

Chemical Science

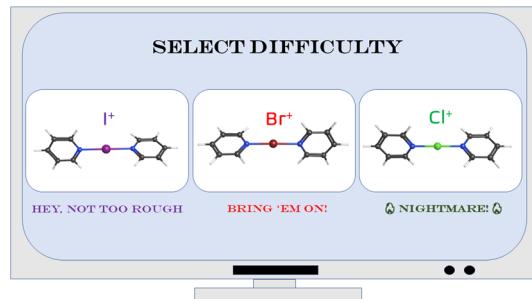
rsc.li/chemical-science

The Royal Society of Chemistry is the world's leading chemistry community. Through our high impact journals and publications we connect the world with the chemical sciences and invest the profits back into the chemistry community.

IN THIS ISSUE

ISSN 2041-6539 CODEN CSHCBM 14(15) 3951–4194 (2023)

Cover

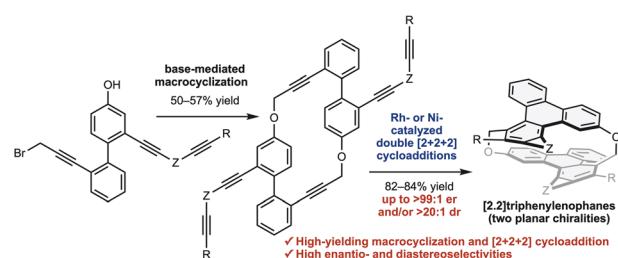

See Yuya Kawai *et al.*, pp. 3963–3972. Image reproduced by permission of Yuya Kawai from *Chem. Sci.*, 2023, 14, 3963. Artwork created by Yuya Kawai.

COMMENTARY

3961

A focus on coordination chemistry at chlorine

Jason L. Dutton*



EDGE ARTICLES

3963

Stereoselective synthesis of [2.2]triphylenophanes via intramolecular double [2 + 2 + 2] cycloadditions

Yuya Kawai, Juntaro Nogami, Yuki Nagashima and Ken Tanaka*

Chemical Science

rsc.li/chemical-science

Editorial Staff

Executive Editor

May Copsey

Deputy Editor

Samantha Apps

Senior Editor

James Moore

Scientific Editors

Ellis Crawford, Jingtao Huang, Esther Johnston, Sophie Orchard, Richard Thompson and Amy Welch

Editorial Assistant

Karina Webster

Publishing Assistant

David Bishop

For queries about submitted articles please contact James Moore, Senior Editor, in the first instance. E-mail chemicalscience@rsc.org

For pre-submission queries please contact May Copsey, Executive Editor. E-mail chemicalscience-rsc@rsc.org

Chemical Science (electronic: ISSN 2041-6539) is published 48 times a year by the Royal Society of Chemistry, Thomas Graham House, Science Park, Milton Road, Cambridge, CB4 0WF, UK.

Chemical Science is a Gold Open Access journal and all articles from 2015 onwards are free to read.

Please email orders@rsc.org to register your interest or contact Royal Society of Chemistry Order Department, Royal Society of Chemistry, Thomas Graham House, Science Park, Milton Road, Cambridge, CB4 0WF, UK

Tel +44 (0)1223 432398; E-mail orders@rsc.org

Whilst this material has been produced with all due care, the Royal Society of Chemistry cannot be held responsible or liable for its accuracy and completeness, nor for any consequences arising from any errors or the use of the information contained in this publication. The publication of advertisements does not constitute any endorsement by the Royal Society of Chemistry or Authors of any products advertised. The views and opinions advanced by contributors do not necessarily reflect those of the Royal Society of Chemistry which shall not be liable for any resulting loss or damage arising as a result of reliance upon this material. The Royal Society of Chemistry is a charity, registered in England and Wales, Number 207890, and a company incorporated in England by Royal Charter (Registered No. RC000524), registered office: Burlington House, Piccadilly, London W1J 0BA, UK, Telephone: +44 (0) 207 4378 6556.

Advertisement sales:

Tel +44 (0) 1223 432246; Fax +44 (0) 1223 426017; E-mail advertising@rsc.org

For marketing opportunities relating to this journal, contact marketing@rsc.org

Editorial Board

Editor-in-Chief

Andrew Cooper, University of Liverpool

Associate Editors

Vincent Artero, CEA-Grenoble

Luis M. Campos, Columbia University

Michelle Chang, University of California, Berkeley

Lin X. Chen, Northwestern University

Graeme Day, University of Southampton

Serena DeBeer, Max Planck Institute for Chemical Energy Conversion

Mircea Dincă, MIT

Yong Dong, University of California, Irvine

François Gabbaï, Texas A&M University

Subi George, JNCASR

Jinlong Gong, Tianjin University

Stephen Goldup, University of Birmingham

Zaiping Guo, University of Adelaide

Christopher A. Hunter, University of Cambridge

Malika Jefferies-EL, Boston University

Ning Jiao, Peking University

Tanja Junkers, Monash University

Hemamala Karunadasa, Stanford University

Maja Köhn, University of Freiburg

Yi-Tao Long, Nanjing University

Gabriel Merino, CINVESTAV Mérida

James K. McCusker, Michigan State University

Thomas Meade, Northwestern University

Paolo Melchiorre, University of Bologna

Carsten Schultz, Oregon Health & Science University

Dmitri Talapin, The University of Chicago

Toshiharu Teranishi, Kyoto University

Andrei Yudin, University of Toronto

Advisory Board

Dave Adams, University of Glasgow

Ayyappanpillai Ajayaghosh, NIIST

Ulf-Peter Apfel, Ruhr-University Bochum

Polly Arnold, University of California, Berkeley

Xinhe Bao, Dalian Institute of Chemical Physics

Zhenan Bao, Stanford University

Gonçalo Bernardes, University of Cambridge

Frank Biedermann, Karlsruhe Institute of Technology

Donna Blackmond, Scripps Research Institute

Jeffrey Bode, ETH Zurich

Jennifer S. Brodbelt, University of Texas at Austin, USA

Christopher Chang, University of California, Berkeley

Chi-Ming Che, University of Hong Kong

Jun Chen, Nankai University

R. Graham Cooks, Purdue University

Christophe Copéret, ETH Zurich

Eugenio Coronado, University of Valencia

Leroy Cronin, University of Glasgow

James Crowley, University of Otago

Christopher C. Cummins, Massachusetts Institute of Technology

Ben Davis, University of Oxford

Jillian Dempsey, University of North Carolina at Chapel Hill

Kazunori Domen, University of Tokyo

James Durrant, Imperial College London

Xinlang Feng, TU Dresden

Ben Feringa, University of Groningen

Makoto Fujita, University of Tokyo

Phillip Gale, University of Technology Sydney

Song Gao, Peking University

Jeremiah Gassensmith, University of Texas at Dallas

Elizabeth Gibson, Newcastle University

Ryan Gilmour, WWU Münster

Hubert Girault, EPFL

Frank Glorius, WWU Münster

Leticia González, University of Vienna

Duncan Graham, University of Strathclyde

Vicki Grassian, University of California, San Diego

Alexis Grimaud, Boston College

Christian Hackenberger, FMP Berlin

Buxing Han, Chinese Academy of Sciences

Christy Haynes, University of Minnesota

Patrick Holland, Yale University

Kim Jelfs, Imperial College London

Yousung Jung, KAIST

Stephanie Kath-Schorr, University of Cologne

Takashi Kato, University of Tokyo

Christopher Kelly, Janssen Research & Development

Jérôme Lacour, University of Geneva

Al-Lan Lee, Heriot-Watt University

Daniel Leonori, RWTH Aachen University

Chao-Jun Li, McGill University

Yi Li, Jilin University

Mi Hee Lim, KAIST

Wenbin Lin, University of Chicago

Kopin Liu, Academia Sinica

Watson Loh, UNICAMP

Bettina Lotsch, Max Planck Institute

Xiong Wen (David) Lou, Nanyang Technological University

Kazuhiko Maeda, Tokyo Institute of Technology

Satoshi Maeda, Hokkaido University

Swadhin Mandal, IISER Kolkata

Ellen Matson, University of Rochester

Scott Miller, Yale University

Daniel Mindiola, University of Pennsylvania

Wonwoo Nam, Ewha Womans University

Jonathan Nitschke, University of Cambridge

Allie Obermeyer, Columbia University

Martin Oestreich, Technical University of Berlin

Takashi Ooi, Nagoya University

Rachel O'Reilly, University of Birmingham

Oleg Ozerov, Texas A&M University

Xitlán Pan, Dalian Institute of Chemical Physics

Nicolas Plumeré, Technical University of

Munich

Rasmista Raval, University of Liverpool

Erwin Reisner, University of Cambridge

Andrea Rentmeister, WWU Münster

Jeffrey Rinehart, University of California, San Diego

Stuart Rowan, University of Chicago

Richmond Sarpong, University of California, Berkeley

Danielle Schultz, Merck

Dwight Seferos, University of Toronto

Oliver Seitz, Humboldt University of Berlin

Roberta Sessoli, University of Florence

Kay Severin, Federal Polytechnic School of Lausanne

Mikiko Sodeoka, RIKEN

Galo Soler-Illia, Universidad Nacional de San Martin

David Spring, University of Cambridge

Brian Stoltz, California Institute of Technology

Brent Sumerlin, University of Florida

Raghavan B. Sunoj, IIT Bombay

Yogesh Surendranath, MIT

Mizuki Tada, Nagoya University

Ben Zhong Tang, The Hong Kong University of Science and Technology

Zhiyong Tang, National Center for Nanoscience and Nanotechnology

Christine Thomas, Ohio State University

He Tian, East China University of Science & Technology

Zhong-Qun Tian, Xiamen University

F. Dean Toste, University of California, Berkeley

Takashi Uemura, University of Tokyo

Jan van Hest, Radboud University

Latha Venkataraman, Columbia University

Chu Wang, Peking University

Julia Weinstein, University of Sheffield

Tom Welton, Imperial College London

Charlotte Williams, University of Oxford

Vivian Yam, University of Hong Kong

Qi-Lin Zhou, Nankai University

Jenny Zhang, University of Cambridge

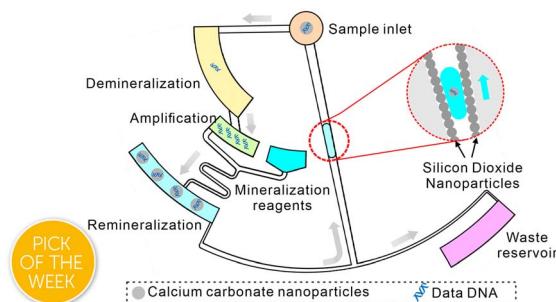
Information for Authors

Full details on how to submit material for publication in Chemical Science are given in the Instructions for Authors (available from <http://www.rsc.org/authors>). Submissions should be made via the journal's homepage: rsc.li/chemical-science

Authors may reproduce/republish portions of their published contribution without seeking permission from the Royal Society of Chemistry, provided that any such republication is accompanied by an acknowledgement in the form: (Original Citation)–Reproduced by permission of the Royal Society of Chemistry.

This journal is © The Royal Society of Chemistry 2023.

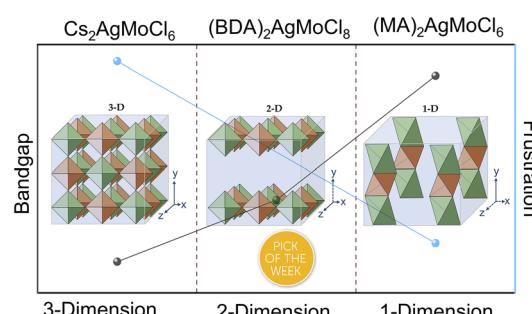
Apart from fair dealing for the purposes of research or private study for non-commercial purposes, or criticism or review, as permitted under the Copyright, Designs and Patents Act 1988 and the Copyright and Related Rights Regulation 2003, this publication may only be reproduced, stored or transmitted, in any form or by any means, with the prior permission in writing of the publishers or in the case of reprographic reproduction in accordance with the terms of licences issued by the Copyright Licensing Agency in the UK. US copyright law is applicable to users in the USA.


Registered charity number: 207890

EDGE ARTICLES

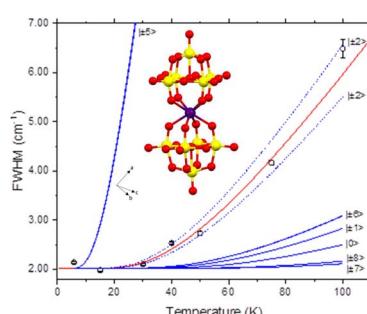
3973

A nanoparticle-coated microfluidic chip for automated, non-destructive extraction of encapsulated DNA in data storage


Chunyang Geng, Shaoqin Liu* and Xingyu Jiang*

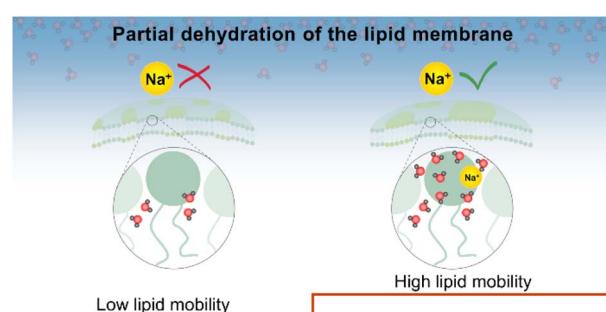
3982

Molybdenum chloride double perovskites: dimensionality control of optical and magnetic properties

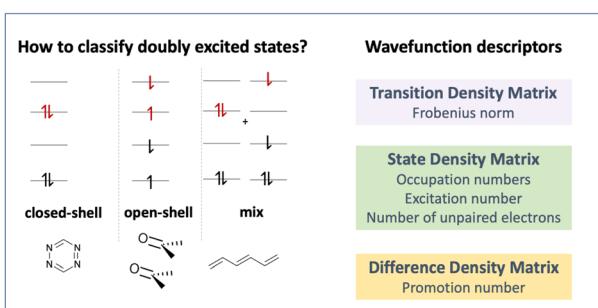

Devesh Chandra Binwal, Prashurya Pritam Mudoi, Debendra Prasad Panda and Pratap Vishnoi*

3990

Direct observation of magnetoelastic coupling in a molecular spin qubit: new insights from crystal field neutron scattering data


Maja A. Dunstan, Marcus J. Giansiracusa, Michele Vonci, Simone Calvello, Dehong Yu, Alessandro Soncini, Colette Boskovic and Richard A. Mole*

4002


Cooperativity between sodium ions and water molecules facilitates lipid mobility in model cell membranes

Madhurima Chattopadhyay,* Emilia Krok, Hanna Orlikowska-Rzeznik and Lukasz Piatkowski*

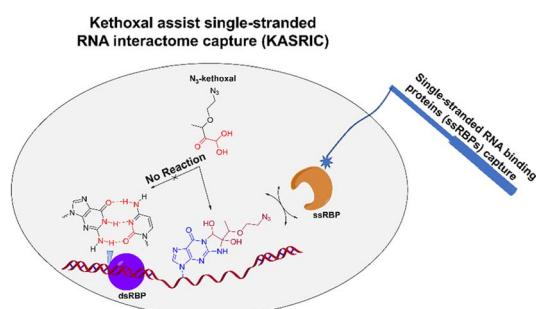
EDGE ARTICLES

4012

Classification of doubly excited molecular electronic states

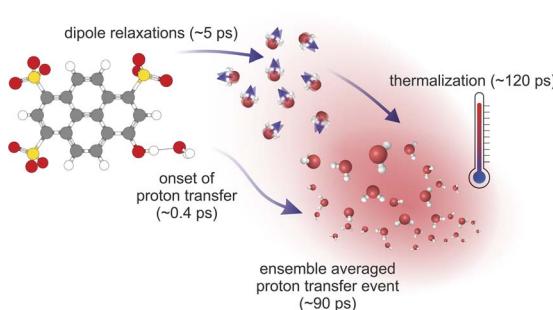
Mariana T. do Casal, Josene M. Toldo, Mario Barbatti and Felix Plasser*

4027



A full, concise reaction pathway for the PDA catalysis cycle using NHC was identified by experiment and theory.

A (TD-)DFT study on photo-NHC catalysis: photoenolization/Diels–Alder reaction of acid fluorides catalyzed by *N*-heterocyclic carbenes


Andreas Mavroskoufis, Manish Lohani, Manuela Weber, Matthew N. Hopkinson* and Jan P. Götze*

4038

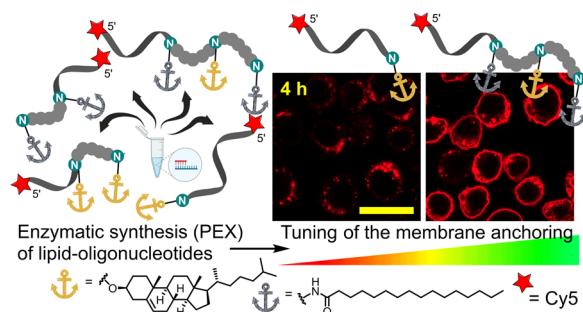
Transcriptome-wide identification of single-stranded RNA binding proteins

Ruiqi Zhao, Xin Fang, Zhibiao Mai, Xi Chen, Jing Mo, Yingying Lin, Rui Xiao, Xichen Bao,* Xiaocheng Weng* and Xiang Zhou*

4048

Caught in the act: real-time observation of the solvent response that promotes excited-state proton transfer in pyranine

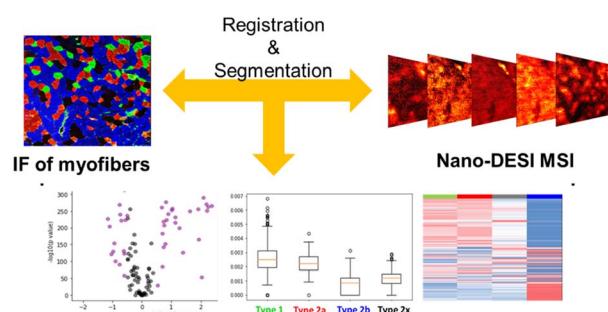
Claudius Hoberg, Justin J. Talbot, James Shee, Thorsten Ockelmann, Debasish Das Mahanta, Fabio Novelli, Martin Head-Gordon and Martina Haverith*



EDGE ARTICLES

4059

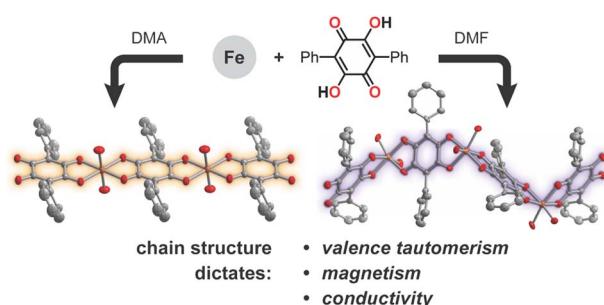
Lipid-linked nucleoside triphosphates for enzymatic synthesis of hydrophobic oligonucleotides with enhanced membrane anchoring efficiency


David Kodr, Erika Kužmová, Radek Pohl, Tomáš Kraus*
and Michal Hocek*

4070

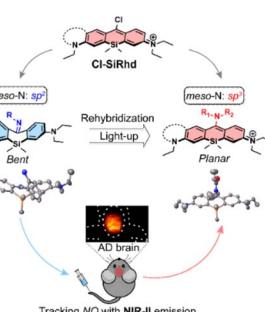
Multimodal high-resolution nano-DESI MSI and immunofluorescence imaging reveal molecular signatures of skeletal muscle fiber types

Daisy Unsihuay, Hang Hu, Jiamin Qiu,
Alessandra Latorre-Palomino, Manxi Yang, Feng Yue,
Ruichuan Yin, Shihuan Kuang and Julia Laskin*

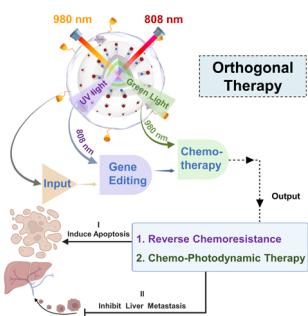


4083

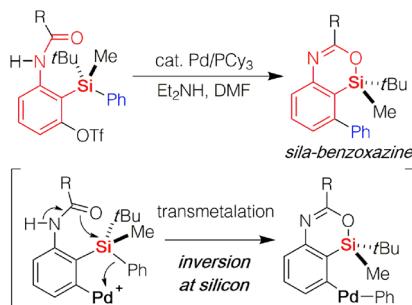
Geometry-dependent valence tautomerism, magnetism, and electrical conductivity in 1D iron-tetraoxolene chains


Ashlyn A. Kamin, Ian P. Moseley, Jeewhan Oh, E. J. Brannan, Paige M. Gannon, Werner Kaminsky, Joseph M. Zadrozny and Dianne J. Xiao*

4091

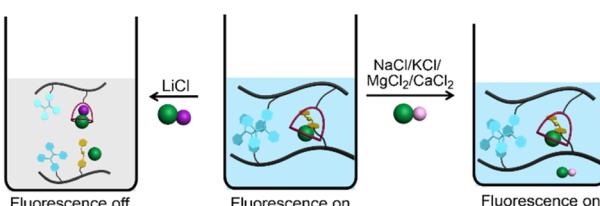

Bent-to-planar Si-rhodamines: a distinct rehybridization lights up NIR-II fluorescence for tracking nitric oxide in the Alzheimer's disease brain

Qingshuang Xu, Yutao Zhang, Mingming Zhu,
Chenxu Yan, Wenle Mao, Wei-Hong Zhu
and Zhigian Guo*


EDGE ARTICLES

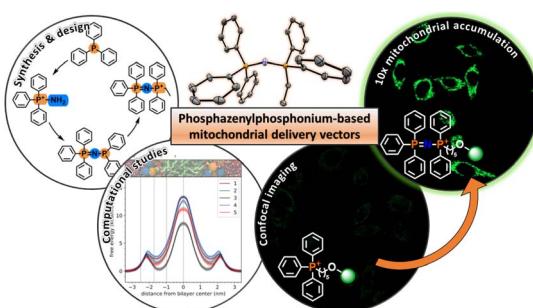
4102

An orthogonally activatable CRISPR-Cas13d nanoprodrug to reverse chemoresistance for enhanced chemo-photodynamic therapy


Zheng Liu, Zhiyuan Feng, Mohan Chen, Jiayin Zhan, Rong Wu, Yang Shi, Yunsheng Xue, Ran Liu, Jun-Jie Zhu and Jingjing Zhang*

4114

Palladium-catalyzed synthesis of 4-sila-4H-benzo[d][1,3]oxazines by intramolecular Hiyama coupling


Donghyeon Lee and Ryo Shintani*

4120

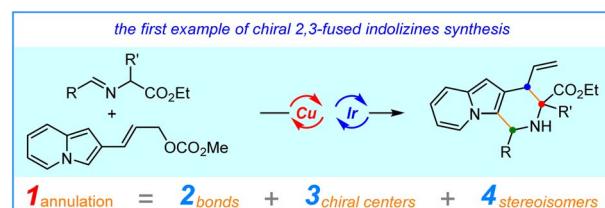
Fluorescent copolymer aggregate sensor for lithium chloride

Hu Wang, Leighton O. Jones, Tian Zhao, Inhong Hwang, Vincent M. Lynch, Niveen M. Khashab,* George C. Schatz,* Zachariah A. Page* and Jonathan L. Sessler*

4126

Beyond the TPP⁺ "gold standard": a new generation mitochondrial delivery vector based on extended PN frameworks

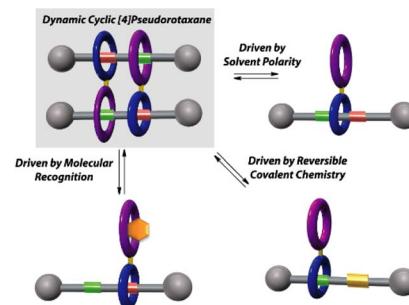
How Chee Ong, João T. S. Coimbra, Maria J. Ramos, Bengang Xing, Pedro A. Fernandes* and Felipe García*



EDGE ARTICLES

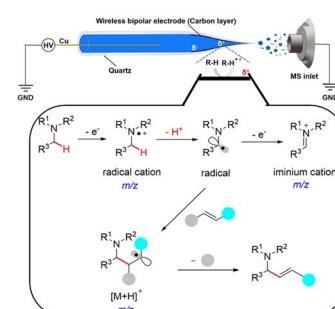
4134

Enantio- and diastereodivergent synthesis of fused indolizines enabled by synergistic Cu/Ir catalysis


Bing-Ke Zhu, Hui Xu, Lu Xiao, Xin Chang, Liang Wei, Huailong Teng, Yanfeng Dang,* Xiu-Qin Dong* and Chun-Jiang Wang*

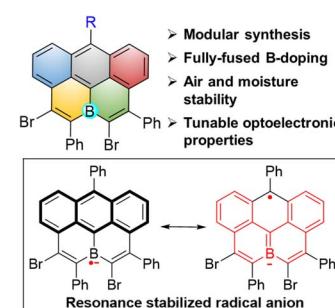
4143

Control of the assembly of a cyclic hetero[4]pseudorotaxane from a self-complementary [2]rotaxane

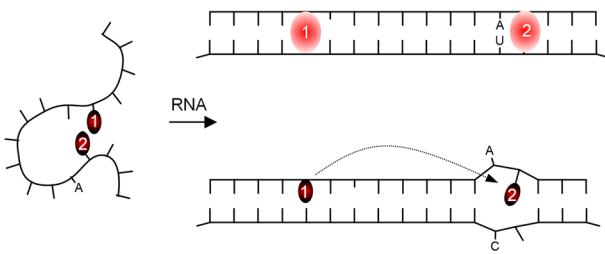

Adrian Saura-Sanmartin, Tomas Nicolas-Garcia, Aurelia Pastor, David Quiñonero, Mateo Alajarín, Alberto Martínez-Cuevva and Jose Berna*

4152

Fragile intermediate identification and reactivity elucidation in electrochemical oxidative α -C(sp³)–H functionalization of tertiary amines

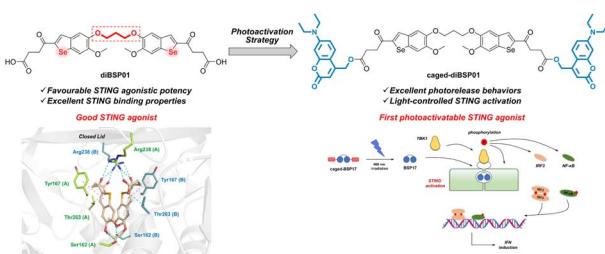

Kailun Liang, Dongmei Zhang, Yanming Su, Lijun Lu, Jun Hu, Yi-Hung Chen,* Xinxing Zhang,* Aiwen Lei* and Hong Yi*

4158


Fully-fused boron-doped olympicenes: modular synthesis, tunable optoelectronic properties, and one-electron reduction

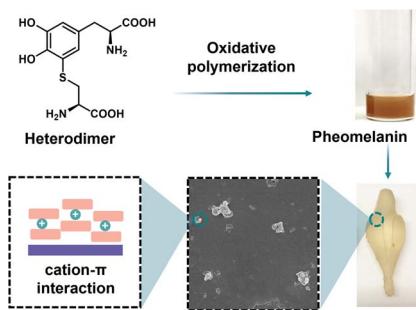
Jing Guo, Kaihua Zhang, Yanpei Wang, Haipeng Wei, Wang Xiao, Kun Yang* and Zebing Zeng*

EDGE ARTICLES


4166

Double FIT hybridization probes – towards enhancing brightness, turn-on and specificity of RNA detection

Sophie Schöllkopf, Andrea Knoll, Amal Homer and Oliver Seitz*


4174

Discovery of a photoactivatable dimerized STING agonist based on the benzo[b]selenophene scaffold

Dongyu Liu, Bin Yu, Xin Guan, Bin Song, Huikai Pan, Renbing Wang, Xi Feng, Lixia Pan, Huidan Huang,* Zhe Wang, Hongxi Wu, Zhixia Qiu, Zhiyu Li* and Jinlei Bian*

4183

Biomimetic pheomelanin to unravel the electronic, molecular and supramolecular structure of the natural product

Wei Cao,* Haochuan Mao, Naneki C. McCallum, Xuhao Zhou, Hao Sun, Christopher Sharpe, Joanna Korpanty, Ziying Hu, Qing Zhe Ni, Michael D. Burkart, Matthew D. Shawkey, Michael R. Wasielewski and Nathan C. Gianneschi*

