

IN THIS ISSUE

ISSN 2041-6539 CODEN CSHCBM 14(14) 3695–3950 (2023)

Cover

See Torsten John, Lisandra L. Martin *et al.*, pp. 3730–3741.
Image reproduced by permission of Ella Maru Studio
from *Chem. Sci.*, 2023, 14, 3730. Artwork by Ella Maru Studio.

REVIEW

3705

Evolution and fabrication of carbon dot-based room temperature phosphorescence materials

Jiurong Li, Yongzhong Wu and Xiao Gong*

EDGE ARTICLES

3730

Lipid oxidation controls peptide self-assembly near membranes through a surface attraction mechanism

Torsten John,* Stefania Piantavigna, Tiara J. A. Dealey, Bernd Abel, Herre Jelger Risselada and Lisandra L. Martin*

Chemical Science

rsc.li/chemical-science

Editorial Staff

Executive Editor

May Copsey

Deputy Editor

Samantha Apps

Senior Editor

James Moore

Scientific Editors

Ellis Crawford, Jingtao Huang, Esther Johnston, Sophie Orchard, Richard Thompson and Amy Welch

Editorial Assistant

Karina Webster

Publishing Assistant

David Bishop

For queries about submitted articles please contact James Moore, Senior Editor, in the first instance. E-mail chemicalscience@rsc.org

For pre-submission queries please contact May Copsey, Executive Editor. E-mail chemicalscience-rsc@rsc.org

Chemical Science (electronic: ISSN 2041-6539) is published 48 times a year by the Royal Society of Chemistry, Thomas Graham House, Science Park, Milton Road, Cambridge, CB4 0WF, UK.

Chemical Science is a Gold Open Access journal and all articles from 2015 onwards are free to read.

Please email orders@rsc.org to register your interest or contact Royal Society of Chemistry Order Department, Royal Society of Chemistry, Thomas Graham House, Science Park, Milton Road, Cambridge, CB4 0WF, UK

Tel +44 (0)1223 432398; E-mail orders@rsc.org

Whilst this material has been produced with all due care, the Royal Society of Chemistry cannot be held responsible or liable for its accuracy and completeness, nor for any consequences arising from any errors or the use of the information contained in this publication. The publication of advertisements does not constitute any endorsement by the Royal Society of Chemistry or Authors of any products advertised. The views and opinions advanced by contributors do not necessarily reflect those of the Royal Society of Chemistry which shall not be liable for any resulting loss or damage arising as a result of reliance upon this material. The Royal Society of Chemistry is a charity, registered in England and Wales, Number 207890, and a company incorporated in England by Royal Charter (Registered No. RC000524), registered office: Burlington House, Piccadilly, London W1J 0BA, UK, Telephone: +44 (0) 207 4378 6556.

Advertisement sales:

Tel +44 (0) 1223 432246; Fax +44 (0) 1223 426017; E-mail advertising@rsc.org

For marketing opportunities relating to this journal, contact marketing@rsc.org

Editorial Board

Editor-in-Chief

Andrew Cooper, University of Liverpool

Associate Editors

Vincent Artero, CEA-Grenoble

Luis M. Campos, Columbia University
Michelle Chang, University of California, Berkeley

Lin X. Chen, Northwestern University
Graeme Day, University of Southampton
Serena DeBeer, Max Planck Institute for Chemical Energy Conversion

Mircea Dincă, MIT

Yong Dong, University of California, Irvine

François Gabbaï, Texas A&M University

Subi George, JNCASR

Jinlong Gong, Tianjin University

Stephen Goldup, University of Southampton

Zaiping Guo, University of Adelaide

Christopher A. Hunter, University of Cambridge

Malika Jefferies-EL, Boston University

Ning Jiao, Peking University

Tanja Junkers, Monash University

Hemamala Karunadasa, Stanford University

Maja Köhn, University of Freiburg

Yi-Tao Long, Nanjing University

Gabriel Merino, CINVESTAV Mérida

James K. McCusker, Michigan State University

Thomas Meade, Northwestern University

Paolo Melchiorre, University of Bologna

Carsten Schultz, Oregon Health & Science University

Dmitri Talapin, The University of Chicago

Toshiharu Teranishi, Kyoto University

Andrei Yudin, University of Toronto

Advisory Board

Dave Adams, University of Glasgow

Ayyappanpillai Ajayaghosh, NIIST

Ulf-Peter Apfel, Ruhr-University Bochum

Polly Arnold, University of California, Berkeley

Xinhe Bao, Dalian Institute of Chemical Physics

Zhenan Bao, Stanford University

Gonçalo Bernardes, University of Cambridge

Frank Biedermann, Karlsruhe Institute of Technology

Donna Blackmond, Scripps Research Institute

Jeffrey Bode, ETH Zurich

Jennifer S. Brodbelt, University of Texas at Austin, USA

Christopher Chang, University of California, Berkeley

Chi-Ming Che, University of Hong Kong

Jun Chen, Nankai University

R. Graham Cooks, Purdue University

Christophe Copéret, ETH Zurich

Eugenio Coronado, University of Valencia

Leroy Cronin, University of Glasgow

James Crowley, University of Otago

Christopher C. Cummins, Massachusetts Institute of Technology

Ben Davis, University of Oxford

Jillian Dempsey, University of North Carolina at Chapel Hill

Kazunori Domen, University of Tokyo

James Durrant, Imperial College London

Xinlang Feng, TU Dresden

Ben Feringa, University of Groningen

Makoto Fujita, University of Tokyo

Phillip Gale, University of Technology Sydney

Song Gao, Peking University

Jeremiah Gassensmith, University of Texas at Dallas

Elizabeth Gibson, Newcastle University

Ryan Gilmour, WWU Münster

Hubert Girault, EPFL

Frank Glorius, WWU Münster

Leticia González, University of Vienna

Duncan Graham, University of Strathclyde

Vicki Grassian, University of California, San Diego

Alexis Grimaud, Boston College

Christian Hackenberger, FMP Berlin

Buxing Han, Chinese Academy of Sciences

Christy Haynes, University of Minnesota

Patrick Holland, Yale University

Kim Jelfs, Imperial College London

Yousung Jung, KAIST

Stephanie Kath-Schorr, University of Cologne

Takashi Kato, University of Tokyo

Christopher Kelly, Janssen Research & Development

Jérôme Lacour, University of Geneva

Ai-Lan Lee, Heriot-Watt University

Daniel Leonori, RWTH Aachen University

Chao-Jun Li, McGill University

Yi Li, Jilin University

Mi Hee Lim, KAIST

Wenbin Lin, University of Chicago

Kopin Liu, Academia Sinica

Watson Loh, UNICAMP

Bettina Lotsch, Max Planck Institute

Xiong Wen (David) Lou, Nanyang Technological University

Kazuhiko Maeda, Tokyo Institute of Technology

Satoshi Maeda, Hokkaido University

Swadhin Mandal, IISER Kolkata

Ellen Matson, University of Rochester

Scott Miller, Yale University

Daniel Mindiola, University of Pennsylvania

Wonwoo Nam, Ewha Womans University

Jonathan Nitschke, University of Cambridge

Allie Obermeyer, Columbia University

Martin Oestreich, Technical University of Berlin

Takashi Ooi, Nagoya University

Rachel O'Reilly, University of Birmingham

Oleg Ozerov, Texas A&M University

Xitlalan Pan, Dalian Institute of Chemical Physics

Nicolas Plumeré, Technical University of

Munich

Rasmista Raval, University of Liverpool

Erwin Reisner, University of Cambridge

Andrea Rentmeister, WWU Münster

Jeffrey Rinehart, University of California, San Diego

Stuart Rowan, University of Chicago

Richmond Sarpong, University of California, Berkeley

Danielle Schultz, Merck

Dwight Seferos, University of Toronto

Oliver Seitz, Humboldt University of Berlin

Roberta Sessoli, University of Florence

Kay Severin, Federal Polytechnic School of Lausanne

Mikiko Sodeoka, RIKEN

Galo Soler-Illia, Universidad Nacional de San Martin

David Spring, University of Cambridge

Brian Stoltz, California Institute of Technology

Brent Sumerlin, University of Florida

Raghavan B. Sunoj, IIT Bombay

Yogesh Surendranath, MIT

Mizuki Tada, Nagoya University

Ben Zhong Tang, The Hong Kong University of Science and Technology

Zhiyong Tang, National Center for Nanoscience and Nanotechnology

Christine Thomas, Ohio State University

He Tian, East China University of Science & Technology

Zhong-Qun Tian, Xiamen University

F. Dean Toste, University of California, Berkeley

Takashi Uemura, University of Tokyo

Jan van Hest, Radboud University

Latha Venkataraman, Columbia University

Chu Wang, Peking University

Julia Weinstein, University of Sheffield

Tom Welton, Imperial College London

Charlotte Williams, University of Oxford

Vivian Yam, University of Hong Kong

Qi-Lin Zhou, Nankai University

Jenny Zhang, University of Cambridge

Information for Authors

Full details on how to submit material for publication in Chemical Science are given in the Instructions for Authors (available from <http://www.rsc.org/authors>). Submissions should be made via the journal's homepage: rsc.li/chemical-science

Authors may reproduce/republish portions of their published contribution without seeking permission from the Royal Society of Chemistry, provided that any such republication is accompanied by an acknowledgement in the form: (Original Citation)–Reproduced by permission of the Royal Society of Chemistry.

This journal is © The Royal Society of Chemistry 2023.

Apart from fair dealing for the purposes of research or private study for non-commercial purposes, or criticism or review, as permitted under the Copyright, Designs and Patents Act 1988 and the Copyright and Related Rights Regulation 2003, this publication may only be reproduced, stored or transmitted, in any form or by any means, with the prior permission in writing of the publishers or in the case of reprographic reproduction in accordance with the terms of licences issued by the Copyright Licensing Agency in the UK. US copyright law is applicable to users in the USA.

Registered charity number: 207890

EDGE ARTICLES

3742

An abiotic, tetrameric, eight-helix bundle

Friedericke S. Menke, Barbara Wicher, Lars Allmendinger, Victor Maurizot and Ivan Huc*

3752

Enabling the formation of native mAb, Fab' and Fc-conjugates using a bis-disulfide bridging reagent to achieve tunable payload-to-antibody ratios (PARs)

Fabien Thoreau,* Léa N. C. Rochet, James R. Baker* and Vijay Chudasama*

3763

Photophysics of the red-form Kaede chromophore

Kiri Addison, Palas Roy, Giovanni Bressan, Karolina Skudaite, Josh Robb, Philip C. Bulman Page, Eleanor K. Ashworth, James N. Bull and Stephen R. Meech*

3776

Fluorocarbyne complexes via electrophilic fluorination of carbido ligands

Richard A. Manzano and Anthony F. Hill*

EDGE ARTICLES

3782

Tailored preparation of porous aromatic frameworks in a confined environment

Ruihe Yu, Lin Liu, Liying Yin, Yege Jing, Ning Zhang,* Hang Bian* and Guangshan Zhu*

3789

Fine-tuning the sequential drug release of nano-formulated mutual prodrugs dictates the combination effects

Haiping Zhong, Xingwei Li, Na Yu, Xi Zhang, Jingqing Mu, Tao Liu, Bo Yuan, Xiaoyong Yuan and Shutao Guo*

3800

C–H bond activation via concerted metalation–deprotonation at a palladium(III) center

Bailey S. Bouley, Fengzhi Tang, Dae Young Bae and Liviu M. Mirica*

3809

Rational design of a genetically encoded NMR zinc sensor

Zhuangyu Zhao, Mingyang Zhou, Serge D. Zumerov, Ronen Marmorstein and Ivan J. Dmochowski*

EDGE ARTICLES

3816

Probing the donor strength of ylide ligands: synthesis, structure and reactivity of rhodium complexes with a $\text{PC}_\text{ylide}\text{N}$ pincer ligand

Sébastien Lapointe, Prakash Duari and
Viktoria H. Gessner*

3826

Biosynthesis of pleuromutilin congeners using an *Aspergillus oryzae* expression platform

Fabrizio Alberti,* Khairunisa Khairudin, Jonathan A. Davies, Suphattra Sangmallee, Christine L. Willis, Gary D. Foster and Andy M. Bailey*

3834

Novel synthetic route for (parent) phosphetanes, phospholanes, phosphinanes and phosphephanes

Stephan Reichl, Gábor Balázs and Manfred Scheer*

3839

Nonspecific interactions between Cas12a and dsDNA located downstream of the PAM mediate target search and assist AsCas12a for DNA cleavage

Ruirui Sun, Yuqian Zhao, Wenjuan Wang, Jun-Jie Gogo Liu and Chunlai Chen*

EDGE ARTICLES

3852

PyrroTriPol: a semi-rigid trityl-nitroxide for high field dynamic nuclear polarization

Thomas Halbritter, Rania Harrabi, Subhradip Paul, Johan van Tol, Daniel Lee, Sabine Hediger, Snorri Th. Sigurdsson,* Frédéric Mentink-Vigier* and Gaël De Paëpe*

3865

Amides as modifiable directing groups in electrophilic borylation

Saqib A. Iqbal, Marina Uzelac, Ismat Nawaz, Zhongxing Wang, T. Harri Jones, Kang Yuan, Clement R. P. Millet, Gary S. Nichol, Ghayoor Abbas Chotana and Michael J. Ingleson*

3873

Gold(I)-containing light-emitting molecules with an inverted singlet-triplet gap

Daniel Blasco, Rinat T. Nasibullin, Rashid R. Valiev and Dage Sundholm*

3881

Semisynthesis reveals apoptin as a tumour-selective protein prodrug that causes cytoskeletal collapse

Jasmine Wyatt, Yuen Ka Chan, Mateusz Hess, Mahvash Tavassoli* and Manuel M. Müller*

EDGE ARTICLES

3893

Novel N(SCF_3)(CF_3)-amines: synthesis, scalability and stability

Yi Yang, Nathalie Saffon-Merceron, Julien C. Vantourout and Anis Tlili*

3899

A quantum spin liquid candidate isolated in a two-dimensional $\text{Co}^{\text{II}}\text{Rh}^{\text{III}}$ bimetallic oxalate network

Enrique Burzuri,* María José Martínez-Pérez, Carlos Martí-Gastaldo, Marco Evangelisti, Samuel Mañas-Valero, Eugenio Coronado, Jesús I. Martínez, Jose Ramon Galan-Mascaros and Fernando Luis*

3907

Biomimetic chlorine-induced polyene cyclizations harnessing hypervalent chloroiodane–HFIP assemblies

Julia Binder, Aniruddha Biswas and Tanja Gulder*

3913

Neural network potentials for accelerated metadynamics of oxygen reduction kinetics at Au–water interfaces

Xin Yang, Arghya Bhowmik, Tejs Vegge and Heine Anton Hansen*

EDGE ARTICLES

3923

Synthesis of functionalized 2,3-diaminopropionates and their potential for directed monobactam biosynthesis

Michael S. Lichstrahl, Lukas Kahlert, Rongfeng Li, Trevor A. Zandi, Jerry Yang and Craig. A. Townsend*

3932

An artificial metallolyase with pliable 2-His-1-carboxylate facial triad for stereoselective Michael addition

Ryusei Matsumoto, Saho Yoshioka, Miho Yuasa, Yoshitsugu Morita, Genji Kurisu and Nobutaka Fujieda*

3938

Bioinspired nucleobase-containing polyelectrolytes as robust and tunable adhesives by balancing the adhesive and cohesive properties

Zhi Dong, Jiang Wu, Xinyi Shen, Zan Hua* and Guangming Liu*

