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Aqueous zinc ion batteries (AZIBs) are regarded as one of the most promising large-scale energy storage
systems because of their considerable energy density and intrinsic safety. Nonetheless, the severe
dendrite growth of the Zn anode, the serious degradation of the cathode, and the boundedness of
separators restrict the application of AZIBs. Fortunately, electrospinning nanofibers demonstrate huge
potential and bright prospects in constructing AZIBs with excellent electrochemical performance due to
their controllable nanostructure, high conductivity, and large specific surface area (SSA). In this review,
we first briefly introduce the principles and processing of the electrospinning technique and the
structure design of electrospun fibers in AZIBs. Then, we summarize the recent advances of
electrospinning nanofibers in AZIBs, including the cathodes, anodes, and separators, highlighting the
nanofibers’ working mechanism and the correlations between electrode structure and performance.
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1 Introduction

With the rapid consumption of fossil resources and increasing
demand for highly efficient utilization of new energy, the search
and study of energy storage devices with high earth abundance,
good safety, and long cycle life are urgently required."™ As
a promising candidate for large-scale energy storage systems,
AZIBs have attracted wide attention due to their rapid reaction
kinetics, environmental benignity, and affordability.>” Gener-
ally, AZIBs are composed of a Zn anode, mild or weakly acidic
electrolyte, separator, and cathode. Zn metal with a high theo-
retical capacity (820 mA h g~') and low redox potential (—0.76 V
vs. the standard hydrogen electrode) is considered an ideal
anode for AZIBs.*® In addition, the cathode plays a crucial role
in the performance of AZIBs, as it serves as a host framework to
accommodate Zn>'.'*"* So far, cathode materials for AZIBs
include manganese, vanadium, Prussian blue analogs, organic
compounds, etc.'> These cathode materials are related to the
operation voltage, cycle stability and rate performance of
AZIBs.*>'* Herein, the application of suitable cathode materials
can improve the performance of AZIBs.

Despite the many advantages of AZIBs, however, many
challenges seriously hinder their further application. Firstly, in
contrast to lithium/sodium ion batteries, the reaction mecha-
nisms of AZIBs are complicated and immature,*® and can be
categorized into three main types, including Zn*" insertion/
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extraction,'®” H'/Zn>" co-insertion/extraction,'® and chemical
conversion reactions.” Among them, the Zn>' insertion/
extraction reaction mechanism is the most commonly
acknowledged in AZIBs.* Secondly, the non-uniform Zn**
deposition and the decomposition of active H,O molecules
belonging to the solvation layer of Zn** will result in uncon-
trolled growth of Zn dendrites and the formation of by-products
on the surface of the Zn anode, ultimately causing battery
failure.®® Thirdly, due to the Jahn-Teller effect, the active
materials of the manganese-based materials will dissolve in
weakly acidic aqueous electrolyte, resulting in material collapse
and the rapid degradation of capacity.”* In addition,
vanadium-based compounds and organic compounds also face
the challenge of dissolution.”* Fourthly, as the crucial compo-
nent of AZIBs, the separator can prevent direct contact between
the electrodes and provide the channel for ion migration.”
However, traditional separators (such as glass fiber, filter paper,
and non-woven fabrics) cannot meet the requirements for AZIBs
of excellent mechanical properties, high wettability, high ionic
conductivity, and electrical insulation.>**” To alleviate these
limitations, some novel material preparation technologies and
many functional materials have been adopted and fabricated.
Among them, the electrospinning nanofibers have advantages
such as large surface area to volume ratio, high aspect ratio,
directional transportation, and short ionic transport lengths,
which are desirable in energy storage applications.”® In the
previously reported literature, there is no uniform definition of
one-dimensional (1D) nanofibers.” Thereby, in this review,
single electrospinning nanofibers are defined as 1D nanofibers.
During electrospinning, 1D nanofibers deposited and
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disorderly arranged on the collector can form the two-
dimensional (2D) nano-film. Different from the conventional
2D nano-film, the preparation of three-dimensional (3D) fibrous
structures is complicated. In general, the fabrication strategies
of 3D structures include increasing the electrospinning, self-
assembly, assembly by post-processing of 2D nano-film (such
as layer-by-layer electrospinning), and direct assembly by an
auxiliary factor (like a 3D template).*® These 2D and 3D archi-
tecture materials with high flexibility and high surface area-to-
mass ratio are assembled by 1D fibers exhibit faster intercala-
tion kinetics in AZIBs. Besides, some unique structures (such as
core/shell structures and hierarchical pores), defects, and
functional groups can be created and introduced on the elec-
trospinning nanofibers, which is beneficial for AZIBs.**

For example, Tang et al. fabricated N-doped carbon fibers to
improve the electronic conductivity of cathode materials.**
Liang et al. synthesized zincophilic carbon nanofiber interlayers
by an electrospinning method to uniformize the deposition of
Zn>*.* Meanwhile, Fang et al fabricated a polyacrylonitrile
(PAN) nanofiber separator with high porosity and excellent
flexibility.** A brief timeline of the representative works of
electrospinning nanofibers on AZIBs is summarized in
Fig. 1.»** Although electrospinning nanofibers are widely
applied in AZIBs, there is still no specific review focus on elec-
trospinning nanomaterials’ application in AZIBs. Thus, it is
necessary to summarize the research progress of AZIBs based
on the electrospinning nanomaterials.

Herein, in this review, we first introduce the principle and
processing of the electrospinning technique. Then, the different
structures of electrospinning nanofibers in AZIBs are summa-
rized. Thirdly, we highlight the development of electrospinning
materials in AZIBs, such as cathodes,***** anodes,*™*” and
separators.***® Finally, we propose the challenges, development
prospects, and future research directions of the electrospinning
materials in AZIBs.

Polyaniline (PANI)-coated

A patent for electrospinning Eartion fiber cathoda

Porous V,05
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Fig. 1 Timeline of the progress of the electrospinning nanofibers in
AZIBs. Adapted from ref. 36, copyright 2022, American Chemical
Society. Adapted from ref. 37, copyright 2010, American Chemical
Society. Adapted from ref. 38, copyright 2019, Elsevier B.V. Adapted
from ref. 39, copyright 2018, American Chemical Society. Adapted
from ref. 35, copyright 2021, Wiley-VCH. Adapted from ref. 40,
copyright 2022, the Author(s). Adapted from ref. 41, copyright 2022,
the Author(s). Adapted from ref. 42, copyright 2023, American
Chemical Society.
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2 Principle and processing of the
electrospinning technique

The electrospinning technique is a novel patented technology
invented in 1934 that enables the direct and continuous prep-
aration of polymer nanofibers,*>** including not only synthetic
polymeric compounds such as poly(vinyl pyrrolidone) (PVP),
poly(vinylidene fluoride) (PVDF), and polyacrylonitrile (PAN),**
but also natural macromolecules and their derivatives like
chitosan and silk protein.** A common electrospinning appa-
ratus usually comprises a high-voltage power supply, a metallic
or plastic syringe, and a collector.* A “Taylor cone” at the end of
the nozzle will form a jet of electrically conductive polymeric
precursor solution (or polymer melt) in a classic electrospinning
process when the voltage between the collector and needle
exceeds a critical value.®® After a short distance of stable motion,
these jets will go into an unstable movement stage. Experi-
encing a series of stretching and solvent evaporation, the
polymer solution jets will solidify and finally be deposited on
the collector, forming polymer fibers.*

The structure and morphology of electrospinning nanofibers
are affected by numerous factors such as the properties of
polymer solutions, processing parameters, and ambient
parameters.> The molecular weight of the polymer is a signifi-
cant parameter affecting electrospinning nanofibers, which
directly affects the properties of the precursor solution, such as
viscosity, conductivity, and surface tension.** At the same mass
fraction, polymer solutions with higher molecular weight
exhibit higher viscosity than those with lower molecular weight.
In general, high viscosity usually results in the formation of
large diameter nanofibers, while low viscosity solutions facili-
tate the preparation of small diameter nanofibers.*® Voltage and
feed rate are other important factors affecting the diameter of
the nanofibers. It is well known that the critical voltage is
required to form electrospinning nanofibers.”> With the
increase of voltage, the diameter of nanofibers will decrease at
an appropriate concentration of polymer solution.*” In contrast,
increasing the feed rate will lead to an increase in fiber diam-
eter.”® Besides, the diameter of nanofibers is also influenced by
environmental parameters (such as humidity and temperature).
A moderately high temperature and a low relative humidity will
promote the evaporation of solvent and the solidification of jets,
which is favorable for decreasing the diameter of nanofibers.
These factors are not independent and have a significant
influence on each other. Therefore, before preparing the
nanofibers with specific morphology and diameter, the inter-
action between these parameters needs to be considered.

3 Electrospinning nanofibers design
for zinc ion batteries

Generally speaking, the structure of materials significantly
impacts the electrochemical performance of batteries. For
instance, constructing a porous structure cathode material can
increase the SSA of the material and facilitate the intimate
electrolyte penetration rapid of zZn*'*

and transfer
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Furthermore, the hollow structure has the ability to accommo-
date the volume changes of the electrodes.*® Different structures
of nanofibers (e.g., core/shell, porous, hollow, and so on) can be
fabricated by the electrospinning method. Thus, the design of
different structure nanofibers by electrospinning in AZIBs will
be discussed and summarized in this section.

3.1 Core/shell structure

In the year 2003, nanofibers with core/shell structures were
prepared by coaxial electrospinning for the first time.> Since
then, the core/shell-structured electrospinning nanofibers have
been extensively utilized in energy storage due to their unique
features. Compared with normal electrospinning fibers, the
advantage of core/shell nanofibers is to allow many non-
spinnable polymers to be used as electrospinnable mate-
rials,’ such as polyaniline and polyvinyl alcohol.®* In the
process of electrospinning, two kinds of immiscible solutions
were added to two syringes, respectively. Then, under a high
voltage electrostatic field, the shell solution will converge with
the core solution at the nozzle, finally forming the core/shell
structured fibers.®*> In AZIBs, the core/shell nanostructure
fibers are usually used as the electrode material due to the large
SSA and excellent charge storage. For example, Long et al.
fabricated Mn;O, nanoparticles (Mn;O, NPs)/polyacrylonitrile
(PAN) composite nanofibers by coaxial electrospinning.®
During annealing, the Mn;0O,/PAN fibers were carbonized to
Mn;0,@HCFs nanofibers with core/shell structure.

3.2 Porous structure

Porous structure electrospinning nanofibers have the advan-
tages of large SSA, short ion diffusion length, and fast electro-
lyte access, and have been widely used in AZIBs.** Besides, the
abundant porosity can accommodate the volume changes
caused by ion insertion/extraction, thus mitigating structural
distortion during cycling.®® In electrospinning, phase separa-
tion and sacrificial template methods are usually used to
produce porous structures in nanofibers. The mechanism of the
phase separation method can be categorized into vapor-
induced phase separation (VIPS), non-solvent-induced phase
separation (NIPS), and thermally induced phase separation
(TIPS).*® Usually, the fabrication of porous nanofibers involves
one or more phase separation methods, while suitable polymers
and solvents are also required. Sacrificial templates include
polymers, metals, metal oxides, and inorganic salts.®” For
instance, Liu's group used block copolymer poly(methyl meth-
acrylate)-block-polyacrylonitrile (PMMA-b-PAN) as a raw mate-
rial to fabricate polymer mats.®® In this polymer mat, the
incompatibility between the PMMA block and PAN will result in
microphase separation, which will further release and generate
abundant micro-/mesopores at high temperatures. This porous
structure can shorten the ion diffusion path and facilitate the
migration of electrolytes in the electrode.

3.3 Hollow structure

The principle of coaxial electrospinning to prepare hollow
structure nanofibers involves generally soluble or volatile
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substances (such as oil) as the core layer, and polymer solution
as the shell layer, through the coaxial electrospinning process
and removal of the core layer to obtain hollow fibers.**”® The
construction of hollow structures can significantly increase the
number of active sites, improve the high aspect ratio of nano-
fibers, and enable accommodating massive deposition at a high
current density without a distinct volume change. Additionally,
it can be prepared by the Kirkendall effect.”* For example, Xue
et al. proposed a hollow TiO, and SiO, carbon fiber. During the
carbonization process, hollow porous fibers were formed due to
the different decomposition and diffusion rates of different
molecular weight PVP.*®

3.4 Bead-like structure

In recent years, the bead-like structure of electrospinning
nanofibers has attracted extensive attention on account of its
unique geometric shape and chemical performance. Usually,
bead-like structure fibers are considered the by-products of the
electrospinning process. Their formation can be devoted to the
axisymmetric instability of the fluid jet under an external elec-
tric field.”»”® According to the literature, decreasing the viscosity
of the polymer solution (or net charge density of the jets) will
facilitate the formation of beads.” However, the lower surface
tension of the precursor polymer solution favors the production
of bead-like fibers during the process of electrospinning. For
instance, the manganese-based metal-organic framework (Mn-
MOF) spheres can be wrapped in PAN through the electro-
spinning technique.*® After carbonization in N,, the bead-like
cathode materials for AZIBs can be achieved by stringing
MnO, with carbon fiber ropes.

3.5 Hierarchical structure

Hierarchically structured fibers consist of multiple nano-
structures, which can be fabricated by electrospinning and post-
treatment technologies.** Compared to primary structures, the
hierarchical structure improves the electrical conductivity of
metal oxides and the storage of Zn>".”® For instance, Zhang et al.
produced vanadium nitride embedded nitrogen-doped carbon
nanofiber (VN/N-CNFs) composite hierarchical structures by the
electrospinning method.”® Additionally, nano-whiskers can be
observed in the branches of VN/N-CNFs.

4 Applications of electrospinning
nanofibers in zinc ion batteries

Owing to their versatility and applicability, electrospinning
nanofibers have been extensively applied in AZIBs. Firstly,
electrospinning nanofibers possess high mechanical flexibility
to meet the trend of flexible AZIBs. Secondly, the nanofiber
structure can shorten the Zn>" diffusion pathway and reduce
reaction impedance in cycling. Thirdly, electrospinning nano-
fibers with electrical conductivity and stability can be used as
a collector to uniformize the deposition of Zn>*, achieving
a “dendrite-free” metal Zn anode. Last but not least, the nano-
fiber separator with appropriate thickness, high mechanical
strength, and controllable pore size can be fabricated by the

© 2023 The Author(s). Published by the Royal Society of Chemistry


http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
https://doi.org/10.1039/d3sc05283d

Open Access Article. Published on 03 November 2023. Downloaded on 1/18/2026 12:48:47 AM.

Thisarticleislicensed under a Creative Commons Attribution 3.0 Unported Licence.

(cc)

Review

electrospinning technique, which can facilitate the transfer of
Zn>*, improve the wettability between the separator and elec-
trolyte, and resist the piercing of the Zn dendrites. Therefore,
this section will summarize the application of electrospinning
nanofibers in the cathodes, anodes, and separators of AZIBs.

4.1 Cathodes

In particular, as an important component of AZIBs, the cathode
material largely determines the electrochemical behaviors of
the battery.”” Therefore, high-performance cathode materials
have been the focus of research in the last decade.”® However,
cathode materials still face challenges such as poor conduc-
tivity, dissolution issues, and volume variation.”®”® Electro-
spinning carbon nanofibers can provide carbonaceous
frameworks with high conductivity to improve the conductivity
and reaction Kkinetics of materials.”>® Besides, the active
materials can be embedded in carbon nanofibers with a porous
structure and large SSA, which greatly prevents the dissolution
and volume variation of materials.*"** For clarity, the applica-
tion of electrospinning nanofibers in cathode materials is
described in the following aspects: vanadium-based materials,
manganese-based materials, and other cathode materials.

4.1.1 Vanadium-based cathodes. Vanadium oxides have
become one of the most promising cathode materials because
of their various oxidation states, high theoretical specific
capacity, and abundant crystal structure.®®* However,
vanadium-based cathodes will dissolve in mild acidic aqueous
electrolytes because of the strong polarity of water molecules
and anions, resulting in capacity fading. In addition, dissolved
substances will deposit on the surface of the Zn anode, reducing
the reactivity and utilization of the Zn metal.®® Usually,
vanadium-based materials are semiconductors that possess
poor electronic conductivity, so highly conductive substances
are often used in the preparation of the cathode electrodes to
improve the conductivity of the materials.*®

To alleviate these limitations, numerous approaches have
been proposed to enhance the electrochemical performance of
vanadium-based materials. Among them is preparing V,O,
nanofibers by the electrospinning technique with excellent ion
diffusion pathways, high conductivity, and nanostructures,
which promote electron/ion transport and improve the cycling
ability of the cathode. For example, to address the problems of
dissolution and poor conductivity of VO,, Liu et al. prepared
self-supported VOC-NF composites by the electrospinning
method followed by steam treatment, in which VO, nanodots
were embedded in carbon nanowires.®” In VOC-NF, the carbon
shell with good electrical conductivity not only prevented the
dissolution of the vanadium element but also avoided the use of
binder and conductive species, resulting in high discharge
specific capacity and energy density.*® Therefore, the vanadium-
based cathode exhibited a satisfactory electrochemical perfor-
mance due to the rapid Zn** diffusion and electron transfer.
Generally speaking, the component distribution of the polymer
solution determines the content and distribution of active
materials in electrospun nanofibers.
distribution of precursors during the electrospinning process

8 The concentration
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Fig. 2 (a) Schematic illustration of fabricating gradient composite
films. (b) Cycling performances and (c) rate capabilities of the up-
graded cathode. Adapted from ref. 90, copyright 2022, Elsevier B.V. (d)
Schematic illustration of the reaction mechanism of the V,Os5 elec-
trode. Adapted from ref. 38, copyright 2019, Elsevier B.V. (e) SEM and (f)
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could therefore be adjusted to produce nanofibers with
a continuous concentration gradient. Niu's group combined
a dynamic concentration adjustment technique and electro-
spinning method to develop continuous gradient composite
films (GCFs) (Fig. 2a).°° The polymer solution was continuously
added to the precursor solution to form a continuously diluted
resultant precursor solution. In VO-GCFs, VO nanoparticles
were gradient distributed throughout the carbon fiber matrix
after the electrospinning and annealing process. In particular,
the electronic conductivity of VO-GCFs gradually increased with
the gradient distribution of VO nanoparticles, which facilitated
the rapid transfer of electrons and improved the reaction
kinetics and electrochemical performance. Compared with
homogeneous or down-graded VO-GCFs, the up-graded cathode
exhibited an excellent cycling and rate ability. Hence, at
a current density of 5.0 A g, the discharge capacity of the Zn//
VO-GCFs battery was nearly unchanged after 1000 cycles
(Fig. 2b). In the rate performance test, the average discharge
capacity of the up-graded cathode was 477.1mAh g 'at5A¢g .
As the current density became 0.3 A g™, the capacity retention
of the up-graded cathode reached 81.2% (Fig. 2c).
Constructing a microstructure can efficiently improve the
transport kinetics of cathode materials."> For instance, a hier-
archical structure could shorten ion transport pathways,’>*
a porous structure with a large SSA can provide abundant
transfer channels for Zn**,** a hollow structure can act as a host
to load active materials,®* etc. Some researchers have prepared
many vanadium-based nanofibers with special structures to
improve the cycling ability of electrodes. For example, Chen
et al. successfully produced porous V,0s nanofibers via the
electrospinning method followed by calcination.*® This abun-
dant mesoporous structure is conducive to electrolyte perme-
ation and Zn*" insertion. In the first charging process, the V,05
transformed into Zn pyrovanadate with a highly stable open

Chem. Sci., 2023, 14, 13346-13366 | 13349
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framework, which greatly favors the reversible Zn>" insertion/
extraction (Fig. 2d). Therefore, after 500 cycles, the battery
with a V,05 nanofiber cathode showed a high capacity of
166 mA h g~ ' and an impressive capacity retention of 81% at 2C.
Furthermore, Wang et al. fabricated novel hybrid fibers with
core/shell hybrid fibers (Fig. 2e and f), which promoted rapid
electron/ion transmission and high mass loading, thus gaining
a better energy storage capability and rate performance ability.**

Heteroatom doping is an effective method to modify the
intrinsic electronic/ionic properties of electrode materials for
AZIBs.”” Doped heteroatoms can widen the interlamellar
spacing and redistribute the charge of the surface atoms,
increasing ion storage and facilitating electron transport.’®®”
During the process of electrospinning, N-containing polymers
(such as PVP and PAN) were often used. These polymers were
transformed into N-doped carbon nanofibers after carboniza-
tion, which contributed to an increase in the electronic
conductivity of materials and provided more active sites for Zn>*
insertion/extraction. For instance, Zhang et al. fabricated an N-
doped VN-encapsulated carbon nanofiber (VN/N-CNFs)
compound by carbonizing H,BDC and VCl;/PAN fibers.” The
3D self-supported hierarchical structure of the VN/N-CNFs
process was thus directly applicable as an electrode for AZIBs
and exhibited ultra-long cycle lifetimes and super-high rates. As
shown in Fig. 3a and b, Zhang et al. prepared N-doped C/V,03
(N@C/V,03) microfibers by the electrospinning method.*® The
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at 10 A g 1. Adapted from ref. 98, copyright 2020, Elsevier B.V. (d) An
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Long-term cycling performance of VCN at 5 A g~*. Adapted from ref.
75, copyright 2020, Elsevier B.V.
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graphitic N atoms in the composites could promote charge
transfer and improve the electrical conductivity and stable
cycling ability of N@C/V,03. Thus, the battery based on the
N@C/V,0; electrode delivered a specific capacity of
322.3 mA h g " and superhigh capacity retention of 91.7% after
4000 cycles at 10 A g~ * (Fig. 3c). Besides, Yoo et al. produced Fe-
doped V,05 nanorods by immersing the PAN fiber templates in
sol solutions with vanadium salt and iron salt followed by
calcination (Fig. 3d).” As an outstanding cathode for AZIBs, the
Fe-V,05 not only shortened the diffusion distance of Zn>" but
also provided extra active sites for Zn”>* storage.

Under thermal treatment, carbon will consume the lattice of
materials or surface O atoms to form defects.”* For example, at
high temperatures, vanadium oxide nanofibers (VCN) were
generated with physical and chemical defects by decomposing
VO(acac),/PAN precursor fibers.”” The physical defects such as
pore pathways and caverns can provide more storage sites for
Zn>" and abundant chemical defects benefit the Zn>* insertion/
extraction during cycling (Fig. 3e). As shown in Fig. 3f,
compared with V,0s, the Zn//VCN cell produced higher capacity
retention of about 83% and stabler coulombic efficiency (almost
100%) at 5 A g ' after cycling over 1000 cycles, which was
attributed to the synergistic effect of dual defects. Table 1
summarizes the electrochemical performances of vanadium-
based materials with electrospinning fibers.

4.1.2 Manganese-based cathodes. Manganese-based mate-
rials, including MnO, MnO,, Mn,03, Mn;0,4, ZnMn,0,, MnS,
and so on, have been widely studied in AZIBs because of their
numerous merits such as high operating voltage, cheapness,
abundant resources, and nonpoisonous nature.'™ Unfortu-
nately, some challenges prevent its practical application.'®
Manganese-based electrodes are usually constructed of active
powder, conductivity agents, binders, and collectors. However,
the poor electrical conductivity and random aggregation of
manganese-based composites cannot realize fast charging at
high current densities.*

Carbon nanofibers with large SSA and high electrical
conductivity can be used as conductive substrates for cathode
materials loading, which not only facilitates fast electron
transfer but also simply the preparation of electrodes without
binders and conductive additives.** For example, Guo et al. used
porous carbon fibers (PCF) to support MnO, to form a free-
standing PFC@MnO, electrode.®® Specifically, the graphitic
PCF fabricated by the electrospinning technique and high-
temperature treatment with high electrical conductivity and
uniform pores (Fig. 4a) favors the mass loading of MnO,
(59.1%) and fast charging. As a result, owing to the fast ion/
electron transport ability of PFC@MnO,, the Zn//PFC@MnO,
displayed impressive structural stability at various current
densities. Besides, Yang et al. prepared high-flexibility nitrogen-
doped carbon films through an electrospinning technique and
calcination with PAN, PVP, 2-methylimidazole, and zinc acetate
as raw materials (Fig. 4b)."* During carbonization, the evapo-
ration of Zn endowed the CNFs with a porous structure, which
not only provided abundant reaction sites for the growth of 3-
MnO, but also had a strong electrostatic attraction for Mn>*, As
displayed in Fig. 4c, the lamellar-like K'-intercalated 3-MnO,

© 2023 The Author(s). Published by the Royal Society of Chemistry
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Table 1 A summary of electrospinning vanadium-based nanofiber materials for AZIBs
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Electrospinning solution

Materials (precursor/polymer/solvent) Structure Long cycle performance Rate performance Ref.

VOC-NF C10H,405V/PAN/DMF — 120 mAh g 'at20A g " after 18 215mAhg 'at20Ag " 87
000 cycles (63% capacity
retention)

VO-GCFs VOC,0,/PAN/DMF Porous The capacity is nearly unchanged 4771mAhg tat5.0Ag" 90
after 1000 cycles at 5 A g~ *

V,05-CFC V,05/PAN/DMF — 154 mAhg 'at0.5Ag " after 99mAhg 'at4Ag’ 100
1000 cycles

V,05 VO,/PVP/H,0, — The capacity is 36% of the 179mAhgtat2Ag™" 101
maximum value after 500 cycles at
2Ag"

V,05 NH,VO;, H,C,0,-2H,0/PVP/ Porous 166 mA h g’1 at 2C after 500 cycles 104 mA h g*1 at 10C 38

DMF (81% capacity retention)
V,0s5/ C15H3104V, C,H,O,, PMMA/ Hierarchical High capacity retention (for V,05 — 91
Zn,V,0; PAN/DMF (NH,VO;, Zn(NO3),, it is 95.8% and for Zn,V,0, it is
H,0, PMMA/PAN/DMF) 93.1%) after 8000 cyclesat 8 Ag ™"

VN/N-CNFs H,BDC, VCl;/PAN/DMF Hierarchical 482 mAhg ' at50Ag " after 30 297mAhg tat100 Ag™" 76
000 cycles

N@C/V,0;3 NH,VO;/PAN/DMF — 3223 mAhg tat10Ag ' after 2422mAhg tat30Ag " 98
4000 cycles (91.7% capacity
retention)

AlLO;@VSe, VO(acac),/PAN, PVP/DMF Core/shell 502.2mAhg ' at0.05Ag "after — 43

NSs@N-CNFs 500 cycles (91.6% capacity
retention)

V,0,@C NFs C;5H,,04V/PAN/DMF — 65mAh g 'at2Ag " after 1000 100mAhgtat2Ag™ 102
cycles

Fe-doped PAN/DMF — The capacity retention is 85% after ~ 256 mAhg 'at2 Ag™" 99

V,0s 160 cycles at 1.3 A g *

VCN VO(acac),/PAN/DMF Hierarchical 1000 cycles (83% capacity 73mAhg 'at10Ag! 75
retention)

V,0s PAN/DMF — The capacity retention is 74.6% — 103

after 300 cycles at 1.3 A g™ "

(KMO) was loaded on the surface of CNFs via the hydrothermal
method of KMnO,, and the resulting KMO/CNFs presented
a large surface area to enable expansion of the contact area
between KMO and the electrolyte and promote ion transfer.
Therefore, even after 1000 cycles at 3 A g~ ', the KMO/CNFs still

—p
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80°C 2h
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Time (h)

|

®O;

L
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:
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Coulombic efficiency (%)

800 1000
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Fig. 4 (a) Cross-sectional SEM image of a porous carbon fiber.
Adapted from ref. 68, copyright 2022, Wiley-VCH. (b) The fabrication
of KMO/CNFs is illustrated schematically. (c) SEM image of KMO/CNFs.
(d) Long-term cycling performance of KMO/CNFs at 3.0 A g™
Adapted from ref. 106, copyright 2022, Wiley-VCH.

© 2023 The Author(s). Published by the Royal Society of Chemistry

exhibited a reversible capacity of 190 mA h ¢~ (Fig. 4d). What's
more, compared with KMO, KMO/CNF showed lower charge-
transfer and ion-diffusion kinetics, which was attributed to
the existence of CNFs. Hiralal et al. explored the relationship
between the capacity of the battery and the diameter of carbon
fibers when carbon fibers were used as the substrate for the
cathode.?” The results showed that decreasing the diameter will
enhance the surface area, charge collection area, and conduc-
tivity of carbon fibers, which will promote electrolyte diffusion
in the electrode, resulting in a higher capacity battery.

There is no doubt that using carbon nanofibers as
a substrate is an effective way to improve the electrical
conductivity of manganese-based compounds. However, the
construction of a firm and tight interface between active
materials and carbon fibers is still a great challenge that needs
to be addressed in the future.

Embedding active substances in carbon nanofiber matrixes
could inhibit the dissolution of manganese-based materials and
construct highways for electrons.*>°'* For instance, Ding et al.
prepared CNF coated bead-like manganese oxide (MnO,-CNFs)
via the electrospinning method (Fig. 5a).>® As shown in Fig. 5b,
the MnO, particles were tightly encapsulated in the amorphous
carbon layer, which effectively relieved its dissolution. More-

over, Wu's group embedded MnS/MnO with the

Chem. Sci., 2023, 14,13346-13366 | 13351
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Fig. 5 (a) Schematic illustration of the synthesis process and (b) TEM
image of MnO,-CNFs. Adapted from ref. 31, copyright 2022, American
Chemical Society. (c) An illustration of the MnS/MnO@N-CF synthesis
process. (d) SEM and (e) TEM images of MnS/MnO@N-CF. Adapted
from ref. 27, copyright 2022, Elsevier B.V. (f and g) TEM images of
Mnz04@HCFs. (h) Long cycling performance and coulombic efficiency
of the MnsO4@HCF electrode at 0.4 A gt Adapted from ref. 59,
copyright 2020, Elsevier Ltd.

heterostructures in N-doped carbon fibers to form MnS/
MnO®@N-CF with high ion and electron conductivity
(Fig. 5¢).*> As shown in Fig. 5d and e, the MnS/MnS nano-
particles were uniformly dispersed in carbon matrixes, and the
edges of active materials were connected by a large amount of
amorphous carbon, which was conducive to the storage of
electrolyte and the enhancement of the conductivity of the
materials. Benefiting from the protection of the carbon layer,
the structure of active materials remained stable without

View Article Online

Review

collapse and pulverization after cycling, indicating an excellent
stable cycling ability of the electrode.

However, this strategy will partly reduce the ion transport
efficiency and active substance utilization of active materials. As
a result, the precise control of the structure of nanofibers is
essential to achieve a cathode with excellent electrochemical
performance. As a typical example, Long et al. fabricated Mn;-
0O,@HCFs with core/shell structure by a coaxial electrospinning
method and subsequent high temperature treatment.®® This
fiber consisted of a carbon shell with a thickness of about 70 nm
(content of 12.7 wt%) and Mn;0O, nanoparticles (Fig. 5f and g).
The amorphous carbon layer not only served as a protective
layer between Mn;0O, and the electrolyte, preventing the disso-
lution of the active substance, but also mitigated the volume
expansion of the electrode during cycling. In addition, the void
spaces between the carbon shell and the Mn;O, core can
accommodate a large amount of electrolyte, providing space for
electrochemical reactions. Therefore, the battery based on the
Mn;0,@HCFs cathode material displayed ultra-stable cycling
capability with 96.9% capacity retention and high coulombic
efficiency of around 100% after 1300 cycles at 0.4 Ag " (Fig. 5h).
The precise control of nano- and microstructures can also be
achieved by template methods.'” For example, the manganese
dioxide precursor was wrapped on the surface of a CNF matrix
using a hydrothermal method and then calcining to obtain
tunnel-structured a-Ky 10MnO, nanotubes.'*® It is worth noting
that the CNF as the template will be consumed during the
calcining process. Owing to the stability of the structure of a-
Ko.10MnO,, the cathode possessed excellent rate and cycling
performance. Table 2 summarizes the electrochemical perfor-
mances of manganese-based materials with electrospinning
fibers.

Table 2 A summary of electrospinning manganese-based nanofiber materials for AZIBs

Electrospinning solution

Materials (precursor/polymer/solvent) Structure Long cycle performance Rate performance Ref.

PFC@MnO, PMMA-)-PAN/DMF Porous A high capacity of 184 mA h g™* at — 68
1Ag"

KMO/CNFs Zn(AC),/PVP, PAN/DMF Porous 190 mAhg 'at3Ag ! after 1000 236 mAhg 'at3Ag! 106
cycles

3-MnO,-CNFs BTDA, BZD/PVP, PAA/DMF — 1209 mAhg 'at1Ag ' after 500 1273 mAhg tat2Ag" 111
cycles

Vo PAN/DMF — 135mAhg 'at1Ag ' after 740 148mAhglat1Ag! 44

MnO,@CNFs cycles

MnS/MnO@N- Mn(Ac),, C,H;NS/PVP/ — 151 mAhg ' at0.5Ag " after 400 128.7mAhg tat2Ag™" 32

CF ethanol cycles

MnO®@N-C Mn(Ac),/PVP/ethanol — 1763 mAhg 'at0.5Ag 'after200 663mAhg 'at2Ag! 107
cycles

MnO;_,@CNF Mn(Ac),/PAN/DMF — 96mAhg 'at2Ag " after 2500 158mAhgtat1Ag! 108
cycles (90% capacity retention)

MnO,-CNFs Mn-MOF/PAN/DMF Bead-like The capacity retention is 71% after 1314mAhg lat5Ag" 36
5000 cycles at 3 Ag™"

Mn;0,@HCFs Mn;0,/PAN/DMF Core/shell  The capacity retention is 96.9% after 115.7mAhg tat2Ag™" 63
1300 cycles at 0.4 A g

0-Ko.1o0MNO, PAN/DMF — 211 mA h g~ " at 1C after 2500 cycles 113 mA h g ' at 20C 110
(78% capacity retention)

Mn;0, Mn(Ac),/PVP/H,0, ethanol — 104 mAhg 'at2Ag ' after 1000 153mAhg tat5Ag" 112
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4.1.3 Other cathode materials. In addition to vanadium-
based and manganese-based materials, many other cathode
materials were prepared by the electrospinning method. Kim
et al. fabricated a freestanding carbon fiber (CF) as a current
collector to support polyaniline (PANI) via electrospinning and
carbonization (Fig. 6a).** Especially, the CF with high conduc-
tivity (resistance about 20 Q sq ') was firstly activated by HNO;
treatment to increase the number of active sites (some groups
such as C=0, C-0, and O-C=0), which can promote the in situ
polymerization of aniline monomers on the CF surface to ach-
ieve a PANI/CF cathode. Due to the high conductivity of the 3D
CF, the PANI/CF showed a small electron resistance of about
400 Q sq ', allowing the fast transfer of electrons. Benefiting
from the high conductivity and free-standing structure of
composites, the PANI/CF can be used as an electrode directly
without binder and conductive additives to assemble batteries
in arbitrary geometries (Fig. 6b). As displayed in Fig. 6c, the
battery with the PANI/CF electrode delivered excellent rate
performance at 600C.

Xu et al. synthesized a composite in which hybrid carbon
coated Na;V,(PO,); was interconnected with carbon nanofibers
(NVP/C/CNF) by electrospinning and sol-gel methods."* As
displayed in Fig. 6d and e, the NVP nanoparticles were
randomly wrapped tightly in CNF to form a 3D conductive
network to improve the electron conductivity and stable struc-
ture ability of the composite. Compared to NVP/C, the NVP/C/
CNF electrode exhibited a more stable cycling ability. The
battery based on NVP/C/CNF displayed a high capacity retention
of 82.5% after 100 cycles at 0.1 A g™, which is much higher than
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Fig. 6 (a) A schematic diagram showing the in situ polymerization of
aniline in an aqueous solution to synthesize a PANI/CF cathode. (b)
Optical images of ring-, H-, and cylindrical shapes of Zn-PANI
batteries. (c) Cycling ability of the cells with different PANI loading.
Adapted from ref. 34, copyright 2018, American Chemical Society. (d)
SEM and (e) TEM images of NVP/C/CNF. (f) Cycle performance of NVP/
C/CNF and NVP/C at 0.1 A g*. Adapted from ref. 109, copyright 2021,
American Chemical Society.
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that of the battery based on NVP/C (52.7%) (Fig. 6f). A
comparison of the performance of other cathode materials is
presented in Table 3.

4.2 Anodes

In aqueous electrolytes, the thermodynamic and electro-
chemical instability of the Zn metal anode dramatically
shortens the service life of AZIBs and limits their practical
applications.”*'"* Among them, thermodynamic instability is
manifested by serious corrosion reactions on the surface of Zn
during cycling, which consumes the active Zn and decreases the
coulombic efficiency of the Zn anode. The electrochemical
instability is presented by uncontrollable dendrite growth,
where the formed Zn dendrites will penetrate the separator,
ultimately leading to the failure of the cell."*® As a result, various
approaches have been proposed to address these above issues,
including (1) optimizing the composition and concentration of
electrolytes to stabilize the Zn anode;"'”"'® (2) protecting the Zn
anode surface from direct contact with the electrolyte by form-
ing an interfacial layer and reducing the occurrence of corrosion
side reactions;"'***° and (3) constructing a 3D substrate that can
help reduce local current densities and promote the uniform
distribution of Zn**, which is advantageous for the homoge-
neous deposition of Zn and inhibits the growth of
dendrites.”®'** Among them, interfacial layer modification and
3D substrate construction are effective and direct strategies to
protect the Zn anode. Carbon and polymer fibers fabricated by
the electrospinning method with high flexibility adjustable
structures are considered to be an ideal material for use as the
protective layer and substrate for the Zn anode. Therefore, we
will summarize and discuss the application of electrospinning
fibers for protective layers and substrates of the Zn anode.
4.2.1 Pure carbon fibers. The unique advantages of carbon
materials as a substrate or protective layer for the Zn anode can
be summarized in the following aspects: (1) the carbon mate-
rials with large SSA and porous structure can lower the local
current density and accommodate the volume variation of the
Zn anode during cycling. (2) A carbon substrate-based anode
with high flexibility and processibility can be used to assemble
flexible batteries. (3) A carbon protecting layer can provide
abundant ion channels to promote the transfer of Zn** and
inhibit the formation of Zn dendrites. As a typical carbon
material, carbon fibers exhibit high axial strength, low density,
good expansion, anisotropy, and excellent corrosion resis-
tance."””' In particular, the diameter and porosity of carbon
fibers can be controlled by the electrospinning method, which
has more practical applications in anodes."* For example,
carbon nanofiber frameworks were prepared by electrospinning

Table 3 A summary of electrospinning nanofibers for other cathode materials of AZIBs

Electrospinning
Materials solution (precursor/polymer/solvent)  Structure  Long cycle performance Rate performance Ref.
PANI/CF PAN/DMF — — The capacity fade was about 20% 39
NVP/C/CNF ~ — — The capacity retention is 82.5% 65.0mAhg 'at1.0Ag™" 113

after 100 cycles at 0.1 A g™ "

© 2023 The Author(s). Published by the Royal Society of Chemistry
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and calcination treatments, where the diameter (about 200 nm)
and porosity of the nanofibers could be adjusted by electro-
spinning parameters.”® Interestingly, the plasma treatment
improved the surface hydrophilicity of the carbon fibers, which
was conducive to promoting the uniform deposition of Zn**,
Thus, benefiting from the coordination of the 3D framework,
conductivity, and hydrophilicity of the carbon fibers, Zn was
homogeneously deposited on the carbon fibers without severe
aggregation at a current density of 0.5 mA cm™* with an areal
capacity of 5 mA h ecm™? (Fig. 7a). Most importantly, at a 40%
depth of discharge (DOD) (an areal capacity of 2 mA h cm ™ ?),
the Zn@CNF||Zn@CNF symmetric cell was stably cycled over
193 h at a current density of 2 mA cm™? (Fig. 7b). As demon-
strated in Fig. 7c, compared with Zn@Ti//V,0s, the battery of
Zn®@CNF//V,0;5 displayed a better cycling ability.

In their study, Baek et al. produced a ZnCNF anode through
the electro-deposition of Zn on the surface of electrospun
carbon nanofibers.” The 3D porous network of carbon with
large SSA (53.04 m® g~ ') and high conductivity (830 S m™") can
decrease the local current density during the cycling process
and provide more nucleation sites, thus reducing the nucle-
ation overpotential of Zn in the initial stage. Meanwhile, the
graphitic carbon with a low lattice mismatch interfacial layer to
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Fig. 7 (a) SEM image of CNFs after being electrodeposited with an
amount of Zn at a current density of 0.5 mA cm™2 with a capacity of
5.0 mA h cm™2. (b) Cycling performance of symmetric cells with
different electrodes at 2 mA cm™2. (c) Cycling ability of full cells at the
current density of 0.5 A g~1. Adapted from ref. 45, copyright 2022,
American Chemical Society. (d) The deposition behaviors of Zn?* on
the different substrates. (e) HRTEM pattern of CNF. (f) Long cycling
performance of bare Zn and ZnCNF symmetric cells. Adapted from ref.
124, copyright 2022, John Wiley & Sons Ltd.
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the Zn (002) plane can promote the preferred orientation of Zn
to the (002) plane. Consequently, compared with bare Zn, the
ZnCNF showed a smooth and compact anode surface after
cycles (Fig. 7d and e). As shown in Fig. 7f, the symmetric cell
demonstrated a stabler plating/stripping behavior with a small
voltage hysteresis of 23.9 mV after 400 cycles at the current
density of 0.1 mA cm™ > with an areal capacity of 0.1 mA h em 2.

4.2.2 Carbon fibers with zincophilic materials. Although
the pure carbon fibers with large SSA can contribute to the
homogeneous distribution of the electric field and confine the
Zn in 3D pores to avoid its accumulation during the stripping/
plating processes, the hydrophobic and zincophobic carbon
matrixes lead to a high energy barrier of Zn nucleation, which is
unfavorable for the uniform growth of Zn."*® The nucleation
behavior of Zn is greatly affected by the surface properties of the
substrate. Herein, zincophilic materials (such as functional
groups and metal nanoparticles) are introduced on the surface
of carbon matrixes to reduce nucleation polarization, achieving
a highly reversible Zn cycling process and inhibiting the
formation of Zn dendrites.

The functional groups including N,"*>*** C=0," F,"*® and -
NH, (ref. 129) with high electronegativity serve as zincophilic
sites to capture the positively charged Zn**, guiding the
homogeneous nucleation and plating of Zn. Chen's group
fabricated a 3D N-doped carbon nanofiber film@Zn (3DN-
C@Zn) anode to assemble a 3DN-C@Zn//AIVO-DMF battery.
The N doping can improve the hydrophilicity of carbon fibers,
decreasing the diffusion energy barrier of Zn>".** Therefore, the
3DN-C@Zn//AIVO-DMF battery was stably cycled over 200 cycles
at 1 A g~ " without obvious capacity decay, which is better than
that of bare Zn which suffered a short circuit after three cycles at
the same current density. Besides, Zhang's group reported
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Fig. 8 (a) A comparison of the binding energy between Zn atoms and
different adsorption sites. The morphology (b), charge/discharge
curves (d), and Zn nucleation overpotential (c) at 5 mA cm™2 with
a capacity of 1 mA h cm™2. Adapted from ref. 33, copyright 2021,
Elsevier B.V. (e) The SEM image and (f) Zn plating and nucleation
diagrams on Sn-PCF. Adapted from ref. 134, copyright 2022, Elsevier
B.V.
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a novel N,O co-doped carbon nanofiber interlayer of a Zn anode
via the electrospinning method combined with carbonization
treatment.*® At high temperatures, the PAN fibrous membrane
transformed into a freestanding carbon fiber interlayer doped
with abundant O and N atoms. As the result of theoretical
calculation, compared with other sites, the C=0/Npq (—1.11 eV)
and C=O/Np, dual doping sites (—1.64 eV) showed higher
binding energy with the Zn atom, indicating a higher ability to
absorb Zn** (Fig. 8a). Therefore, owing to the porous structure
of carbon fibers and high Zn affinity of N and O heteroatoms,
a compact and flat Zn deposition layer on the carbon fiber
interlayer can be observed after cycling for 400 h at 5 mA cm >
(Fig. 8b). As exhibited in Fig. 8c and d, at the current density of 5
mA cm > and areal capacity of 1 mA h cm™?, the modified
symmetric cell displayed a lower nucleation potential of about
59.5 mV, and a stabler cycling ability (over 1200 h).

In addition, the introduction of zincophilic metal nano-
particles such as Ag,"** Sn,”* Co,"** and In"** on the substrate
can also enhance the zincophilicity of the carbon nanofiber
matrix. These zincophilic metal nanoparticles can be coupled
with the carbon fibers to stabilize the Zn anode by lowering the
nucleation potential of Zn and uniformizing the current
density. Yang et al. prepared an Sn modified porous carbon
fiber (Sn-PCF) framework with a hollow structure to uniformize
the deposition of Zn** (Fig. 8e)."** At a high current density of 10
mA cm ? with an areal capacity of 5 mA h cm 2, the Sn-
PCF@Zn||Sn-PCF@Zn symmetric cell exhibited a small voltage
hysteresis of 47 mV and a long cycle life (over 500 h), which was
almost 10 times that of PCF@Zn. In addition, at a current
density of 10 A g™, Sn-PCF@Zn//Na,V¢O16-1.63H,0 demon-
strated a high capacity retention of 73.5% after 2500 cycles. The
reason for the high stable cycle performance of Sn-PCF can be
described as the metal Sn possessing a high adsorption ability,
which is favorable for regulating the nucleation and deposition
of Zn. Besides, the metal Sn can increase the hydrogen evolu-
tion energy barrier of the electrode, inhibiting the occurrence of
hydrogen evolution reactions. Therefore, owing to the syner-
getic effect of multifunctional Sn metal and 3D porous carbon,
the Zn can be uniformly deposited on the surface of the Sn-PCF
(Fig. 8f), and the Sn-PCF@Zn anode had an excellent cycling
ability during the test.

Moreover, introducing Cu nanoparticles on the surface of
carbon not only improves the conductivity of carbon fibers but
also promotes the deposition of Zn. Yang et al. reported Cu
nanoparticle modified carbon fibers (Cu@CNFs) as the protec-
tive layer to stabilize the anode.*®* Benefiting from the large SSA
of carbon fibers and the zincophilicity of Cu nanoparticles, the
Cu@CNFs-Zn exhibited low polarization and high deposition/
dissolution efficiency in cycling.

In addition to doping metal nanoparticles on carbon fibers
to homogenize Zn>" deposition, many researchers have added
metal oxides to electrode materials to achieve stable cycling of
the Zn anode. For instance, defective ZnO, nanoparticles also
demonstrated good affinity for Zn, which can be used to
enhance the zincophilicity of electrospun carbon fibers."** Xue
et al. fabricated a 3D porous fiber with TiO, and SiO, uniformly
distributed in the interior of hollow HSTF.** Directed by the

© 2023 The Author(s). Published by the Royal Society of Chemistry

View Article Online

Chemical Science

~———Zn@HSTF ——Bare Zn
%00
8 0.

100.1 100.2 100.3 100.4 100.5

] 1mahcm? 20 mA cm?

"o 25 50 75 100
Time ()

. CuZo-NP-CFs
I Z0NP-CMFs
20 NCNFs

)

Binding Energy (eV)
-] F-) & &

Nucleation Overpotential (mV)

(f) 100 Zn-N-CMFs-Zn
2mAh cm? — Zn-N/P-CMFs-Zn
- Cu/Zn-N/P-CMFs-Zn
zZ 0
£
o
oo = = =
-100 Esu = e / Esc 10 A0 Esu
° = = = AA . .A M r < 1 A A
g AT s U U UUY peruuuy
-200{ S-s0 e o ML S50
100 102 104 106 108 110 300 302 304 306 308 310 600 602 604 606 608 610
0 100 200 300 400 500 600
Time (h)
Fig. 9 (a) SEM images showing the top view and cross-sections of the

HSTF host after plating with various deposition capacities. (b) Voltage
profiles of symmetrical cells at current densities of 20 mA cm™2 and
1 mA h cm~2. Adapted from ref. 35, copyright 2021, Wiley-VCH. (c) A
comparison of the binding energy between Zn atoms and different
adsorption sites. (d) Nucleation overpotential of Zn on different
substrates at current densities of 2, 3, and 5 mA cm™2. (e) FESEM image
of the Cu/Zn-N/P-CMF framework after Zn plating with capacities of
2 mA h cm™2. (f) Cycling performance at 2 mA cm™2and 2 mA h cm™2
for symmetric cells using different composite Zn electrodes. Adapted
from ref. 42, copyright 2023, American Chemical Society.

uniform TiO,, the Zn preferred to deposit at the zincophilic
TiO, seeds inside the fibers and was further accommodated in
the porous carbon fiber matrixes without the growth of Zn
dendrites. As shown in Fig. 9a, with the increase in plating
capacity, the Zn tended to form a uniform and dense deposition
layer in the porous pores rather than the surface of carbon
fibers. Besides, the inert material of SiO, can significantly
reduce the desolvation active energy during cycling and improve
the deposition efficiency of Zn. Consequently, at a high current
of 20 mA cm™?, the Zn@HSTF anode demonstrated a highly
stable plating/stripping behavior over 2000 cycles (Fig. 9b).
Furthermore, the Zn@HSTF//MnO, full battery delivered
impressive cyclability with 85% capacity retention after 1000
cyclesat1 A g™

3D carbon fibers with functional groups and metal-based
nanoparticles could combine the synergistic effects of two zin-
cophilic materials to homogenize the deposition of Zn**. Yu
et al. fabricated a 3D conductive fiber network (Sn@NHCF)
consisting of N-doped hollow carbon and Sn nanoparticles.*®
The Sn nanoparticles and doped N element possess high zin-
cophilicity and can reduce the nucleation barrier in cycling.
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Therefore, even after 100 cycles, the Shn@NHCF-Zn electrode
exhibited a high coulombic efficiency of 99.7% at a current
density of 5 mA cm™> with 5 mA h em ™. Typically, Zeng et al.
prepared N,P-codoped carbon macroporous fibers embedded
with atomically dispersed Cu and Zn atoms (Cu/Zn-N/P-CMFs)
as the host for the deposition of Zn.** It is worth noting that
the introduction of N and P atoms not only enhanced the
hydrophilicity of carbon fibers but also facilitated the disper-
sion of Cu and Zn atoms. Besides, they produced Cu-p/Zn-N-
CMFs by substituting tannic acid for phytic acid, highlighting
the crucial function of P. The results showed that in the absence
of PA, Cu aggregated from nanoparticles, which will decrease
the reversibility of Zn plating/stripping. The results of theoret-
ical calculation further revealed the zincophilicity of Cu, Zn, N,
and P atoms, which can decrease the nucleation overpotential
of Zn and favor the oriented deposition of the Zn(002) plane to
achieve a dendrite-free anode (Fig. 9¢ and d). As displayed in
Fig. 9e, at a plating capacity of 2 mA h cm™?, the Zn was
uniformly deposited on the surface of the substrate with
parallel nanoflakes. As a result, the Cu/Zn-N/P-CMFs-Zn||Cu/Zn-
N/P-CMFs-Zn cell displayed a small voltage hysteresis (44.9 mV)
and a long cycle life (630 h) at a current density of 2 mA cm™>
with 2 mA h em ™2 (Fig. 9f). In contrast, the battery based on the
Zn-N-CMFs-Zn electrode suffered a short-circuit after 110 h due
to the serious Zn dendrite growth. Moreover, the Cu/Zn-N/P-
CMFs-Zn//MnO, exhibited ultralong life up to 2500 cycles with
a capacity retention of 88.8% at 1 A g .

4.2.3 Polymer fibers. Although the excellent conductivity of
carbon fibers can reduce charge accumulation and facilitate
electric field distribution, the metal Zn tends to deposit inside
the layer, easily resulting in a non-uniform plating behavior.**®
In addition to carbon fibers, the electrospun polymer fibers also
play an essential role in Zn anode protection. Compared with
carbon, the polymer nanofiber protective layer can be formed in
situ by the electrospinning method which avoids the utilization
of the binder."®” More importantly, the thickness of the polymer
fiber layer can be controlled by modulating the electrospinning
time. Moreover, the polymer layer has a high flexibility and
porous structure, and most of the polymer layer is ionically
conductive but electronically insulating, which is beneficial for
transporting Zn>" across the interface layer and the uniform
deposition of Zn**.*®' In fact, the polymer possesses
numerous polar groups that serve as adsorption sites for Zn>*
transfer along the polymer chain to the reaction interface.**
Additionally, these groups facilitate the homogeneous distri-
bution of Zn>" at the molecular scale by enabling fast ion
transport rates. Liu et al. reported an artificial interface (TPZA)
with high ionic conductivity (19.8 mS cm ") by permeating Zn-
alginate (ZA) into porous thermoplastic polyurethane (TPU)
fibers (Fig. 10a).** As shown in Fig. 10b and ¢, owing to the
protection of TPZA, the anode sustained the pristine
morphology without the formation of by-products. For
comparison, after 30 days, the Zn anode which was immersed in
the electrolyte was randomly covered by the oriented hexagonal
Zn,SO4(OH)-3H,0. In addition to the property of anti-
corrosion, the Zn** can transfer along the polymer chains of
Zn-Alg, improving the transfer kinetics of Zn**. Therefore, the
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Fig. 10 (a) A description of the fabrication process of Zn@TPZA. SEM
images of (b) bare Zn and (c) Zn@TPZA after immersion in 2 M ZnSOy4
electrolyte for 30 days. (d) Cycling performance of bare Zn and
Zn@TPZA anodes at 5 mA cm™2/5 mA h cm™~2. Adapted from ref. 133,
copyright 2022, Wiley-VCH. (e) Schematic illustration of Zn deposition
on a PBI nanofiber framework modified Cu electrode. (f) SEM image of
Zn@PBI-Cu after 100 cycles at 10 mA cm™2. (g) Long-term cycling
performance of the battery at 1 A g~*. Adapted from ref. 42, copyright
2020, Royal Society of Chemistry.

Zn@TPZA//Zn@TPZA can be stably cycled over 1200 h at
a current density of 5 mA cm ™2 with a capacity of 5 mA h cm ™2
(Fig. 10d).

A polybenzimidazole (PBI) nanofiber with abundant N-
containing functional groups can promote the uniform depo-
sition of Zn. Jian et al. constructed a PBI framework on the
surface of Cu foil by an electrospinning method to serve as the
substrate for Zn deposition, promoting uniform nucleation of
Zn and achieving a dendrite-free Zn anode.” The PBI nanofiber
host with polar amine groups and porous structure can promote
the permeation of electrolytes in the electrode. As illustrated in
Fig. 10e, during the plating of Zn, the amine groups can act as
nucleation seeds to guide the Zn to evenly deposit on the pores
of the PBI nanofiber substrate to inhibit the formation of Zn
dendrites. Consequently, at a current density of 10 mA cm™?,
the Zn@PBI-Cu anode showed a compact surface without the
vertical growth of zinc dendrites after 100 cycles (Fig. 10f).
Besides, at a current density of 1 A g™, the Zn@PBI-Cu//MnO,
displayed high capacity retention (close to 100%) and a high
coulombic efficiency of about 100% after 100 cycles (Fig. 10g).
Although this polymer fiber shows outstanding ability to
suppress the growth of Zn dendrites, these nonconductive
layers exhibit a huge impedance of interfaces which is not
conducive to the rate capability of AZIBs.*** The reported elec-
trospun fibers in the anode and their corresponding electro-
chemical performance are summarized in Table 4.
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4.3 Separators

High-performance AZIBs depend on the synergy of all compo-
nents. The separator acts as a carrier for the electrolyte,
controlling the transport of ions, which determines the
performance of the battery. Glass fiber separators are widely
applied in AZIBs due to their high wettability, high ionic
conductivity (about 17.3 mS cm ™" after absorbing electrolyte),
and abundant porous structure. However, the metal Zn deposit
in these pores of the glass fiber separator cannot be entirely
converted to Zn*"* in the stripping process, ultimately resulting
in the formation of “dead Zn”.”” Moreover, the glass fiber
separator that absorbs excess electrolytes increases the total
mass of the battery resulting in a low energy density.*® Although
filter paper and non-woven fabric separators possess excellent
mechanical properties and high porosity, their further appli-
cation is prevented by the poor transport regulation ability.**”
An ideal separator for AZIBs should not only have excellent ionic
conductivity after taking in the electrolyte but should also
regulate the transport of Zn>" during the cycling process and
prevent the growth of Zn dendrites. Compared to conventional
separators, electrospun polymer fiber separators have attracted
extensive attention because of their thermal stability, mechan-
ical merit, electronic insulation, high mechanical flexibility,
and controllable structure.™® In addition, the functional groups
in the polymer fiber can promote the formation of coordination
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Fig. 11 (a) Diagrammatic sketch showing the fabrication procedure of
the AZIB. (b) SEM image of the cross-sectional view of the individual
AZIB. (c) Rate performance of the AZIB cell at variational bending
angles of 30, 60, 90, and 180°. Adapted from ref. 151, copyright 2021,
American Chemical Society. (d) Schematic illustration of the fabrica-
tion process of the PVDF@PDA separator. SEM images of the Ti foils
after Zn deposition at 2 mA cm™ and 5 mA h cm™2 in Zn/Ti asym-
metric cells with (e) a GF separator and (f) PVDF@PDA separator. (g)
Long cycling performance of batteries with different separators at
5 A gt Adapted from ref. 41, copyright 2022, The Authors.
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bonds with Zn**, homogenizing the deposition of Zn** and
suppressing the formation of Zn dendrites.**

4.3.1 Pure polymer separators. Owing to its excellent elec-
trochemical stability, PAN has often been used to fabricate
electrospun fiber separators.'*>'*® To stabilize the Zn anode,
Liang's team synthesized a 3D long-range ordered PAN sepa-
rator.* Compared to the glass fiber separator (640.8%), the
lower electrolyte uptake value (430.3%) of PAN film is advan-
tageous for improving the energy density of the battery.
Furthermore, the abundant —CN functional groups in the fibers
not only promoted the electric field uniform distribution but
also combined with Zn>" to guide the uniform deposition of
Zn*>" and effectively inhibit the growth of Zn dendrites.
Benefiting from the mechanical flexibility, the PAN film was
used as the separator and the current collector to prepare novel
“paper-like” AZIBs with an all-in-one structure.”* As displayed
in Fig. 11a and b, the Zn and MnO, nanosheets were closely
deposited on both sides of PAN which was modified by carbon
nanotubes to form a cell with a thickness of about 97 pm,
accelerating the transfer of electrons and achieving rapid
kinetics. Therefore, the full cell exhibited a high capacity
retention of about 98.7% after 500 cycles at 1 mA cm 2. In
addition, at a bending angle of 180°, the battery also showed
a high discharge capacity after being cycled at various current
densities, indicating an excellent rate performance and
outstanding flexibility (Fig. 11c).

4.3.2 Hybrid polymer separators. Although a pure polymer
film with high porosity and large SSA can be prepared by the
electrospinning method, the poor mechanical strength has
limited its application in flexible devices. Compared with pure
polymer separators, hybrid polymer separators are prepared by
mixing different types of substances by the electrospinning
method (or pure polymer separators are modified by functional
materials) which can promote the uniform deposition of Zn>*
and improve the mechanical strength of separators due to the
multi-functional role and synergistic effect of the newly formed
hybrids. For example, Saisangtham et al used highly flexible
polyurethane (PU) as the raw material to prepare PAN/bio-based
PU separators by the electrospinning method."* Besides, they
investigated the effects of electrospinning solution concentration
and parameters on the separators. The results revealed that the
PAN separator modified by PU had a tensile strength of 44.16
MPa, which is much higher than that of the pure PAN membrane.

Moreover, some functional materials including graphene
oxide (GO),* sulfonated polysulfone (SPSF),*** and MXene*** have
been added to regulate the flux of Zn**. Among them is the strong
interaction between the functional groups in polydopamine
(PDA) and Zn**, which promotes the transport of Zn** on the
surface between the separator and electrolyte. Zhou's group
developed a PDA functionalized PVDF (PVDF@PDA) to uni-
formize the homogeneous distribution of Zn** and suppress the
formation of Zn dendrites (Fig. 11d).** These abundant polar
functional groups (-OH and -NH-) in the PDA improved the
hydrophilicity of PVDF@PDA as well as favoring the formation of
Zn-O and Zn-N coordination bonds with Zn>*. According to
density functional theory calculations, the Zn-O and Zn-N can
function as nucleation seeds to decrease the nucleation barrier of

© 2023 The Author(s). Published by the Royal Society of Chemistry
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Zn and guide the ordered deposition of Zn>*. Herein, compared
with the glass fiber separator (Fig. 11e), the surface of Ti foil with
the functional separator was even without agglomeration and
cracks at 2 mA em > and 5 mA h em™ (Fig. 11f). Besides, the
PVDF@PDA hybrid separator can effectively prevent the shuttling
of V-species by formation of the V-O coordination bond during
cycling. Therefore, as demonstrated in Fig. 11g, the Zn//
NH,V,0,, full cell with the PVDF@PDA separator exhibited
a high capacity retention of 92.3% after 1000 cycles at 5 A g~ .

Poly(m-phenylenedicarboxamide) (PMIA) with abundant
amide groups, electrolyte affinity, and outstanding mechanical
strength has been used as the separator for Li metal batteries.**®
Inspired by this, Hu et al. fabricated a hybrid SPSF@PMIA (SP)
nanofiber separator to stabilize the Zn anode." The abundant
hydrophilic -SO; ™~ in SPSF and the N atom in PMIA with elec-
tronegativity will repel anions, which limit the migration of
anions and enable the fast transfer of Zn®'. Therefore,
compared with the batteries with PMIA (glass fiber or SPSF), the
Zn/SP/Zn showed a higher Zn** transfer number (¢,,>") of 0.74,
which benefits the fast ion diffusion and fast charge transfer
processes. Besides, owing to the strong ability of -CO-NH- in
PMIA to absorb Zn>* and the zincophilicity of -SO; ™ in SPSF, the
battery with the SP separator demonstrated a stable cycling
ability and rate performance. Table 5 summarizes the polymer
nanofiber separator performance.

5 Summary and perspectives

In conclusion, the reasons for the outstanding properties of the
electrospun nanofibers are as follows. First, electrospun carbon
fibers with large SSA and high conductivity can improve the elec-
tronic conductivity of materials and promote the diffusion of
electrolyte in electrodes, which improve the rate performance and
cycling ability of the battery. Second, these materials play
a momentous role in maintaining the structural stability of elec-
trodes. The porous (or hollow) structure can accommodate the Zn
deposition and prevent the volume variation of the anode. In
addition, the dissolution of active materials can be suppressed by
forming a physical protective layer. Third, electrospun fibers with
high porosity and flexibility can be used as binder-free and bend-
able electrodes, promising for bendable and wearable devices.

In this review, we summarized the recent progress of elec-
trospinning nanofibers in AZIBs, focusing on vanadium-based
materials, manganese-based materials, other cathode mate-
rials, carbon fiber-based and polymer fiber substrates, Zn anode
protective layer, and polymer separators. In addition, we briefly
introduced the principle and processing of the electrospinning
technique and structural design of the electrospun fibers.
Despite electrospinning fibers having made some research
progress in AZIBs, several challenges still remain to be
addressed. Therefore, to broaden the application of electrospun
nanofibers, the following suggestions should be considered.

5.1 Precise preparation of functional fibers

The microstructure and properties of the electrospun fibers are
related to the precursor solution, electrospinning parameters,
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and subsequent electrospinning process. However, very few
studies have investigated the relationship between various
parameters and the performance of fibers in AZIBs. Besides,
various zincophilic units (such as functional groups, metal
nanoparticles, metal oxides, and heteroatoms) have been re-
ported to improve the zincophilicity and hydrophilicity of fibers
to facilitate the homogeneous deposition of Zn. Sometimes,
excessive zincophilic materials tend to accumulate together,
which not only does not homogenize the Zn deposition but also
changes the Zn deposition behavior, resulting in a severe
growth of Zn dendrites. Thus, the preparation parameters of
electrospun fibers should be systematically investigated and
optimized.

5.2 In-depth investigation of the mechanisms

The working mechanism of the fiber material cannot be
explained simply as the uniform distribution of the electric field
on the surface of the Zn anode, the regulation of the flux of zinc
ions, and the zincophilicity of the modified material. Specific
experimental evidence should be provided. Moreover, some
advanced characterization techniques including in situ optical
microscopy (OM), in situ electron microscopy (EM) and in situ
neutron depth profiling (NDP) and imaging can be used to
elucidate the Zn growth mechanism. Analysis of the Zn metal is
crucial to understanding the failure mechanism of AZIBs.
Considering that the dynamics of electrochemical processes are
difficult to observe during cycling, theoretical calculation can be
used to further understand the mass transfer process of Zn>".

5.3 Establishing the test standards

Although electrospun nanofiber electrodes show an impres-
sive long cycle life at a small current density, it is difficult to
meet the requirements of commercial applications. More-
over, different standards were used to test the batteries in
previous studies, making it difficult to objectively evaluate
various modification strategies. Therefore, it is important to
establish unified test standards, which will facilitate the
application of AZIBs. Besides, the electrochemical perfor-
mance of the battery over a wide range of temperatures
should be provided to promote the practical application of
AZIBs in all climates.

5.4 Promoting large-scale commercial application of
electrospinning technology

Electrospinning technology provides new insights into
improving the performance of batteries. However, it is difficult
to apply in industrial production on a large scale due to the use
of toxic and corrosive solvents, expensive precursors, and lower
production efficiency. Therefore, improving production effi-
ciency, developing low-toxicity and environmentally friendly
solvents, and exploring new types of and inexpensive polymer

precursors are the main development directions for the future.
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