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Despite their simplicity, lateral flow immunoassays (LFIAs) remain a crucial weapon in the diagnostic

arsenal, particularly at the point-of-need. However, methods for analysing LFIAs still rely heavily on sub-

optimal human readout and rudimentary end-point analysis. This negatively impacts both testing accuracy

and testing times, ultimately lowering diagnostic throughput. Herein, we present an automated

computational imaging method for processing and analysing multiple LFIAs in real-time and in parallel. This

method relies on the automated detection of signal intensity at the test line, control line, and background,

and employs statistical comparison of these values to predictively categorise tests as “positive”, “negative”,

or “failed”. We show that such a computational methodology can be transferred to a smartphone and

detail how real-time analysis of LFIAs can be leveraged to decrease the time-to-result and increase testing

throughput. We compare our method to naked-eye readout and demonstrate a shorter time-to-result

across a range of target antigen concentrations and fewer false negatives compared to human subjects at

low antigen concentrations.

1. Introduction

Since their introduction in the late 1980s,1 paper-based lateral
flow immunoassays (LFIAs) have become indispensable tools
for rapid, low-cost diagnostic testing.2 LFIAs are routinely
used to detect a plethora of conditions,3 though their greatest
medical utility arguably lies in infectious disease diagnosis.
Indeed, due in large part to the COVID-19 pandemic, LFIAs
are now synonymous with rapid, point-of-need testing.4,5 The
ability to rapidly and affordably test large populations is
invaluable during infectious disease outbreaks and crucial to
successful track-trace-treat pathways.6 Moreover, mass testing
can be leveraged to develop epidemiological models,7 monitor
vaccine efficacy,8 and ultimately improve our understanding
of diseases. Effective mass testing is contingent upon rapid
diagnostic tests that can be reliably delivered, used, and
analysed in populations most affected by the target disease,
i.e. where demand is highest. As exemplified by the ongoing
COVID-19 pandemic, LFIAs are key to meeting this demand.

By circumventing the need for centralised facilities and highly-
trained personnel, LFIAs can significantly increase testing
throughput. However, due to multiple limitations, these gains
are yet to be fully realised.9 Naked-eye readout, whilst
advantageous for accessibility and affordability, relies on
human interpretation. This can lead to both false positives and
false negatives as a result of misunderstandings and conscious
bias.10 Misunderstandings can result from an impaired ability
to correctly distinguish and observe test/control lines or an
inability to detect device failure.11 Conscious bias can be
introduced when certain test outcomes are more desirable and
incentives for dishonesty exist, such as the ability to attend
social events or travel freely.12 Improvements in telemedicine
have been developed in response to these issues, although they
are far from perfect.13 Thus, despite the fact that LFIAs are
compatible with self-testing, the practical reality is that these
assays are still predominantly performed in mass testing centres
or local medical facilities. A lack of parallelisation and
connectivity also limits the throughput of LFIA testing; tests are
typically performed one at a time by a single user, manually
interpreted, and then the results are logged on a separate
system. Such a workflow slows down the testing process and
introduces multiple opportunities for human error. Integrating
LFIAs into highly automated and parallelised workflows, in
which multiple tests can be run, analysed, and reported with
minimal human intervention and interpretation, is key to
overcoming these limitations.
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Realising this, researchers have started to develop
computerised lateral flow readers. These readers come in the
form of both highly integrated stand-alone devices14–17 and
software Apps that rely on existing hardware within
smartphones and tablets.18–20 These developments
demonstrate that replacing human interpretation with
automated computational analysis yields benefits in terms of
accuracy and reproducibility, ultimately improving test
reliability.21 However, the vast majority of these devices still
read only one test at a time. Though some parallelised
approaches exist,22 they rely on end-point readings and
cannot detect common assay failures caused by human error
or device malfunction. Clearly, there is a need for innovation
in this space if LFIAs are to reach their full potential.

Herein we report a novel computational image analysis
algorithm capable of processing, analysing, and interpreting
multiple LFIA tests in parallel. Inspired by the work of Miller
et al.,23 who employed continuous imaging to derive binding
kinetics in lateral flow systems, our method uses computational
image analysis to simultaneously examine the flow profile, test
(T) line, and control (C) line of lateral flow assays as they are
running. We demonstrate that by continuously monitoring the
intensity change at the test line, the algorithm can accurately
predict end-point colour density and determine assay results for
multiple LFIAs in real-time. Furthermore, we show that by
analysing the flow profile and control line we can detect several
common early failure scenarios and ultimately determine the
validity of LFIAs as they are running. The method is supported
by a simple 3D-printed housing, and the custom code can be
run entirely on a smartphone (Fig. 1). Using a commercial LFIA

for SARS-CoV-2 nucleocapsid, we demonstrate that this
approach leads to significant improvements over standard
human interpretation, in terms of both time-to-result and
testing throughput.

2. Results and discussion

The LFIA processing platform consists of a modular 3D-
printed housing that can accommodate up to eight strips
(Fig. 1 and S1†). Each strip is held by an individual insert
(Fig. S2†), with the inserts being independently
interchangeable (random access). Once inserted, the strips
are imaged using a smartphone mounted atop the enclosure.
The setup ensures consistent positioning of the strips and
uniform lighting conditions using the integrated smartphone
flashlight. The smartphone runs a bespoke App that
identifies and analyses the strips in parallel. The App
leverages computational methods and statistical analytics to
1) quantify and interpret the test results and 2) detect and
identify technical failures at an early stage. All these
processes are performed in parallel and in real time.

2.1 Statistical line detection

Traditional LFIA readout relies on qualitative/semi-
quantitative assessment of the colour intensity at the test line
(test line intensity) once the test has reached completion (the
end point). This end-point intensity is highly influenced by
the initial binding kinetics between the disease target
(labelled with a detection probe) and the capture line.
Understanding this, we theorised that we could predict the

Fig. 1 Overview of the LFIA processing platform, combining a 3D-printed modular platform, smartphone-assisted imaging, and advanced
statistical analysis to monitor and read LFIA tests in real time.
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end point of a test (i.e. positive or negative) by monitoring
early-stage colour changes at the test line. In doing so, we
hoped to realise significant time savings over traditional end-
point readouts. To this end, we developed a thresholding
system in which we employ real-time imaging to determine
the time point at which a signal at the test line becomes

statistically significant over the background (i.e. the
threshold time). Briefly, continuous images of the test strip
are taken as the assay runs, with each frame being fed into a
custom code. The code automatically crops the images and
converts them to greyscale before identifying the regions of
interest (ROIs; test line, control line, background) (Fig. 2).

Fig. 2 Example of an intensity analysis performed by the algorithm for detecting the control (C) and test (T) lines. i) For each frame, the pixel
intensity (0–255 a.u.) is averaged along the vertical direction, as shown on the top portion of the figure for both negative and positive test
examples. Due to inconsistent light conditions (caused by distance from the light source) the strip intensities increase linearly (as shown by the
dotted red line). This information is used to correct the signal. ii) The signal is then inverted, obtaining a positive signal intensity (a.u.) for the
control and test line regions. iii) The intensity distributions for each sub-region (test line, control line, BG1, BG2, and BG3) are calculated. The test is
considered positive if the test line distribution is significantly higher than the background regions. A similar analysis is performed on the control line
to ensure the validity of the test. *: probability α < 0.05.
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The code then calculates the average intensity within the
ROIs and applies a baseline correction (Fig. 2i). The test line
is considered present if the intensity distribution is
significantly higher than the background regions (Fig. 2ii and
iii). Once the presence of a test line is confirmed, the
intensity distribution is then analysed for statistical
significance; the signal is considered significant if the
following conditions are met:

1) The current intensity spatial distribution at the test line
differs significantly (probability α < 0.05) from the prior
intensity spatial distribution for at least 1 second;

2) The current intensity spatial distribution at the test line
differs significantly (α < 0.05) from the signal acquired in the
first ten seconds after the flow front passes the test region.

Once these requirements are satisfied, the test is deemed
positive. If the above criteria are not met once the maximum
assay time (as defined by the manufacturer) is reached, the
test is deemed negative. The computational process is
described in detail in the Methods section.

To demonstrate the potential of real-time thresholding, we
compared our statistical thresholding method to traditional
end-point readout (Fig. 3A and B). We ran a dilution series of

Fig. 3 Results of line quantification, following (A) standard end-point readout or (B) statistical thresholding: (i) decision variable (test line intensity
for end-point readout and probability α for real-time detection) as a function of time; (ii) variation of the end-point intensity (top) and threshold
time (bottom) as a function of nucleocapsid (NC) concentration. The LoD (top) is shown in grey and non-detected samples (bottom) are shown in
black above the dotted line; (iii) images of the test strips at the time of reading.
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SARS-CoV-2 nucleocapsid (NC), spiked into extraction buffer,
on a commercial LFIA until completion (15 minutes, as
defined by the manufacturer), and recorded the tests using a
smartphone. We subsequently analysed the videos using a
custom MATLAB script, as defined in the Methods section.
The trends of the test line intensity from the recorded videos
reflect the standard pseudo-first order binding kinetics
(Fig. 3Ai), and the end-point test line intensities follow a
Langmuir adsorption model (Fig. 3Aii, S3†). Using the
intensity values at 15 minutes, we computed the limit-of-
detection (LoD) as 0.12 ng mL−1 (defined from the blank
mean intensity + 3 standard deviations). As anticipated,
statistical detection results in threshold times that vary with
NC concentration, with the highest concentrations giving
statistically detectable signals at the shortest threshold times
(Fig. 3Bi). The threshold times decrease with increasing NC
concentrations and can be approximated using an inverse
relationship (Fig. 3Bii and S4†). Visual inspection of the test
strips at both the end-points and the threshold times
demonstrates the differences between the two approaches
(Fig. 3Aiii and Biii).

It is worth mentioning that the same definition of LoD
(blank mean + 3 standard deviations) cannot be applied to
the real-time thresholding approach, as blank tests do not
have a defined threshold time (infinite time). Instead, the
strictest definition of LoD is used, i.e. the lowest
concentration that can be consistently detected (>97.5%). In
this case, we report a LoD of 0.32 ng mL−1 (100% detected, n
= 5). Below this concentration we observed undetected
samples (75% detected, n = 4). Unsurprisingly, end-point and
real-time approaches have similar LoDs. However, it is clear
that the real-time thresholding method leads to considerable
time savings (>50%) at higher antigen concentrations (>0.72
ng mL−1).

Next, we decided to further explore the potential of real-
time thresholding to significantly reduce assay times. To this
end, we simulated a case study in which one hundred LFIA
tests are performed. To enable a fair comparison, we consider
that only a single test is running at a given time (see section
2.3 for parallel processing). The positive test rate (i.e. the
number of tests returning a positive result, 40%) was
obtained from the Swiss Federal Office of Public Health –

FOPH (Fig. S5†), whereas NC concentrations were selected
from patient titres in nasopharyngeal swabs recorded by
Pollock et al.24 Based on these data sets, we clustered
individuals into positive detectable and negative/positive
non-detectable cohorts and computed the associated
threshold time by interpolation from the curve obtained from
non-linear regression of our previous dilution series (Fig. 4B).
As previously described, we set the lower LoD for a positive
result as 0.32 ng mL−1.

Based on these data, we were able to demonstrate that for
100 tests performed under the simulated scenario (a 40%
positive test rate, with titres between 0.064–40 ng mL−1), we
could achieve time savings of ∼17% (17.1 ± 2.6%) (Fig. 4C).
Furthermore, by varying the positive test rate parameter we

observe a linear relationship between positive rate and time
savings (Fig. 4D). This is expected, since in the extreme cases
where all samples are negative, the test needs to run for the
full 15 minutes before a negative result can be called.

Fig. 4 Analysis of time gain as a function of the positive rate, with the
statistical line quantification method being compared to end-point
detection. (A) Stem plot of the randomly attributed nucleocapsid
concentration values. The samples are separated into a negative
population (dark grey band) consisting of true negatives and non-
detectable positives (i.e. below the limit of detection), and a positive
population (light grey band). (B) The corresponding threshold time
obtained for each random positive nucleocapsid concentration, based
on interpolation of the dilution series in Fig. 3Bii. (C) The time
advantage gained by employing statistical thresholding compared to a
standard end-point readout shown for a positive rate of 40%. The
simulation is based on 100 analyses performed in series. (D) Time gain
compared to end-point readout as a function of positive test rate.
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Accordingly, in such a scenario the thresholding method
would provide no time saving. At the other extreme, where all
samples are positive, we achieve much larger time gains (up
to 40%). In summary, real-time thresholding has the
potential to outperform end-point analysis in real-world
scenarios and could provide significant time savings during
infectious disease outbreaks.

2.2 Early failure detection

The ongoing COVID-19 pandemic has triggered a surge in the
development and deployment of LFIA tests, with more than
1019 individual tests for SARS-CoV-2 antigen and/or antibody
detection certified with the European CE-IVD Marking (as of

October 2022).25 During the evaluation of these commercial
LFIA tests, most publications have reported a low percentage
(<2.5%) of invalid tests.26–30 However, for many LFIA tests,
the rate of failed/inconclusive results can be as high as
30%.26 Evaluating failure rates is important, as failures lead
to invalid or inconclusive results or false negatives/positives.
This in turn leads to unnecessary treatments or otherwise
irrelevant interventions that are likely to carry serious health,
social and economic consequences.31,32

During our study, we observed that many causes of test
failure manifest as irregularities in the flow profiles of the
antigen–nanoparticle immunocomplexes, differences in
intensities at the test and control lines, and increased
background signals. Furthermore, we realised that many of

Fig. 5 Early detection of LFIA failures through real-time image processing. The flow front (A) is monitored during the initial wetting phase. The
time to reach the absorbent pad is determined and compared to a fully functional test (i). Abnormally slow (ii) or fast (iii) flow fronts are flagged by
the algorithm. The shape of the front (iv) is also assessed, since a distorted front is indicative of device defects (v and vii). The colour intensity of
the background (B) and the control line (C) are also checked at the end of the run to ensure that the values are within the expected range.
Additional descriptions and illustrations of these failure scenarios can be found in Fig. S9.†
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these manifestations could be detected using real-time
imaging. Before investigating this, it was first necessary to
identify possible causes of failures and link them to
observables detectable using real-time imaging. Considering
the entire life cycle of an LFIA test, we identified failures
arising from issues related to manufacturing, storage or user
operation (for details see the ESI†). Across these three
categories, we have identified five classes of observables
caused by LFIA failures: (i) disturbed flow profile, (ii) high
relative background signal, (iii) lack of a control line, (iv)
false negative (no test line with target present) and (v) false
positive (test line visible in the absence of target) (Fig. S6†).
Of these, the first three can be detected through real-time
imaging, while the last two will go undetected. It is important
to note that these observables are not independent, and we
can expect a ‘cascade effect’ if one of them is present. For
example, a sample flood will lead to a false negative, due to
the decreased residence time of the immunocomplex at the
test/control line. Based on the three identified detectable
observables, we designed algorithms to automatically flag
events indicative of test failure.

Disturbed flow profile. To detect test failures that manifest
as disturbed flow profiles, the algorithm continuously
monitors the flow profile (front speed and shape) of the test
as it runs (Fig. S7†). This allows detection of common test
failures such as clogging or insufficient sample volume,
sample overloading (flooding), and manufacturing defects
resulting in poor contact between the sample pad and test
strip. To detect clogging or insufficient sample volume, we
set a maximum time for the flow front to reach the absorbent
pad. The wetting of commercial nitrocellulose membranes is
reported as the capillary flow time by manufacturers (units:
s/4 cm). For this particular test, under normal operating
conditions, the flow front should reach the pad within 90 ±
10 seconds (Fig. 5Ai). A significant increase in the time to
reach the absorbent pad indicates insufficient sample volume
(Fig. 5Aii); in our case, we set the maximum threshold at 122
seconds (α < 0.05). Similarly, a significant decrease in the
time for the flow front to reach the absorbent pad indicates
sample flooding (Fig. 5Aiii). This can be caused by overly
large sample volumes, defective test strip cassettes, or device
manipulation during operation. A decrease in residence time
on the strip will negatively impact binding kinetics and thus
the test result. Based on the expected flow rates under
normal operating conditions, we set the minimum residence
time as 53 seconds (probability α < 0.05). To detect distorted
flow fronts, which are indicative of poorly assembled LFIA
tests and poor pad contacts, we designed the algorithm to
monitor the shape of the flow front (Fig. S8†). A failure is
flagged if the variance of the front position along the
dimension perpendicular to the flow overcomes a
predetermined threshold based on the values obtained from
a functional test (Fig. 5Aiv).

High relative background signal. To detect test failures
due to high non-specific binding, typically caused by
membrane or nanoparticle degradation, we designed the

algorithm to monitor the background colour intensity of the
strip, excluding the test and control lines. Test failure is
flagged if the intensity of the background rises above a
predetermined threshold based on the values obtained from
functional tests (Fig. 5B).

No control line. To detect test failures resulting from
nanoparticle or control line defects, or improper storage, we
designed the algorithm to monitor the presence of the
control line on the strip. In this case, we used a binary YES/
NO system with regard to the presence of the control line. A
NO value indicated a test failure. (Fig. 5C).

It is important to note that all thresholds determined
herein are defined for a specific LFIA device, type of sample
specimen, and operational procedure. In our study, the use
of an extraction buffer for nasopharyngeal swabs samples is
advantageous as it provides for controlled sample properties
and ensures consistent operation. It is expected that the
detection of analytes in complex matrices, such as undiluted
saliva or whole blood, will lead to broader variations of flow
profiles and background intensities. In these assays, failures
are more likely and their early detection by an automated
imaging system would be highly valuable.

2.3 Smartphone-based real-time parallel platform

After verifying the potential benefits of early failure detection
and real-time thresholding, we decided to integrate these
methods directly into a smartphone App. Combined with a
custom housing (Fig. S1 and S2†), this allows end-users to
analyse multiple tests in parallel, all in real-time. We also
coded additional features into the App, such as user
registration and results display. The workflow of the App is
briefly described in Fig. 6A. After registration of the user and
insertion of the tests into the housing, the App pulls a frame
from the video stream to perform an initial pre-processing
step. The App checks for the presence of strips in each of the
eight lanes using the unique QR codes located at the top of
each insert. These QR codes are also used to link the tests to
the unique identifiers assigned during registration. The App
then uses the location of the QR codes and automated object
recognition of the strip edges to delimit each individual test
and create distinct regions of interest (ROIs) (Fig. S10†). The
ROIs are then colour-converted into grayscale values and the
background subtracted through linear approximation. The
isolated, grayscale, and background subtracted test strips
then enter the real-time detection phase, which combines the
previously described failure analysis and statistical
thresholding. For early failure detection, each strip is
analysed frame-by-frame and features such as the shape and
position of the liquid front and background intensity are
used to determine test validity. Once the test is deemed valid,
the pixel intensity at both the test line and control line is
quantified for each frame. After satisfying the threshold
conditions (as defined in section 2.1), a final check for signal
intensity at the control line is made to rule out an invalid
test. The results for that particular test are then displayed on
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the App (Fig. 6A and B). The entire process is random access;
complete tests can be removed and replaced by a new test
whilst other tests are running, and the process begins again.
This prevents low-titre samples or negatives from causing a
bottle-neck in the testing process and ensures maximal
throughput. The entire testing process is further detailed in
Fig. S11.†

In addition to comparison with standard end-point signal
readout, the App's functionality was evaluated against human
readout. In brief, eight LFIA tests were divided into four
categories: blank tests, and low (0.064 ng mL−1), medium (1.6

ng mL−1), and high (40 ng mL−1) NC concentrations. The
lanes were randomly placed in the set-up and a full video of
the test run was recorded. Along with the detection time
measured through the App, ten human volunteers were asked
to monitor the video and record the earliest time at which
they could see the test line. While no difference in
performance was observed for the highest concentration and
blank tests, the time advantage at medium was notable
(average time gain 2.2 minutes per test) (Fig. 6C). Moreover,
out of the ten volunteers, the test line for low concentrations
was successfully detected only in 20% of cases; the remaining

Fig. 6 (A) A flowchart of the implemented smartphone App for real-time detection; (B) an image of the modular set-up, including the 3D-printed
structure and the smartphone; (C) time-to-result through the App and by the naked eye detection for low (0.064 ng mL−1), medium (1.6 ng mL−1),
and high (40 ng mL−1) NC concentrations. Each concentration was run in duplicate and analysed by ten participants. The grey bars represent the
real thresholding time for the specific test used in this analysis. The dots indicate the detection times (test line) for the eight tests at various NC
titres. When the individual did not detect the T-line (for both the blank and low-concentration tests), the dots are located above the dashed line.
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tests (80%) were assigned as negative. This contrasts with the
App, which assigned every test correctly. Accordingly, our
detection system proved to be more effective, especially at
lower antigen concentrations.

3. Conclusions

To conclude, we have presented a robust method for
improving the throughput of LFIA testing by leveraging the
power of parallelised real-time image analysis. This method
leverages automated computational image processing to
continuously monitor test line intensity, background, control
line presence, and sample flow profiles. By exploiting the
wealth of information gleaned from this continuous analysis,
our approach significantly decreases the time-to-result and
facilitates the early detection of test failures. Finally, we
integrated our code into a smartphone App capable of
automatically analysing up to eight tests in parallel and
demonstrated significant improvements in testing
performance compared to conventional human readout. This
work highlights the potential of real-time imaging to
augment and enhance lateral flow testing workflows and
significantly improve testing throughput in point-of-need
scenarios. Moving forwards, we anticipate that real-time
automated imaging could be used to similarly improve the
testing throughput of various colourimetric/fluorimetric
biosensing diagnostic assays and become an established tool
within point-of-need testing.

Methods
3D-printed platform

The smartphone holder and main enclosure were printed
using a fused deposition modelling (FDM) 3D printer (MK3S,
Prusa Research) with a polyethylene terephthalate glycol
(PETG) filament (Prusament PETG, Prusa Research) and
standard printing parameters. The strip holders and inlets
were printed using a stereolithography (SLA) 3D printer (SL1,
Prusa Research) and ABS-like resin (PrimaCreator Tough,
Prusa Research) with the recommended printing parameters.
Once the strip was inserted in the strip holder, the inlet was
screwed on with an M3 screw. All parts were designed in
FreeCAD and the STL 3D model can be found in the
Supplementary Materials.

Lateral flow tests

A SARS-CoV-2 Rapid Antigen Test (Roche Diagnostics) was
used as a model LFIA system. The strips were removed from
the cassette and inserted in our in-house developed holders
to fit in the imaging platform. The nasopharyngeal extracting
buffer provided with the rapid tests was spiked with SARS-
CoV-2 nucleocapsid recombinant (LA612, EastCoast Bio). A
volume of 100 μL was injected into the LFIA inlet and the
strips were imaged for up to 15 minutes. Failures were
simulated by damaging critical points of the LFIA tests or by
altering the concentration of gold nanoparticles.

Computational methods

Videos (60 fps) of the LFIAs were analysed frame-by-frame,
and in-house developed algorithms were used to segment
and identify the ROIs. The algorithms, written in MATLAB
(R2022a, Natick, MA, USA), were then converted into C++
(ISO C11+) through MATLAB Coder. The C++ code was
generated for a generic device with 64-bit Embedded
Processor.

Smartphone App

The smartphone App was designed using the Flutter
framework developed by Google (License BSD 3-Clause). This
framework allows for App deployment to iOS and Android
phones with a single App source code. The algorithms used
for the image analysis of the LFIAs, once developed in
MATLAB and converted into C++ scripts, are introduced as
an in-house developed plugin. The source code of the
smartphone App was written with the aid of integrated
developments environments Android Studio (Google and
JetBrains) and CLion (JetBrain). An Android phone (Huawei,
P10 Plus, 2017) was employed to acquire the recordings and
run the smartphone App.

Statistical analysis

Statistical line detection is based on the differences among
the intensity distributions of the test strip. In particular, a
Mann Whitney U-test was employed to detect significantly
different intensity values for the test- and control-line regions
compared to background regions. Mean and standard
deviation or median and interquartile range were used where
appropriate (following the Kolmogorov–Smirnov normality
test). Five repetitions were considered for each NC titre, and
median values were extracted.

Human readout

To compare our computational method and human naked-
eye readout, we recruited ten volunteers (27.2 ± 3.6 years old)
to participate in a controlled study. The device and
smartphone were set up to run eight tests in parallel, in a
randomised order from left to right, and the results were
stored anonymously. The feed from the smartphone was
recorded for later playback to the human participants. Each
participant was then placed individually and separately in
front of a monitor and instructed to record the first time
instant when they could detect the test line for each test. The
lighting conditions and distance from the monitor were
consistent for each test. Five individuals (50%) wore corrective
glasses/contact lenses, and no statistical difference in the
performance of the two groups was found. Participants were
screened for colour blindness and no cases were reported.

Acronyms & Abbreviations

NC Nucleocapsid
C Control
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T Test
LFIA Lateral flow immunoassay
ROI Region of interest
LoD Limit-of-detection
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