Chemical Science

CORRECTION

Cite this: Chem. Sci., 2023, 14, 10979

DOI: 10.1039/d3sc90184j rsc.li/chemical-science

Correction: Improving time-resolution and sensitivity of in situ X-ray photoelectron spectroscopy of a powder catalyst by modulated excitation CORRECTION

(a) Check for updates

Cut this charm Siz. 2023. 14. 1997

Cut this charm Siz. 2023. 14. 1997

Cut this charm Siz. 2023. 14. 1997

Size of the Cutro Spectroscopy of a powder catalyst by modulated

excitation

M. Roger,^{ab} L. Artiglia,^{*a} A. Boucly,^a F. Buttignol,^{ab} M. Agote-Arán,^a J. A. van Bokhoven,^{ac} O. Kröcher^{ab} and D. Ferri^{*a}

Correction for 'Improving time-resolution and sensitivity of in situ X-ray photoelectron spectroscopy of a powder catalyst by modulated excitation' by M. Roger et al., Chem. Sci., 2023, 14, 7482–7491, [https://](https://doi.org/10.1039/D3SC01274C) doi.org/10.1039/D3SC01274C.

The originally published version of this article contained an incorrect figure and figure caption for Fig. 5, in which the labels ' O_2 env.' and 'CO env.' in Fig. 5b and c, respectively, were inverted. The correct Fig. 5 and corresponding caption are displayed below. Two paragraphs that refer to Fig. 5 on page 7488 in the Results and discussion section under the sub-heading 'Identification of species on 5 wt% Pd/Al_2O_3 ' have also been updated to replace the original text.

a Paul Scherrer Institut, Forschungsstrasse 111, CH-5232 Villigen PSI, Switzerland. E-mail: luca.artiglia@psi.ch; davide.ferri@psi.ch ^ьÉcole Polytechnique Fédérale de Lausanne (EPFL), Institute for Chemical Sciences and Engineering, Lausanne, Switzerland c Department of Chemistry and Applied Biosciences, Institute for Chemical and Bioengineering, ETH Zurich, Zurich, Switzerland

Fig. 5 Fit of the (a) phase (0°) and (b and c) time domain spectra ($t = 150$ s), X-ray photoelectron spectra of 5 wt% Pd/Al₂O₃ acquired at the Pd 3d core level. (b) Averaged spectrum in reducing conditions, (c) averaged spectrum in oxidising conditions. Peaks are defined in Table 1. Only the Pd $3d_{5/2}$ core level is shown.

The fit of the averaged spectrum obtained at 150 s under oxidising conditions is dominated by cationic Pd species (Fig. 5c and Table 2). The contribution of Pd⁰ is low (7%), while surface Pd⁰ is absent. The fraction of Pd⁰ with adsorbed CO (11%) is not negligible and is attributed to the Pd surface poisoning by CO due to the strong Pd–CO bond. The poisoning effect of CO on Pd sites is supported by the very low levels of CO_2 all along the O_2 half-period in the MS data (Fig. S3), after a less pronounced sharp peak than that detected in the CO half-period. The presence of the signals of surface and bulk Pd⁰ under oxidizing conditions suggests that the thickness of the oxide layer formed is smaller than the mean escape depth of photoelectrons and thus that metallic Pd is coated by a thin skin of oxide.

Under reducing conditions, the fit of the averaged spectrum at 150 s (Fig. 5b and Table 2) shows predominantly peaks corresponding to metallic Pd species as well as Pd^0 with adsorbed CO together with minor contributions from bulk and surface PdO but no signal of Pdⁿ⁺. The poor contribution from the surface Pd⁰ (4%) is justified by the presence of adsorbed CO molecules.

The Royal Society of Chemistry apologises for these errors and any consequent inconvenience to authors and readers.