number fractions for
this system are fA = 0.25, fB = 0.50 and fB = 0.25. It must be noted that,
whilst the walks used to generate this configuration are self-avoiding, they
do not follow the specifications of the full Kremer–Grest model described
in Section 3.3: the s parameters for the Lennard-Jones potentials, usually
taken to be s = 1, are instead taken to be s = 0.5. This will necessarily
require an equilibration step.
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they would result in a self-assembled field. The process of
generating chains for this number density field is unique
because the polymer may either begin at an A block or a C
block. As justified in Section 3.1, the final block will typically
follow the normal NDBMC algorithm whereas the initial block
will be subject to the constraints demonstrated in (6). If all
random walks began at the A-block, a bias would naturally
become present within the simulation. In order to ensure that
the density profile of the generated beads are not biased to a
particular type, we randomly begin our walks at either the C
block or the A block. The parameters used for the A and C
blocks (8) are a = 0.1, b = 0.9 and Dgap = 0.1, whilst the B block
uses the same parameters as the ABA system: we observed that
the acceptance rate was noticeably affected by the parameter
choice for this particular example.

Our algorithm will successfully generate ABC morphologies
given sufficient time. However, it must be noted that the time
taken for this particular case is typically quite lengthy. One
successful approach is to reduce the extent of the self-avoiding
capability of a random walk by reducing the s parameter used
to represent the bead size, before subjecting the system to
energy minimisation. This approach will naturally require a
longer time to equilibrate the configuration, but the reduction
in structure generation time is likely a more efficient trade-off.

5. Discussion

It is to be noted that, despite not posing a significant issue in
our work, our choice for the constraining function f (k) that
satisfies the conditions stated in (6) is by no means the most
efficient implementation. It is however functional, as it
achieves the goal of driving the polymer to the required inter-
faces. An ideal constraining function would be one that bal-
ances control of the random walk, or the efficiency by which the
walk reaches an interface, whilst still maximising the number
of possible configurations that might potentially be sampled.
Our choice, flinear, prioritises the latter condition. It is worth
considering that the only drawback of prioritizing the number
of configurations available to a chain is the increased rejection
rate, which in turn increases the time taken to sample a single
configuration.

Finding the most efficient form of f (k) is a complex problem
considering the variety of morphologies that might be sampled.
It is likely that the form of the optimal constraining function is
also dependent on the morphology that underlies the sampling
approach. However, we anticipate that the determination of the
optimal form of f (k) will be of increasing importance for the
block copolymer systems more complex than those we have
shown in our results. Subtle differences, such as the size of the
chain and the volume of the box, will likely have to be
incorporated into the form of f (k) in order for maximum
effectiveness.

There are of course standard limitations to the algorithm
which are most aptly described as depending on the sound
judgement of the user. Attempting to fit a chain more suited for

a gyroid morphology into a body-centred crystal morphology,
for instance, will not result in a successful configuration
sample for obvious reasons. The excluded volume of a single
chain segment of a given type must be well below the volume
corresponding to the number density of the segment monomer
type. However, in more complex morphologies, the efficiency of
the algorithm can become quite sensitive to chain length and
box volume.

Our focus in this publication has been the generation of
structure upon the assumption that the SCFT calculation
employed indeed provides the equilibrium morphology of the
system, or at least provides a valid approximation. In the
following section we demonstrate how such a valid approxi-
mation may be improved through the use of more sophisticated
random walk generation and sampling methods. We believe that
our variant of the node-density biased Monte Carlo algorithm
effectively solves the problem of connecting a number-field
density to a coarse-grained molecular configuration. The validity
of the technique is thus dependent exclusively on the manner in
which SCFT agrees with molecular dynamics simulation. A further
important feature to consider is the effect that the Lennard-Jones
parameters have an effect on the system as it undergoes molecular
simulation.

5.1. Random walk generation

The parameters of the random walk strongly influence the
effectiveness of the overall algorithm. It is not difficult to see
why a smaller step would be more effective at traversing a
density profile: smaller steps are capable of navigating smaller
changes in density. This suggests that a powerful method of
producing high quality configurations might make use of fine-
graining. Indeed, for many applications it may even be more
useful to eschew the use of coarse-grained beads and build the
configuration with fully atomistic models. For reasons of
computational performance, this may not be desirable for
simulation purposes. However, through techniques such as
the Newton inversion method36 applied to polymers, it is still
possible to improve the performance of the NDBMC algorithm
using the concept of fine-graining.

In both the original NDBMC algorithm and our variation of
it, the random walk generation process is relatively simple: the
former simply generates an ideal random walk position con-
strained by the bond length between coarse-grained beads
while the latter produces a self-avoiding configuration naturally.
The ideal chain is the most basic case and must undergo
preprocessing if it is to be used in a molecular dynamics simula-
tion. On the other extreme, the self-avoiding random walk con-
sciously avoids overlaps, but at the same time it excludes a large
number of reasonable configurations. These are examples of
simple sampling schemes for obtaining configurations for RN

and naturally, there are more sophisticated examples. A key
example that would be a good replacement for the schemes
outlined in this work is an off-lattice variant of the Rosenbluth
and Rosenbluth algorithm.37 This scheme operates by the stan-
dard importance sampling approach common to most Monte
Carlo algorithms, where the energies of the walk positions are
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taken into account as the walk is built. A significant benefit of the
Rosenbluth sampling technique is the fact that it may be used
to calculate relative probabilities of chains. This in turn allows
for the use of the Metropolis–Hastings algorithm: effectively, a
configuration may be directly sampled from the Boltzmann
distribution. Further improvements to the Rosenbluth sampling
scheme exist, such as the Pruned and Enriched Rosenbluth
Method and Configurational-bias Monte Carlo.

In the case of block copolymers, the Rosenbluth sampling
scheme is enhanced when combined with our variant of the
NDBMC algorithm. The algorithm operates by considering
local energies and has no mechanism to guide a chain to a
given region: it simply seeks to reduce the energy of the chain, a
strategy that is not useful when a segment composed of A-type
monomers has found itself surrounded by B-type monomers.
Likewise, the Rosenbluth scheme is significantly faster than the
simple self-avoiding walk scheme described in this work as it
deals with the problem of overlaps in a more intelligent,
thermodynamically consistent manner. We note that the use
of the biasing function to guide the random walk will not need
to be incorporated into the energy calculations carried out by
the Rosenbluth–Rosenbluth algorithm, as the density profiles
are completely independent of the molecular simulation.

Whilst this additional change may add rigor as a means of
sampling from the Boltzmann distribution, one might question
the necessity of carrying out a Monte Carlo calculation when
the step immediately following the construction of RN is a MD
simulation. Molecular dynamics simulation is the essential
component in our approach, with the NDBMC algorithm being
used as a precursor step. As such, we would prioritise that the
final configuration should be closer to the MD Hamiltonian
than the SCFT Hamiltonian. We believe that a Monte Carlo
simulation may be useful in the case of a discrepancy between
the SCFT Hamiltonian and the MD Hamiltonian, as it will
naturally correct the configuration towards the latter.

5.2. Molecular chains and the Gaussian chain model

In the results presented so far, we have remained faithful to the
original molecular simulation specifications presented in the
original work in which the NDBMC algorithm was presented.
It is to be noted, however, that there exists a subtle discrepancy
in these specifications with the model underlying the SCFT
calculation. As described in Section 3.3, we use the FENE
potential in combination with the Lennard-Jones potential to
represent the covalent bonds of the polymer. However, all SCFT
calculations shown so far use the continuous Gaussian chain
model, the energy of which is determined by

U½r� ¼ 3kBT

2b2

ðN
0

ds
dr

ds

				
				
2

(13)

where r(s) represents a chain conformation and b represents
the Kuhn length of the monomers representing the system.

There is no guarantee that the thermodynamics of a system
described by (13) are equivalent to the thermodynamics of a
system that uses the FENE chain. Unless the thermodynamics

of these two systems are proven to be equivalent, one can never
be certain that the equilibrium configurations predicted by
SCFT will provide equilibrium configurations on the molecular
scale. This would imply that the overarching approach of
converting an SCFT calculation into a molecular configuration
is generally unfeasible. However, there are two strategies that
can minimise or even wholly eliminate this issue.

The first option is to use a different potential in molecular
simulation that explicitly follows the same assumptions of the
Gaussian chain model. The FENE chain appears to be the
standard for polymer simulations of entangled polymeric sys-
tems, as it eliminates any chance of chains passing through
each other. However, this is not the technique by which this
condition may be achieved. In the already discussed work by
Chremos et. al., the harmonic bond

E = k(r � R0)2 (14)

is successfully employed for this purpose, where R0 is assigned
the value of 21/6s and the spring constant k = 2500kBTs�2. This
in turn, when compared to (13), suggests that all that is
required to achieve a valid mapping is to modify the Kuhn
length b such that the models are equivalent. The dependence
of b is, in reduced units, given as

b ¼
ffiffiffiffiffiffiffi
3T

2k

r

which suggests that for the spring constant described pre-
viously a representative Kuhn length should be 0.008sN. This
value indeed allows for fast-converging SCFT simulations, but it
admittedly places quite a restriction on the systems that may be
studied. It is worth however noting that this analysis may only
become significant in highly energetic situations where chains
on the molecular scale are deformed considerably. This is
because the forces arising from the FENE potential, aptly
described by Warner’s relationship38

hðxÞ ¼ 3kBT

2b2
x2

1� x2=R2
c

reduces to the standard harmonic potential for weak bond
extensions x/R2

c { 1.
The second option is in a way a reverse of the previous

suggestion. Instead of modifying the potentials used in the
molecular dynamics simulation, one might develop a SCFT
simulation that includes as part of its underlying model the
same potentials as the molecular dynamics simulation. Indeed,
SCFT can be built around a large variety of underlying chain
models, ranging from discrete chains with a finite number of
beads39 to compressible systems.40 Both of these modifications
would significantly improve the accuracy of the SCFT calcula-
tion in providing equilibrium configurations. This option, if
achieved, would be as close to infallible as possible when
combined with the sampling algorithm presented in this paper.
It is however a difficult and time-intensive undertaking. A
tailored SCFT code presents the additional caveat that there
is no guarantee that the modified code would result in self-
assembly. Further, it is worth mentioning that the Gaussian
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chain model is specifically used because it significantly sim-
plifies calculations in practice. A more complicated model
based around a molecular potential is not guaranteed to be at
all solvable in the framework of SCFT.

However, the considerable progress has been made in
field-based simulation methods over two decades since the
publication of the original NDBMC algorithm. Field-theoretic
simulations, which introduce fluctuation corrections to SCFT,
are one example of this progress. Field-theoretic simulations
typically deal with excluded volume interactions with idealised
d-function interactions, but recently work by Weyman et. al.41,42

have explored field theoretic simulations that implicitly incor-
porate the effect of realistic interatomic potentials. One key
result of their research is that field-theoretic methods are not
suitable ground for the strict 12-6 Lennard-Jones potential. This
is because a key feature required for the field-theoretic simula-
tion, the functional inverse of the interatomic potential u, does
not exist for the Lennard-Jones potential. On the other hand,
this requirement is satisfied for the Morse potential

V(r) = De�2a(r�r0) � 2De�a(r�r0) (15)

where a and D are constants. The Morse potential is essentially
a Lennard-Jones potential with the singularity at r = 0 removed
and is included in most popular molecular dynamics packages.
It has also been successfully used in a dissipative particle
dynamics simulation for the modelling of polymers.43 This is
a strong indication that instead of the Lennard-Jones potential,
the Morse potential should be used instead when attempting to
bridge the gap between field theory and molecular simulation.

On a related note, we note that chain length presents a
subtle but important discrepancy that exists between the SCFT
calculation used in the original NDBMC algorithm and the
assumptions underlying the molecular structure used in the
MD simulation. The SCFT calculation used in the original
formulation makes the assumption that the underlying chain
model is a Gaussian chain, which implicitly approximates a
polymer composed of infinitely many segments. This is of
course too drastic a simplification when attempting to obtain
useful molecular-level comparisons and is undoubtedly a flaw
in the entire approach. However, as mentioned, the progress in
field-theoretic methodologies is such that this simplification
is no longer necessary. There are a variety of techniques
that operate with a finite number of segments, with Single-
Chain-in-Mean-Field (SCMF) simulations and discrete chain
self-consistent field theory (DCSCFT) as notable examples.44

As mentioned, this paper is devoted to Monte Carlo sampling:
our concern is the process of generating configurations upon the
assumption that the number density predicted by SCFT is valid.
An in-depth investigation of the strategies presented in this
discussion is not included in this work, but we believe these
considerations to be important enough to warrant explicit
mention.

Indeed, we consider the capability of the NDBMC algorithm
to work seamlessly with any field-based solution to be its most
powerful feature. In this sense, the capabilities of the NDBMC

algorithm are limited only by the sophistication of field-
theoretic simulation.

Whilst we have recommended a variety of replacements for
the original SCFT approach, we also note that more efficient
molecular simulation tools may be used. Essentially, any simu-
lation approach that requires an initial configuration stands to
benefit from our improved version of the NDBMC algorithm.
This may in fact be a necessity when anticipating the structural
complexities of terpolymers and pentablock systems. One
strong candidate for this replacement is dissipative particle
dynamics,45 a mesoscopic particle-based method that has
successfully been used to model block copolymer self
assembly.46,47 We do note that it is important that the Hamil-
tonian of any method chosen should match as closely as
possible to field theory.

5.3. Dependence of mechanical properties on Lennard-Jones
parameters

We have demonstrated molecular simulation only for the
example of the ABA triblock copolymer, using values of the
Lennard-Jones e parameters that have been used in previous
research. For the latter examples, we have explicitly excluded
mention of the Lennard-Jones parameters and proceeded with
a version of the Flory–Huggins parameter that leads to self-
assembly.

The application of (12) would have provided a large range of
possible values for eAA, eBB and eAB. The Flory–Huggins para-
meter w = 100 employed in Section 4.2 could, for instance, be
obtained with a T = 0.15 with eAA = 1.0, eBB = 0.9327 and eAB =
0.1. However, given that (11) is a semi-empirical law obtained
from Monte Carlo simulations, it would be appropriate to verify
the validity of any Lennard-Jones e parameters that vary from
the assumptions made in deriving them. This verification can
naturally be carried out using the same method used to derive
(11). On a further note, it is also important to note that this
relation might indeed by too simple to capture the self-
assembly behavior of more complex systems than the standard
diblock. This was briefly alluded to in Section 4.1, where the
Flory–Huggins parameter provided by (11) for the system only
resulted in self-assembly at a lower temperature than those
studied in previous work. This discrepancy suggests that the
architecture of a polymer should be taken into account when
designing schemes by which to predict the Flory–Huggins
parameter. Further evidence to this feature is the fact that the
pentablock ABABA simulation required a significantly larger
value for the Flory–Huggins parameter in order to self-assemble
than the ABA triblock simulation.

Another and more serious concern is related to the purpose
for which the molecular configurations are generated. Our
preliminary investigations have demonstrated that varying the
Lennard-Jones e parameters has a complex effect on the
mechanical properties of the simulation, specifically the man-
ner in which the hard phase evolves throughout deformation.
This is an interesting and multifaceted problem that provides a
number of insights regarding the structure-property relations
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of a generic block copolymer material. We thus defer detailed
discussion to a future study.

6. Conclusion

In this work, we have provided a new algorithm based around
extending the node-density biased Monte Carlo algorithm,
whereby a set of desirable conditions is motivated and are then
incorporated into the sampling scheme. These conditions
make use of the difference of number densities between two
different types, a local quantity that nevertheless serves well to
govern the global structure of the random walk configuration of
a segment. The inclusion of these density-difference based
constraints represents a general methodology by which meso-
scopic calculations may be used to build microscopic config-
urations of complex macro-molecular systems.

The effectiveness of our method is demonstrated by the
quality of the molecular dynamics simulations that it yields for
systems that have already received extended study. With our
method it is no longer necessary to build complex simulation
workflows for the investigation of the bead morphology, as
near-perfect spherical beads are automatically obtained by
ensuring that the chains that form them are high quality
samples.

Further, our application of the extended node-density biased
Monte Carlo method has yielded simulations that have before
now received very little attention from the lens of molecular
dynamics simulation, likely due to the difficulty of obtaining
high quality initial configurations of such systems. One exam-
ple of this is the pentablock copolymer melt simulated in this
publication. Pentablock copolymers have received limited
attention in previous research, but to the authors knowledge
these systems have never been investigated in an already self-
assembled form via molecular dynamics simulation. Our
extended algorithm allows for the investigation of a number
of difficult questions, chief of which is the relationship between
the thermo-mechanical properties of an N-block copolymer and
the value of N.

The most interesting and challenging example of polymer
systems that our extended algorithm allows the investigation
of are ABC triblock terpolymer, whose extraordinarily rich
spectrum of morphologies is seemingly limited only to SCFT
literature. We believe that our variant of the NDBMC method
might allow this vibrant domain of soft matter simulation to be
opened up to more traditional particle-based methodologies.
We consider this to be an important objective, as a detailed
description of polymer motion in a block copolymer is not
possible with just the coarse-grained self-consistent field
representation.

We consider that our variant of the NDBMC method to be a
reasonably complete solution to finding initial configurations of a
variety of block copolymer morphologies. The further develop-
ment of this technique is limited only by the capabilities of its
constituent methodologies, namely SCFT and molecular
dynamics. The extent of this method’s application is dependent

entirely on the number and quality of phases SCFT, or indeed a
more sophisticated mesoscopic methodology such as field-
theoretic simulation, can achieve. As explored in the discussion
however, it is important to note that the energies attained with the
bead-spring model when combined with the Lennard-Jones
potential are not the same as those that the SCFT calculation is
based on. For a truly consistent multi-scale modelling approach, a
SCFT calculation that incorporates the exact potentials should be
used. This development will likely require further investigation.
Finally, we demonstrate that it is possible to justify the algorithm
rigorously by reframing it in terms of Rosenbluth sampling. We
believe that with the incorporation of biasing functions and the
enhancements we have suggested that the NDBMC algorithm will
prove itself to be a powerful tool for the molecular dynamics
simulation of self-assembled multicomponent block copolymers.
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The versions of our software used in the generation of Fig. 5–8
can be found at https://doi.org/10.5281/zenodo.7327034.48 The
current version of the code can be found at its dedicated
GitHub repository.49
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Appendix

A. NanoPoly: a structure generation
tool for block copolymer melts

Every process described in this research can be carried out in a
streamlined fashion using nanoPoly, a software suite designed
to model a variety of polymer structures. In this section, we will
outline some of the design principles behind this software that
informed many of implementation details in our approach. It is
worth noting that nanoPoly is not limited to building and
simulating self-assembled block copolymer morphologies: gen-
eral polymer melts for a large variety of user-defined architec-
tures are also possible. We will limit exposition of nanoPoly
features to aspects relevant to the simulations carried out in
this paper. A generic workflow is shown in Fig. 9.

The essential component of nanoPoly is the self-avoiding
walk and the entire software is designed around the rapid
generation of self-avoiding random walk configurations. In
the structure generation phase, all monomers are treated as
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hard-spheres whose contribution to the excluded volume is

vexc ¼
25=2

3
ps3i

where si is the Lennard-Jones distance of a given bead of type i.
This requirement ensures that any random walk, when initi-
alised, will be close to the minimum of the Lennard-Jones
potential. For the sake of speed, this requirement is not always
satisfied: when the random walk finds itself in a highly limited
position, the hard-sphere radius may be gradually reduced until
a suitable position is found. Such sub-optimal positions are
corrected for by subjecting the final configuration to energy
minimisation via the conjugate gradient method.50

The most computationally intensive component of con-
structing a self-avoiding random walk is the requirement that
every position be checked for overlap with the accepted bead
positions that have already been placed within the box. This
achieved in nanoPoly by partitioning the volume into cells that
are at least as large as the equilibrium distance of the FENE
potential used to model a given random walk. Typically, this
equilibrium corresponds to the minimum of the Lennard-Jones
potential, smin = 21/6. When multiple FENE potentials are used
for different architectures, the largest equilibrium distance is
used as the smallest possible cell length. Thus, the fundamen-
tal data structure that nanoPoly makes use of is a collection of
ordered volume cells that, when combined, represent a full
volume. The problem of verifying the validity of a position for a
self-avoiding random walk is reduced from checking every
existing position to checking only the bead positions that share
the cell of the position being verified.

The collection of ordered volume cells also lends well to the
problem of reading in the number density configurations that

are calculated through SCFT. All SCFT calculations described in
this paper were carried out using the pscf software developed by
Morse and coworkers,51 as well as the additional pscfFieldGen
software for initial guess generation. We emphasize that the
choice of a mean field theory is consequential only in the quality
of the final result: nanoPoly need only a number density file in
order to generate a coarse-grained molecular configuration.

The pscf calculations are carried out automatically by nano-
Poly after key parameters are specified. Once the SCFT calcula-
tion is carried out for a grid of N � N � N points, it may be read
into the corresponding collection of volume cells defined in
nanoPoly. The option to read an N � N � N SCFT calculation
into a collection containing (aN)3 volume cells also exists such
that one volume grid may include a unit cells of a given SCFT
morphology. It is worth noting that this is in fact a departure from
the original formulation of the NDBMC algorithm, which instead
relies on representing the number density as a continuous field
through interpolation. With nanoPoly, this option is available.
However, we have found that maintaining the discrete number
density field in combination with an optimally selected volume-
cell size guarantees a noticeable change in density difference.
Whilst this makes little impact on the original NDBMC algorithm,
for the development discussed in this publication it significantly
increases the efficiency of the algorithm.

The biasing of a walk is conducted in a similar manner to
the original NDBMC algorithm as described in Section 2.1, with
the exception being when a step of the walk does not satisfy the
conditions outlined by (6). Once a volume is defined and
populated with a variety of random walks, it may be subjected
to molecular dynamics simulation. The exact sequence of the
molecular simulation may be outlined directly in nanoPoly,
which provides an interface to lammps. Our interface is

Fig. 9 A general workflow for the use of nanoPoly for the generation and simulation of block copolymer molecular simulations. The order of each step
proceeds downwards, with each column occurring after the last step on the right-most column. Steps that are marked by a red square are affected by the
volume and number of cells, whilst those marked by a green square depend on the specifications for the bead types. The MC algorithm that is presented
in this work is heavily affected by the s parameter, the value of which is used to enforce the self-avoiding walk properties. Many of the steps related to
molecular dynamics are automated: the generation of the simulation template file, for instance, simply converts the parameters already specified in the
previous three columns into a format suitable for LAMMPS.
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reasonably complete for the purpose of designing molecular
dynamics simulations in which deformations play an impor-
tant part. Using nanoPoly, it is simple to write a routine that
either builds a large number of configurations and simulates
each one in turn. It is also possible and in many cases desirable
to instead generate a single configuration and simulate it many
times with differing parameters. This facility was used liberally
to obtain the results discussed in Section 4.
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