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Recent experiments pointed out a beneficial role of moderate Mg doping in SnO, for application as an
electron transport layer (ETL) in perovskite solar cells. The high efficiencies obtained with Mg-doped
SnO, are driven by an improved open circuit potential (Voc), but the origin of this behaviour is still under
debate. Some ascribe this enhancement to the improved quality of the thin ETL film, while others
speculate it is due to an electronic structure rearrangement upon Mg doping. In this context, here we
applied density functional theory calculations to uncover the changes in SnO; structural, electronic, and
defect properties induced by different percentages of Mg doping. Our predictions of conduction band
minimum (CBM) variations provide new insights on the trend of different Voc values observed in
experiments. We found that low Mg contents push up the SnO, CBM increasing the Voc. In contrast, at
high dopant concentration, interstitial Mg defects are more likely to occur, leading to lower Voc and to
the formation of intra-gap band states, explaining the decrease of PSC performances at a high Mg
doping ratio. These findings provide a new atomistic perspective on the positive/negative effects of Mg
dopants for the application of SnO, in last-generation solar cells, highlighting key structural and defect
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Introduction

Some metal oxides have the unique characteristic of being both
electrically conductive and optically transparent in the visible
region. Tin dioxide (SnO,) for example has attracted much
attention for its applications as a transparent conducting oxide
in different fields, such as solar cells,"” gas sensors,*>* display
devices,® and lithium-ion batteries.® SnO, is intrinsically an n-
type semiconductor due to the presence of native point
defects”® and its optical band gap ranges from 3.6 to over
4.0 eV,® ensuring a high optical transmittance (>80%) in the
visible range."® Noteworthily, it is also highly stable both ther-
mally and chemically, and abundant in nature.

The electronic and structural properties of SnO, have been
purposely tuned for different applications via doping with
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properties that can be easily tuned to obtain ETL materials with purposely tailored electronic features.

several possible elements. Donor dopants are widely used''* to
increase the density of the majority carriers and produce an n-
type SnO, transparent electrode. Other dopants, such as Zn and
Ni, are used to promote gas sensing properties**** and improve
its performances as an electron transport layer (ETL) in perov-
skite solar cells (PSCs).**** Induction of ferromagnetic proper-
ties, a key feature for spintronic applications, has also been
predicted via ab initio calculations and obtained experimentally
with transition metal and non-magnetic doping elements.>*>*
SnO, can be doped instead with acceptor atoms but whether p-
type conduction can be achieved in SnO, using acceptor
dopants is still an open question. Theoretical calculations
considering different dopants (e.g., Al, Ga, In interstitial or
substituting Sn, N substituting O and Li substituting Sn) indi-
cate that different kinds of trapping states preclude SnO, from
having p-type character.” On the other hand, p-type SnO, films
have already been fabricated, although with low conductivity.
For example, In-doped SnO, films with p-type conduction have
been prepared and characterized in different studies,**>* and
Othmen et al.”® have demonstrated the applicability of p-type
highly Fe-doped SnO, thin films in homojunctions with non-
doped SnO,. Several studies have reported the effects gener-
ated by Mg-doping in SnO,. Early studies by Li et al.** have
analyzed the morphological and optical properties of Mg-doped
SnO, thin films. He et al.*** have calculated the defect energy
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formation and the hole concentration indicating that Mg is
suitable for doping of SnO, and, recently, Fu and co-workers*
have developed a fabrication method to generate Mg-doped
SnO, film. Mg has also been reported to confer peculiar
magnetic properties to SnO, such as room-temperature ferro-
magnetism.>*** Recent studies by Xiong et al.** and Zhou et al.*®
also pointed out the beneficial role of Mg doping in perovskite
solar cell (PSC) performances. Indeed, doping with Mg**
partially substituting Sn** ions has been reported to tune SnO,
properties without compromising its n-type character. Fabri-
cated devices have reached higher efficiencies when Mg-doped
SnO, film has been used as the ETL compared to the pristine
material. However, there is no consensus on the exact role of Mg
in such improvement. Xiong et al. reported better quality of the
Mg-doped film deposited via high-temperature treatment with
respect to the undoped one and, consequently, suggest a better
interfacial contact with the perovskite. In terms of performance,
their PSCs are reported to attain the best power conversion
efficiency (PCE) with a 7.5% Mg content, whilst higher doping
percentages (10 and 20%) result in lower PCEs. Devices fabri-
cated by Zhou have shown higher Vo, and a lower charge
extraction ability for Mg-doped SnO, films, which has been
ascribed to a slight rise in SnO, conduction band minimum
potential upon Mg doping. These findings do not match the
UPS measurements performed by Xiong, which reveal a lower
CBM for doped films, not correlated with doping concentration
and Vo values obtained from complete devices. This puzzling
electronic behavior of Mg-doped SnO, motivates the present
work, which aims at assessing the effects of different Mg doping
concentrations on the electronic properties of SnO, as the ETL
using atomistic simulations based on the density functional
theory (DFT). In particular, we address the enhanced-to-
thwarted performance switch of Mg-doped SnO, as the ETL in
PSCs when going from low to moderate doping degrees.

Since the band alignment between the ETL CBM and the
perovskite CB is crucial in this kind of devices, any energy shift
of the valence and/or conduction bands related to work func-
tion (WF) changes can affect the working mechanism and the
solar cell parameters. After presenting (Mg-doped) SnO, bulk
properties, we exploit the surface-slab approach to calculate
ACBM to explain, from an electronic point of view, the
enhancement in performances and Vg reported in the litera-
ture®* for Mg-doped SnO,-based PSCs. In our models Sn*" ions
are substituted with Mg>* but, given the limited solubility, we
have considered both substitutional and interstitial Mg>* ions
at high doping concentrations. We want to emphasize that the
wording “Mg-doped SnO,” denotes, from now on, the addition
of Mg** acceptor defects in SnO,, preserving its n-type
character.

Our study provides a fundamental understanding of the
effective positive role of low dosage of Mg doping, which
increases the CBM of the SnO, providing higher Vo and
enhances the PCE of PSCs and of the negative role of the high
doping concentrations where Mg>* occupy interstitial sites,
which is detrimental for the PCE of the PSCs. Furthermore, our
findings pave the way for a new structure-based approach for
the design of doping for materials most used as ETLs.
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Methods and computational details

Our first-principles spin-polarized DFT calculations have been
performed within periodic boundary conditions and a plane
wave/pseudopotential approach, as implemented in the Vienna
ab initio simulation package (VASP, version 5.4.4) code.*”*® For
structural optimizations and electronic structure calculations
we applied Perdew, Burke, and Ernzerhof (PBE) GGA exchange-
correlation density functional,***> as well as the Heyd-Scuseria—-
Ernzerhof (HSE06)*»** hybrid functional. All atomic positions
have been allowed to relax without imposing symmetry
constraints until residual forces on each atom were smaller
than 0.03 eV A~". All ionic cores have been represented by
projector-augmented wave (PAW) potentials:*>*® 2s*2p* elec-
trons for O, 5s>5p” electrons for Sn, and 3s® electrons for Mg
were treated as valence electrons. Dispersion forces have been
accounted for with Grimme's D3 (ref. 47) with the damping
scheme by Becke and Johnson (D3BJ).** We use the B] damping
to deal with dispersion interactions at short distances and
mitigate the double-counting of electron correlation effects at
intermediate distances. We chose an SCF energy threshold of
107" eV and a plane wave energy cut-off at 600 eV in all calcu-
lations. I'-centered Monkhorst-Pack k-point grids of 6 x 6 x 9,
3Xx3x%x3,3x5x1,and 2 x 3 x 1 have been used for the SnO,
bulk unit cell, (Mg-)SnO, bulk supercell, and (Mg-)SnO, slab
models described below at PBE-D3BJ and HSE06-D3B]J levels of
theory, respectively. These approaches have been widely
exploited for several transition metal oxide bulk and
surfaces.*">*

Geometry optimization has been performed starting from
experimental lattice constants and atomic parameters® of the
P4,/mnm space group. The pristine bulk structure has been
optimized at both PBE-D3BJ and HSE06-D3B]J levels of theory. A
96-atom supercell (32 f.u.) has been considered as the starting
point to simulate different Mg concentrations in Mg-doped
SnO,. Lattice constants of doped bulk supercells have been
fixed to an integer multiple values of those PBE-D3B] optimized
for the undoped material since Mg>" and Sn*" ions in VI coor-
dination have similar dimensions (~0.7 A).> Subsequently,
HSE06-D3B]J single point calculations have been performed on
geometries optimized at the PBE-D3BJ level of theory.

Work functions have been computed from slab models of
undoped and Mg-doped SnO, surfaces. Our models have been
built with the (110) surface termination, identified as the most
stable surface.***” On the surface plane, our model consisted of
a 3 x 1 supercell of the (110) unit cell. As for slab thickness, we
employed five O-Sn-O tri-layers which ensured converged
surface energy within 5 x 10~* J m 2 This supercell and
thickness choice resulted in 90-atom slabs. We used a vacuum
layer >10 A to avoid any interaction between images. The work
function of pristine (0% Mg) and doped SnO, has been calcu-
lated at the HSE06-D3B]J level of theory on PBE-D3BJ optimized
geometries from the planar-average electrostatic potential
(PAEP) of such slabs as follows:*

WF (wimg) = Evac — Eve, X =0, 3, 6, 10%

This journal is © The Royal Society of Chemistry 2023


http://creativecommons.org/licenses/by-nc/3.0/
http://creativecommons.org/licenses/by-nc/3.0/
https://doi.org/10.1039/d3se00362k

Open Access Article. Published on 17 July 2023. Downloaded on 1/10/2026 12:05:17 PM.

Thisarticleislicensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence.

(cc)

Paper

Table 1 Calculated and experimental lattice constants of SnO, (rela-
tive errors in parenthesis) and eigenvalue gap values (Eg)

PBE-D3B] HSE06-D3B] Exp.
a=b(A) 4.797 (+1.25%) 4.727 (—0.21%) 4.737 (ref. 54)
c(A) 3.226 (+1.24%) 3.179 (—0.22%) 3.186 (ref. 54)
Eg (V) 0.80 3.04 3.6 (ref. 60)

where E,,. is the value of the PAEP in the vacuum region of the
slab model and Eyg is the energy of the highest occupied level.
In the approximation of the rigid band model, the WF values
provide information to extrapolate the changes in the CBM
(ACBM = (CBMy9mg) — CBM(goimy))) Of the doped SnO, mate-
rial. A lower WF points out higher CBM. Thus, the change in WF
(AWF = (WF(xmg) — WF(oumg))) is the opposite of ACBM.
Finally, the trend in V¢ has been connected with the ACBM.

Results and discussion

SnO, pristine bulk structure has been analysed from the
structural and electronic points of view with PBE-D3BJ and
hybrid HSE06-D3BJ density functionals. Table 1 lists computed
lattice parameters and eigenvalue gaps for both exchange-
correlation functionals. As reported in other theoretical
studies,***”** lattice parameters predicted by PBE were over-
estimated within the expected error (~1.2%). HSE06 hybrid
functional provided slightly underestimated lattice constant
values in better agreement with the experiments with
percentage errors of ~0.2% along all three lattice vectors.

As expected, energy bandgap values extracted from these
calculations are highly dependent on the used exchange-
correlation functionals. The experimental band gap (3.6 eV)® is
underestimated by PBE (0.80 eV), consistently with other DFT
studies on Sn0,,*"* whilst HSE06 functionals predicted a wider
eigenvalue gap 3.04 eV, closer to the experimental value.

Computed band structures and pDOS plots of undoped SnO,
at PBE-D3B] and HSE06-D3B] levels of theory (depicted in Fig. 1)
match what has been reported in previous studies.®** Except
for the bandgap value itself, both levels of theory predicted
qualitative identical pDOS and band structures, featuring

View Article Online
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a direct band gap at the I" point, Oxygen p states are the main
contributors to the edge of the valence band, and Sn s states to
the bottom part of the CB.

We adopted the supercell approach for Mg-doped SnO, bulk
at different doping levels. 1, 2, or 3 Sn atoms were replaced with
Mg in the 96-atom supercell (32 f.u.) to reproduce 3, 6, or 9%
doping percentages, respectively. For 6% and 9% cases,
substituted atoms have been placed as far as possible from each
other (minimum distance ~ 5 A) (Fig. 2). As reported in previous
studies,®*® replacement of Sn by Mg does not induce remark-
able changes in optimized lattice parameters due to the very
similar ionic radii of Sn** and Mg>", respectively 0.69 and 0.72
A5 For this reason, we use the (scaled) lattice constants of
pristine SnO, also for the doped systems. Fig. 2 shows the total
DOS calculated at the HSE06-D3BJ level of theory on PBE-D3BJ
optimized geometries for all the considered doping percent-
ages. We do not report spin-projected DOS as the discussion of
magnetic properties is outside the scope of our work. The
valence band (VB) crossed the Fermi level in doped bulks,
pointing out the p-type behavior of the doped material.

Starting from the 5L-(110) slab model containing 90 atoms
(30 f.u.), 1, 2 or 3 inner Sn atoms were substituted with Mg to
describe 3, 6, or 10% doping contents, respectively, as done for
the bulk. Aiming at assessing the effect of substitutional vs.
interstitial Mg doping, we have also considered two alternative
6% and 10% doped systems (labeled as 6%* and 10%*) where
one and two Mg atoms, respectively, do not substitute Sn but fill
interstitial lattice sites. In the 6%* and 10%* systems, a tin
vacancy is associated with each interstitial Mg to keep the same
stoichiometry as in 6% and 10%. For all these models, we have
performed HSE06-D3B]J single point calculations on PBE-D3B]
optimized geometries, which are depicted in Fig. 3 together
with the corresponding pDOS plots.

While the presence of Mg in the interstitial site is energeti-
cally unfavorable, the energy differences calculated between the
“pure” substitutional slabs and the corresponding interstitial
Mg counterparts are relatively small (0.15 and 0.21 eV f.u.”" for
6% and 10%, respectively) so we can consider that both
configurations are likely to occur.

While systems with substitutional doping presented p-type
pDOS similar to those of bulk materials, the pDOS
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Fig.2 Onthe left, total DOS calculated at the HSE06-D3BJ level for SNO, pristine and Mg-doped at 3, 6 and 9% where the sum over o.and B spin
channels is shown; the dashed line denotes the Fermi level. On the right, supercell bulk models for Mg-doped SnO, at 3, 6 and 9%; legend:
oxygen (red), tin (grey), magnesium (orange).
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corresponding to interstitial Mg-doping featured intra-gap
states that could promote undesired charge recombination
processes and compromise the PCE of the PSC. Our calculations
reveal that such intra-gap states can be ascribed mainly to
oxygen atoms neighboring tin vacancies (Fig. 4 and 5), which
are significantly displaced from their atomic positions in the
pristine material. To determine whether such intragap states
arise from the Sn vacancy or from the interstitial Mg itself, we
have considered a substitutional 3% Mg-doped slab with one Sn
vacancy (3%y.c) and a 6%* system without Sn vacancy (6%*,,
ovac)- Computed pDOS of 3%,,,. (Fig. 3) revealed the presence of
intra-gap 2p O states in line with those of 6%* and 10%* slabs,
where a Sn vacancy is present. On the other hand, pDOS of
6%*w/ovac (Fig. 3) presented a smaller bandgap than the corre-
sponding 6%%* slab, but does not feature oxygen intra-gap
states. These decoupled results confirmed that Sn vacancies
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play an active role in intra-gap state generation, due to the high
structural distortion of neighboring oxygen atoms, while inter-
stitial Mg decreased the bandgap but does not generate such
states. Anyhow, both effects would jeopardize PSC perfor-
mances, so, from this electronic point of view, our calculations
predict that Mg may be beneficial only when it occupies regular
Sn lattice sites.

Doping also brings structural changes to the SnO, lattice. We
have analyzed such distortions in terms of Pair Distribution
Functions (PDFs) of Sn-O bond lengths for all doping degrees
and types discussed above (Fig. 6). Besides the expected larger
peak widths, substitutionally doped slabs present slightly
shorter Sn-O distances than pristine material ones (in the range
1.95-2.15 A vs. 2.00-2.17 A in pure Sn0O,), but neither the shape
nor the range of the PDF has been affected by increasing Mg
content PDF (3%)-PDF (6%)-PDF (10%). We found similar PDF
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Fig.5 10% and 10%* doped slab models with oxygen atoms mainly responsible for generating intra-gap states colored in yellow; pDOS legend:

O (p) — red or yellow, Sn (s) — blue, Sn (p) — green.
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features for the other explored systems with Sn vacancies, e.g.,
3%pyac. This confirmed the negligible structural effects evinced
experimentally between SnO, and Mg-doped SnO, with
moderate Mg content, where Mg occupies only Sn sites. All
systems with interstitial Mg (6%%*, 10%*, and 6%*y/ovac) have
broader PDFs ranging from 1.92 A to 2.3 A; Mg in interstitial
sites also induces Sn—-O bond elongations and overall larger
distortions than substitutional Mg.

In a PSC the relative position of the CBM of the ETL and the
VBM of the HTL plays a primary role in defining the V¢ of the
entire device. Lower ETL CBM potentials lead to lower Vo¢
values.®*”® The trend of the WF is thus connected with the VBM
potential and, in the approximation of the rigid band model,
also with the CBM of the material. Therefore, we can assess the
change in the CBM position from the shifts of the examined
WFs of the SnO, with different Mg doping concentrations and
configurations. Briefly, lower WF values result in higher CBM
potentials and, consequentially, higher V¢ values.

For such a reason, we have computed work function values of
doped materials from HSE06-D3BJ slab calculations and
resulting ACBM values have been plotted with respect to pris-
tine SnO, in Fig. 7, and compared with experimental variations
of Voc at different doping levels.** Substitution of Mg ions in
regular Sn sites produced an evident rise in CBM: higher the
doping concentration, higher the CBM (Fig. 7, black dots).
Interstitial Mg, instead, generates the opposite effect by
lowering the CBM (Fig. 7, black stars). For this reason, the CBM
of the 6% and 6*% configurations are higher/lower than that of
3% (substitutional doping). The 10*% WF value confirms this

4860 | Sustainable Energy Fuels, 2023, 7, 4855-4863

trend. These results, together with the experimental evidence of
Mg occupying interstitial sites for concentrations around 8%,
can explain the experimental Vo parameters obtained by Xiong
et al®® (Fig. 7): Voc increases with Mg doping reaching
a maximum value at 5% and then starts to decrease.

These results confirm that moderate amounts of Mg
substituting Sn in regular lattice sites enhance the perfor-
mances of SnO, as the ETL material by pushing up the CBM and
increasing the Vo without creating trap states or diminishing
the bandgap. In contrast, higher Mg concentrations involving
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extracted from HSE06-D3BJ calculations at different Mg-doping
percentages and the corresponding experimental AVoc.*®
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interstitial doping have a negative impact on such perfor-
mances since the V¢ decreases and internal structural distor-
tions bring about undesired intra-gap states and band gap
reduction.

Conclusions

In this work, we provided an atomistic characterization of Mg-
ion doping effects on SnO, structural, electronic, and work
function features, aiming at uncovering the reasons behind the
PCE improvement of PSC devices incorporating doped
Mg:SnO,, which is not retained for higher-to-moderate doping
degrees. Experimentally, it is found that low Mg doping of SnO,
as the ETL slightly improves the Voc of the PSC device. We
ascribe this experimental evidence to electronic reasons. In
particular, based on our computed work functions, we predict
higher CBM for doped slabs and, consequently, an increase in
Voc. However, Mg>" ions start to occupy interstitial sites
increasing the doping concentration so the CBM goes down and
thus reduces the Voc. Furthermore, our analysis correlates
higher structural distortions associated with interstitial Mg
with bandgap reduction (due to interstitial Mg itself) and intra-
gap states (due to Sn vacancies associated with interstitial Mg).
Both effects could be responsible for undesired recombination
processes in the PSC device and, hence, may further explain the
drop in performances at high Mg doping concentrations. In
conclusion, our work highlights the importance of doping
effects on the electronic structure of ETL materials used in
PSCs. Intra-gap states and band shifts are crucial features to be
taken into account for boosting the PSC performances. We
prove that intra-gap states can be fine-tuned with a proper
evaluation from an atomistic/electronic structure perspective.
Future investigations, exploring other dopants and ETL mate-
rials, will follow the main findings of this work to predict and
design a priori the best dopant/ETL combination to maximize
the features of PSC performance such as the Vgc.
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