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Continuum elasticity is a powerful tool applicable in a broad range
of physical systems and phenomena. Yet, understanding how and
on what scales material disorder may lead to the breakdown of
continuum elasticity is not fully understood. We show, based on
recent theoretical developments and extensive numerical compu-
tations, that disordered elastic networks near a critical rigidity
transition, such as strain-stiffened fibrous biopolymer networks
that are abundant in living systems, reveal an anomalous long-
range linear elastic response below a correlation length. This
emergent anomalous elasticity, which is non-affine in nature, is
shown to feature a qualitatively different multipole expansion
structure compared to ordinary continuum elasticity, and a slower
spatial decay of perturbations. The potential degree of universality
of these results, their implications (e.g. for cell-cell communication
through biological extracellular matrices) and open questions are
briefly discussed.

Continuum elasticity is a powerful tool that describes a huge
range of phenomena in diverse physical systems, over suffi-
ciently large lengthscales." On sufficiently small lengthscales,
where the effect of material structure and disorder cannot be
coarse-grained, continuum elasticity theory is expected to break
down. The crossover between these two regimes is character-
ized by a correlation length . Indeed, recent work has identi-
fied ¢ for glassy systems, particle packings and elastic
networks,”® and demonstrated the validity of continuum elas-
ticity theory for lengthscales r that satisfy r » £. In particular,
the displacement response to a point force (monopole) pertur-
bation decays as 1/r in three dimensions (3D) for r » &, while
the displacement response to a force dipole—which is propor-
tional to the spatial gradient of the point force response’
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—decays as 1/7%. Yet, it remains unclear whether a generic
elastic response exists for r « ¢ and if so, what form it takes.
For systems undergoing a glass transition upon cooling a
melt, ¢ has been shown to be of the order of 10 atomic
distances and to vary mildly with glass formation history (e.g:
the cooling rate).’ Consequently, it is difficult to imagine that a
generic elastic response emerges on such a narrow range of
scales and one expects that disorder and fluctuations dominate
the elastic response for r < ¢ in such systems. On the other
hand, systems that undergo a critical rigidity transition—such
as fibrous biopolymer networks that are abundant in living
systems (e.g. collagen, fibrin and basement membrane) and
that are known to undergo a dramatic stiffening transition
when deformed to large enough strains'®—feature a macrosco-
pically large ¢ close to the rigidity transition.>"" In such cases,
the regime r « ¢ spans many orders of magnitude and might
possibly accommodate a generic elastic response. In this brief
report, we consider such disordered networks near their rigidity
transition and study their elastic response for r « £.

We show, based on recent theoretical developments and exten-
sive numerical simulations, that the linear elastic response of
disordered networks follows an anomalous power-law for r « ¢,
when ¢ is sufficiently large, and that the decay is slower compared
to the continuum elastic response for r > ¢£. Furthermore, we
show that the anomalous linear elasticity for r « ¢ features a
qualitatively different multipole expansion structure compared to
continuum elasticity. These results may have significant implica-
tions for long-range mechanical interactions between distant cells
through biological extracellular matrices," inspire the design of
heterogeneous structures with unusual properties'® and pose new
basic questions, which are briefly discussed.

Before reviewing our results, we emphasize that many pre-
vious efforts to explain anomalous elastic responses in various
biophysical contexts invoke intrinsically nonlinear constitutive
laws, see e.g.'*™'® Contrary to those studies, in this work we
consider model systems in which an anomalous linear
response emerges, as also recently shown to occur in experi-
ments on tensed fibrous hydrogels.'® We finally note that other
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approaches termed ‘anomalous elasticity’—describing different
mechanical phenomena in amorphous materials—were
recently put forward.?®">*

Main result

We consider isotropic disordered networks whose nodes are
connected by relaxed Hookean springs and whose proximity to
a rigidity (jamming-unjamming) transition is controlled by the
connectivity z (average springs per node), which is close to (yet
larger than) the critical Maxwell threshold z. = 2d (where d
is the spatial dimension). Such disordered elastic networks

feature a shear modulus that scales linearly with z — z.*>* and
fret 1)
JZ—2z¢

which diverges as z — z.*®?*** Several additional growing
lengthscales were previously identified near the unjamming
transition; a comprehensive review of those can be found in
ref. 26. Our goal is to understand the elastic response of
disordered elastic networks for r « ¢.

The basic quantity we focus on is the displacement response
u(r) to a force dipole applied at the origin. The reason we
consider the dipole response (and not, for example, the mono-
pole response) is three-fold. First, our results are relevant for
fibrous biopolymer networks, which constitute extracellular
matrices to which cells adhere in physiological contexts. Adher-
ent cells apply to their surrounding extracellular matrices
contractile forces that are predominantly dipolar.”” Second,
contact formation between solid particles during dense suspen-
sion flows, where the overdamped response is analogous to
elastic response, generates a force dipole.”® Finally, in many
cases low-energy excitations in disordered systems are of dipo-
lar nature, e.g. the universal nonphononic excitations in
glasses.”®

Consider then the response function C(r) ~ (u(r)-u(r)),
where (-) stands for an angular average, rendering C(r) a
function of the distance r alone, and note that %(r) is normal-
ized such that C(r) is dimensionless. Next, one can consider the

integral ng(r)d”r in d spatial dimensions and ask about its
scaling with &. If C(r) ~ exp(—r/¢) for r < &, then one obtains
fgC(r)dﬂr ~ J"gC(r)r"*Idr ~ & e the naive scaling with the
correlation length ¢. However, recent work®*®?%3! suggested
that in fact

J?mfwfa )

0

in any dimension d.

The latter indicates the existence of long-range correlations,
ie that in fact C(r) ~ r *Pexp(—r/&) for r < ¢ where the
exponential exp(—7/&) represents the fact that continuum linear
elasticity, which features a different power-law, dominates the
response for r >» ¢. Consistency with eqn (2) requires that
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B = (@ — 2)/2.*® Consequently, in 3D (4 = 3) we have for the
dipolar displacement response

for r<¢

1
u(r) ~ { VT : 3)
= for r>¢
where for r » ¢ we just have the continuum elastic dipole
response. Note that the dipolar response is predicted in eqn (3)
to decay significantly slower for r « ¢ than for r » . The same
argument leading to eqn (3) has been spelled out in the context
of flowing dense suspensions®® (see the “Discussion and Con-
clusions” section therein, where the overdamped—not the
elastic—response has been considered). A similar anomalous
elastic response has been recently suggested using a Ginzburg-
Landau description of the so-called overlap free-energy in a
mean-field approach to glasses.*'

To test the prediction in eqn (3), we set out to construct a
response function that is slightly different than C(r) (yet, results
for C(r) are presented in the ESIT). Our motivation for doing so
is that we are not only interested in validating the form of u(r)
for r « ¢, but also in gaining insight into the structure of
elasticity theory on these scales and the possible differences
compared to continuum elasticity. The latter features a multi-
pole expansion in which the nth multipole order involves a
spatial gradient 0 of the (n — 1)th one. Consequently, we
construct a response function ¢(r) (see ESI for details) that
scales as |0u(r)|* for r » ¢&, and explore whether the corres-
ponding structure persists also for r « . Moreover, |du(r)|” is
proportional to the elastic energy density of the dipolar
response (to quadratic order), and hence is a directly relevant
physical quantity.

The response for r « ¢ is expected to be strongly affected by
disorder, and hence to be non-affine in nature®*” and dominated
by fluctuations.® Consequently, we expect the angular average
of spatial derivatives of the displacement vector u(r) to feature
vectorial cancellations. As a result, one can hypothesize that c(r)
for r « & inherits its scaling from |u(r)|?, not from |du(r)|>. If
true, then ¢(r) takes the form

|u(r)|2~1 for r< ¢
e(r) ~ ¢ ) (4)
2= for r > &

Ou(r) [~

where ¢(r) ~ [u(r)|> ~ r~® for r » ¢ follows (by the construc-
tion of ¢(r)) from u(r) ~ 72 of eqn (3). Consequently, eqn (4)
suggests that the elastic response for r « ¢ is anomalous not
just in its power-law decay, as predicted in eqn (3), but also as it
might not follow the multipole expansion structure of conti-
nuum elasticity.

Quantitatively testing the prediction in eqn (4) requires very
large networks that span a broad range of lengthscales and
feature a sufficiently large correlation length &, which is con-
trolled by z — z.. To that aim, we generated disordered elastic
networks of 16 million nodes each for various z — z values (see
ESIt), and calculated their dipole response and subsequently
c(r) following its network-level definition (see ESI,T where we
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Fig. 1 (a) An example of the dipole displacement response u(r), calculated
in a spring network of N = 16 M nodes and connectivity z = 6.04. The inner,
denser region corresponds to the anomalous elastic response, while the
outer region corresponds to the continuum elastic response (which also
exhibits the well-known quadropular symmetry,?® to be contrasted with
the much more isotropic anomalous response). (b) Response functions c(r)
computed in networks of various connectivities z — z, as indicated by the
legend. For large r, c(r) approaches the r~° scaling of continuum elasticity
(cf. egn (4)). (c) The same data as in panel (b), but here plotted as
re(r)/JZ=2c vs. ryZ—zc ~r/¢ The re-scaled representation reveals
excellent collapse, which confirms that (i) the correlation length follows
En~ 1/\/ﬁ and that (i) c(r) ~ 1/r for r « ¢, as hypothesized in egn (4).

also show C(r)). A single dipole response is shown in Fig. 1a. We
first aim at verifying the continuum elastic response in eqn (4)
for sufficiently large scales, i.e. for r > £. In Fig. 1b, we plot ¢(r)
for several small values of z — z (as indicated in the legend).
We find that indeed for sufficiently large r, all curves follow
c(r) ~ r° (and, as expected, more so the larger z — z is,
corresponding to smaller ¢).
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We then set out to test the prediction in eqn (4) for r « £, which
was our major goal. To that aim, we first note that assuming the
spatial dependence of ¢(r) in this regime (¢f eqn (4)), one can
also predict its z — z. dependence. The result reads c(r) ~ (z — z.)*/r

for r « ¢ (see ESIt). The latter implies that r®c(r) / VZI— 2z,

~ (ryz= z(,)sw (r/&)° for r « & This prediction is tested in
Fig. 1c and is shown to be in excellent quantitative agreement with
the direct numerical calculations.

Discussion

The results presented above, based on recent theoretical devel-
opments and extensive numerical simulations, provide strong
evidence for the existence of anomalous linear elasticity in
disordered networks close to their rigidity transition, below a
correlation length ¢ that is expected to be macroscopically
large. The elastic response for r « ¢ is anomalous, i.e. different
from ordinary continuum elasticity that is valid for » » &, in at
least two major respects; first, the spatial decay of perturba-
tions is slower (i.e. characterized by a smaller inverse power-law
exponent) compared to continuum elasticity. Second, the elas-
tic response for r « ¢ is highly non-affine and hence does not
appear to follow the ordinary multipole expansion structure of
continuum elasticity, where a higher order multipole response
is obtained by spatial gradients of a lower order one.

Recent experiments on tensed fibrin hydrogels*® show that
the linear response®” to a point force is anomalous, decaying as
1/ away from the perturbation—with f measurably smaller
than 1—, instead of the 1/r decay expected from continuum linear
elasticity. These results indicate that the mechanism generating
anomalous elastic responses might not be the intrinsic nonlinear-
ity of the constituent elements, as invoked in several previous
works,"*™® but rather the physics discussed here. In this case,
anomalous vibrational modes*—and not long wavelength (wave-
like) modes—dominate the response at distances r < ¢&.

The anomalous linear elasticity discussed here may have
significant implications for various systems such as flowing
dense suspensions® (where the overdamped response is analo-
gous to the elastic response) and strain-stiffened fibrous bio-
polymer networks that are abundant in living systems,'>"" e.g.
as extracellular matrices to which cells adhere and apply
contractile forces.?” In the latter context, our results may imply
that for r « ¢ distant cells can mechanically communicate over
significantly longer distances' (compared to continuum elas-
ticity) using their active contractility, a capability that might be
important in various physiological processes (e.g. tissue
development).

Our results also pose new questions and open the way for
additional research directions. First, we focused here on the
response to force dipoles, which is well motivated from the
physical and biological perspectives, as discussed above. Yet,
force monopoles (point forces) are of interest as well, both
because they are of practical relevance and because of the
unusual multipole structure of the anomalous elastic response
we discussed. In particular, in view of our findings, one can
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speculate that the monopole response is identical to the dipole
response scaling-wise, which should be tested in future work.
Second, our analysis considered the amplitude squared of the
response, ie. |u(r)|>. It would be interesting to understand
whether the same scaling remains valid for the average of the
vectorial response itself, i.e. u(r), which is obviously subjected
to vectorial cancellations due to the non-affine nature of the
response, see for example the results of ref. 3.

Finally, the degree of universality of our results should be
also tested in future work, e.g. in different disordered materials.
In particular, we speculate that the same anomalous decay
observed here below ¢ also characterizes the universal spatial
structure of soft quasilocalized excitations that generically
emerge in structural glasses,”® and feature spatial structures
that closely resemble responses to force dipoles.**

Conflicts of interest
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Note added in proof

We became aware of ref. 36, where a continuum formalism
predicts a non-affinity correlation function that features a
spatial decay similar to that of C(r). Future work should clarify
the possible relevance of the continuum formalism of ref. 36 to
our findings.
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