Chemical Science

rsc.li/chemical-science

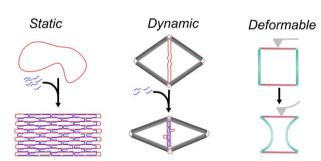
The Royal Society of Chemistry is the world's leading chemistry community. Through our high impact journals and publications we connect the world with the chemical sciences and invest the profits back into the chemistry community.

IN THIS ISSUE

ISSN 2041-6539 CODEN CSHCBM 14(30) 8009-8224 (2023)

Cover

See Ambara R. Pradipta, Katsunori Tanaka et al., pp. 8054-8060. Image reproduced by permission of Katsunori Tanaka from Chem. Sci., 2023, 14, 8054.

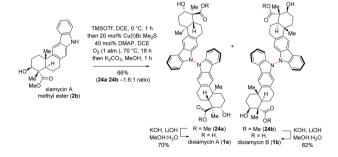

Inside cover

See Alakesh Bisai et al.. pp. 8047-8053. Image reproduced by permission of Rhituparna Nandi from Chem. Sci., 2023, **14**, 8047.

REVIEW

Mechanics of dynamic and deformable DNA nanostructures

Ruixin Li, Anirudh S. Madhvacharyula, Yancheng Du, Harshith K. Adepu and Jong Hyun Choi*



EDGE ARTICLES

8047

Total synthesis of atropisomeric indolosesquiterpenoids via N-N bond formation: dixiamycins A and B

Rhituparna Nandi, Sovan Niyogi, Sourav Kundu, Vipin R. Gavit, Mintu Munda, Ranjit Murmu and Alakesh Bisai*

Executive Editor **Deputy Editor**

Editorial Staff

May Copsey

Samantha Apps

Senior Editor James Moore

Scientific Editors

Ellis Crawford, Jingtao Huang, Esther Johnston, Sophie Orchard, Richard Thompson and Amy Welch

Editorial Assistant Karina Webster

Publishing Assistant David Bishop

For queries about submitted articles please contact James Moore, Senior Editor, in the first instance. E-mail chemicalscience@rsc.org

For pre-submission queries please contact May Copsey, Executive Editor.

E-mail chemicalscience-rsc@rsc.org

Chemical Science (electronic: ISSN 2041-6539) is published 48 times a year by the Royal Society of Chemistry, Thomas Graham House, Science Park, Milton Road, Cambridge, CB4 0WF, UK.

Chemical Science is a Gold Open Access journal and all articles from 2015 onwards are free to read.

Please email orders@rsc.org to register your interest or contact Royal Society of Chemistry Order Department, Royal Society of Chemistry, Thomas Graham House, Science Park, Milton Road, Cambridge, CB4 0WF, UK

Tel +44 (0)1223 432398; E-mail orders@rsc.org

Whilst this material has been produced with all due care, the Royal Society of Chemistry cannot be held responsible or liable for its accuracy and completeness, nor for any consequences arising from any errors or the use of the information contained in this publication. The publication of advertisements does not constitute any endorsement by the Royal Society of Chemistry or Authors of any products advertised. The views and opinions advanced by contributors do not necessarily reflect those of the Royal Society of Chemistry which shall not be liable for any resulting loss or damage arising as a result of reliance upon this material. The Royal Society of Chemistry is a charity, registered in England and Wales, Number 207890, and a company incorporated in England by Royal Charter (Registered No. RC000524), registered office: Burlington House, Piccadilly, London W1J 0BA, UK, Telephone: +44 (0) 207 4378 6556.

Advertisement sales:

Tel +44 (0) 1223 432246; Fax +44 (0) 1223 426017; E-mail advertising@rsc.org

For marketing opportunities relating to this journal, contact marketing@rsc.org

Chemical Science

rsc.li/chemical-science

Editorial Board

Editor-in-Chief

Andrew Cooper, University of Liverpool

Associate Editors

Vincent Artero, CEA-Grenoble Luis M. Campos, Columbia University Michelle Chang, University of California,

Lin X. Chen, Northwestern University Graeme Day, University of Southampton Serena DeBeer, Max Planck Institute for Chemical Energy Conversion

Mircea Dincă MIT François Gabbaï, Texas A&M University Subi George, JNCASR Ryan Gilmour, WWU Münster Jinlong Gong, Tianjin University Stephen Goldup, University of Birmingham Zaiping Guo, University of Adelaide Christopher A. Hunter, University of Cambridge

Malika Jefferies-EL, Boston University Ning Jiao, Peking University Tanja Junkers, Monash University

Hemamala Karunadasa, Stanford University Maja Köhn, University of Freiburg Yi-Tao Long, Nanjing University Gabriel Merino, CINVESTAV Merida James K. McCusker, Michigan State University Thomas Meade, Northwestern University Paolo Melchiorre, University of Bologna Carsten Schultz, Oregon Health & Science University Dmitri Talanin The University of Chicago

Toshiharu Teranishi, Kyoto University Andrei Yudin, University of Toronto

Advisory Board

Dave Adams, University of Glasgow Ayyappanpillai Ajayaghosh, NIIST Ulf-Peter Apfel, Ruhr-University Bochum Polly Arnold, University of California, Berkeley Xinhe Bao, Dalian Institute of Chemical

Zhenan Bao, Stanford University Gonçalo Bernardes, University of Cambridge Frank Biedermann, Karlsruhe Institute of Technology

Donna Blackmond, Scripps Research Institute Jeffrey Bode, ETH Zurich Jennifer S. Brodbelt, University of Texas at

Austin, USA Christopher Chang, University of California,

Chi-Ming Che, University of Hong Kong Jun Chen, Nankai University R. Graham Cooks, Purdue University Christophe Copéret, ETH Zurich Eugenio Coronado, University of Valencia Leroy Cronin, University of Glasgow James Crowley, University of Otago Christopher C. Cummins, Massachusetts Institute of Technology Ben Davis, University of Oxford Jillian Dempsey, University of North Carolina

at Chapel Hill Kazunari Domen, University of Tokyo James Durrant, Imperial College London Xinlang Feng, TU Dresden Ben Feringa, University of Groningen Makoto Fujita, University of Tokyo Phillip Gale, University of Technology Sydney

Jeremiah Gassensmith, University of Texas at Dallas Elizabeth Gibson, Newcastle University Hubert Girault, EPFL

Song Gao, Peking University

Frank Glorius, WWU Münster Leticia González, University of Vienna Duncan Graham, University of Strathclyde Vicki Grassian, University of California, San Diego

Alexis Grimaud, Boston College

Christian Hackenberger, FMP Berlin Buxing Han, Chinese Academy of Sciences Christy Haynes, University of Minnesota Patrick Holland, Yale University Kim Jelfs, Imperial College London Yousung Jung, KAIST

Stephanie Kath-Schorr, University of Cologne Takashi Kato, University of Tokyo Christopher Kelly, Janssen Research & Development

Jérôme Lacour, University of Geneva Ai-Lan Lee, Heriot-Watt University Daniele Leonori, RWTH Aachen University Chao-Jun Li, McGill University Yi Li, Jilin University Mi Hee Lim, KAIST Wenbin Lin, University of Chicago Kopin Liu, Academia Sinica

Watson Loh, UNICAMP Bettina Lotsch, Max Planck Institute Xiong Wen (David) Lou, Nanyang Technological University Kazuhiko Maeda, Tokyo Institute of Technology

Satoshi Maeda, Hokkaido University Swadhin Mandal, IISER Kolkata Ellen Matson, University of Rochester Scott Miller, Yale University Daniel Mindiola, University of Pennsylvania Wonwoo Nam, Ewha Womans University Jonathan Nitschke, University of Cambridge Allie Obermeyer, Columbia University

Takashi Ooi, Nagoya University Rachel O'Reilly, University of Birmingham Oleg Ozerov, Texas A&M University Xiulian Pan, Dalian Institute of Chemical

Martin Oestreich, Technical University of

Berlin

Nicolas Plumeré, Technical University of

Munich

Rasmita Raval, University of Liverpool Erwin Reisner, University of Cambridge Andrea Rentmeister, WWU Münster Jeffrey Rinehart, University of California, San Diego

Stuart Rowan, University of Chicago Richmond Sarpong, University of California, Berkeley

Danielle Schultz, Merck Dwight Seferos, University of Toronto Oliver Seitz, Humboldt University of Berlin Roberta Sessoli, University of Florence Kay Severin, Federal Polytechnic School of

Mikiko Sodeoka, RIKEN Galo Soler-Illia, Universidad Nacional de San

David Spring, University of Cambridge Brian Stoltz, California Institute of Technology Brent Sumerlin, University of Florida Raghavan B. Sunoj, IIT Bombay Yogesh Surendranath, MIT Mizuki Tada, Nagoya University Ben Zhong Tang, The Chinese University of Hong Kong

Zhiyong Tang, National Center for Nanoscience and Nanotechnology Christine Thomas, Ohio State University He Tian, East China University of Science & Technology

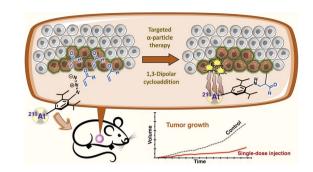
Zhong-Qun Tian, Xiamen University F. Dean Toste, University of California, Berkley Takashi Uemura, University of Tokyo Jan van Hest, Radboud University Latha Venkataraman, Columbia University Chu Wang, Peking University Julia Weinstein, University of Sheffield Tom Welton, Imperial College London Charlotte Williams, University of Oxford Vivian Yam, University of Hong Kong Qi-Lin Zhou, Nankai University Jenny Zhang, University of Cambridge

Information for Authors

Full details on how to submit material for publication in Chemical Science are given in the Instructions for Authors (available from http://www.rsc.org/authors). Submissions should be made via the journal's homepage: rsc.li/chemical-science

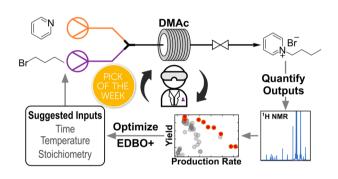
Authors may reproduce/republish portions of their published contribution without seeking permission from the Royal Society of Chemistry, provided that any such republication is accompanied by an acknowledgement in the form: (Original Citation)-Reproduced by permission of the Royal Society of Chemistry.

This journal is @ The Royal Society of Chemistry 2023. Apart from fair dealing for the purposes of research or private study for non-commercial purposes, or criticism or review, as permitted under the Copyright, Designs and Patents Act 1988 and the Copyright and Related Rights Regulation 2003, this publication may only be reproduced, stored or transmitted, in any form or by any means, with the prior permission in writing of the Publishers or in the case of reprographic reproduction in accordance with the terms of licences issued by the Copyright Licensing Agency in the UK. US copyright law is applicable to users in the USA.


Registered charity number: 207890

8054

Therapeutic efficacy of ²¹¹At-radiolabeled 2,6diisopropylphenyl azide in mouse models of human lung cancer


Yudai Ode, Ambara R. Pradipta,* Peni Ahmadi, Akihiro Ishiwata, Akiko Nakamura, Yasuko Egawa, Yuriko Kusakari, Kyohei Muguruma, Yang Wang, Xiaojie Yin, Nozomi Sato, Hiromitsu Haba and Katsunori Tanaka*

8061

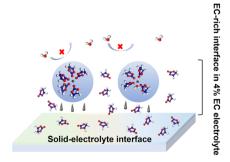
Continuous flow synthesis of pyridinium salts accelerated by multi-objective Bayesian optimization with active learning

John H. Dunlap, Jeffrey G. Ethier, Amelia A. Putnam-Neeb, Sanjay Iyer, Shao-Xiong Lennon Luo, Haosheng Feng, Jose Antonio Garrido Torres, Abigail G. Doyle, Timothy M. Swager, Richard A. Vaia, Peter Mirau, Christopher A. Crouse and Luke A. Baldwin*

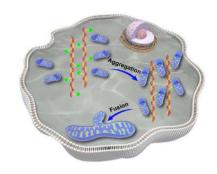
8070

2,5-disubstituted bicyclo[2.1.1]hexanes as rigidified cyclopentane variants

Shashwati Paul, Daniel Adelfinsky, Christophe Salome, Thomas Fessard* and M. Kevin Brown*

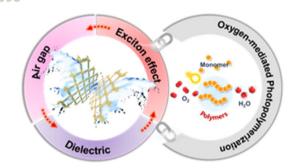


- New 2,5-Disubstituted Bicyclo[2.1.1]hexanes
- Rigidified 1,2-Disubstituted Cyclopentanes
- Synthesis by C-H functionalization and Cycloaddition


8076

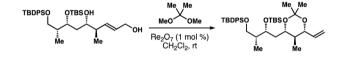
Interface solvation regulation stabilizing the Zn metal anode in aqueous Zn batteries

Kuo Wang, Tong Qiu, Lu Lin, Fangming Liu, Jiaqi Zhu, Xiao-Xia Liu and Xiaoqi Sun*


8084

Controllable mitochondrial aggregation and fusion by a programmable DNA binder

Longyi Zhu, Yiting Shen, Shengyuan Deng, Ying Wan,* Jun Luo, Yan Su, Mingxu You, Chunhai Fan and Kewei Ren*


8095

Influence laws of air gap structure manipulation of covalent organic frameworks on dielectric properties and exciton effects for photopolymerization

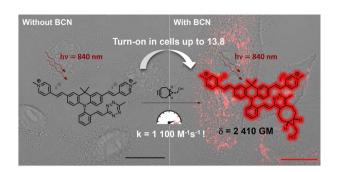
Hongjie Yang, Zhen Lu, Xiangyu Yin, Shengjin Wu and Linxi Hou*

8103

Stereoselective syntheses of 2-methyl-1,3-diol acetals *via* Re-catalyzed [1,3]-allylic alcohol transposition

Jiaming Liu and Ming Chen*

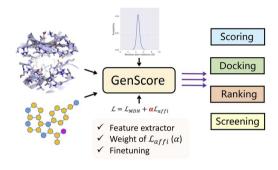
8109


Polymer up-cycling by mangana-electrocatalytic C(sp³)-H azidation without directing groups

Isaac Maksso, Ramesh C. Samanta, Yifei Zhan, Kai Zhang, Svenja Warratz and Lutz Ackermann*

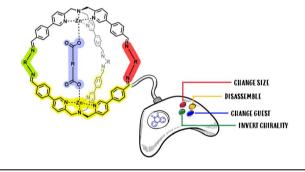
8119

Ultrabright two-photon excitable red-emissive fluorogenic probes for fast and wash-free bioorthogonal labelling in live cells


Marie Auvray,* Delphine Naud-Martin, Gaëlle Fontaine, Frédéric Bolze, Gilles Clavier and Florence Mahuteau-Betzer*

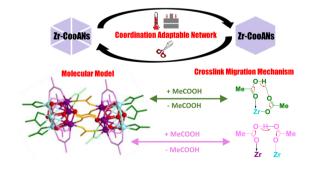
8129

A generalized protein-ligand scoring framework with balanced scoring, docking, ranking and screening powers


Chao Shen, Xujun Zhang, Chang-Yu Hsieh, Yafeng Deng, Dong Wang, Lei Xu, Jian Wu, Dan Li, Yu Kang,* Tingjun Hou* and Peichen Pan*

8147

Programmed guest confinement via hierarchical cage to cage transformations


Federico Begato, Giulia Licini and Cristiano Zonta*

8152

Acetate exchange mechanism on a Zr₁₂ oxo hydroxo cluster: relevance for reshaping Zr-carboxylate coordination adaptable networks

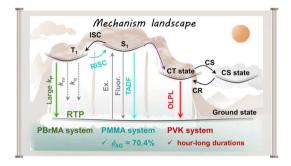
Meenu Murali, Christian Bijani, Jean-Claude Daran, Eric Manoury and Rinaldo Poli*

8164

$$R = CH_2CH_3 \ (Et), \ CH_2CH_2CH_3(Pr), \ CH_2C_6H_5 \ (Bn), \ CH_2-4-OMe-C_6H_5(^{OMe}Bn), \ C_6H_5 \ (Ph)$$

$$Complexes \ supported \ by \ a \ PBP \ pincer \ ligand$$

$$R = CH_2CH_3 \ (Et), \ CH_2CH_3(Pr), \ CH_2C_6H_5 \ (Bn), \ CH_2-4-OMe-C_6H_5(^{OMe}Bn), \ C_6H_5 \ (Ph)$$


$$Comparison \ of \ rates \ of \ CO_2 \ insertion \ into \ different \ alkyl \ groups$$

CO₂ insertion rates: Et > Me > ⁿPr > Bn ~ ^{OMe}Bn

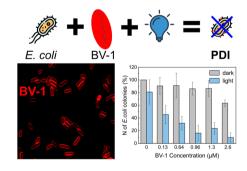
Comparative study of CO₂ insertion into pincer supported palladium alkyl and aryl complexes

Anthony P. Deziel, Sahil Gahlawat, Nilay Hazari,* Kathrin H. Hopmann* and Brandon Q. Mercado

8180

Mechanism landscape in pyrylium induced organic afterglow systems

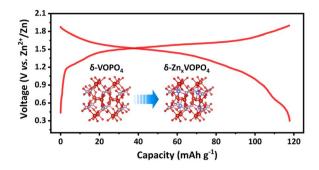
Guangming Wang, Xuefeng Chen, Xun Li, Ying Zeng and Kaka Zhang*


8187

HAA by the first {Mn(III)OH} complex with all O-donor ligands

Shawn M. Moore, Chen Sun, Jennifer L. Steele, Ellen M. Laaker, Arnold L. Rheingold and Linda H. Doerrer*

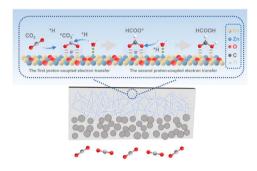
8196


A membrane intercalating metal-free conjugated organic photosensitizer for bacterial photodynamic inactivation

Arianna Magni, Sara Mattiello, Luca Beverina, Giuseppe Mattioli, Matteo Moschetta, Anita Zucchi, Giuseppe Maria Paternò* and Guglielmo Lanzani*

8206

$\delta\text{-VOPO}_4$ as a high-voltage cathode material for aqueous zinc-ion batteries


Dong Zhao, Xiangjun Pu,* Shenglong Tang, Mingyue Ding,* Yubin Zeng, Yuliang Cao and Zhongxue Chen*

8214

Zn-induced electron-rich Sn catalysts enable highly efficient CO₂ electroreduction to formate

Xingxing Tan, Shunhan Jia, Xinning Song, Xiaodong Ma, Jiaqi Feng, Libing Zhang, Limin Wu, Juan Du, Aibing Chen, Qinggong Zhu, Xiaofu Sun* and Buxing Han*

