C–H radiocyanation of bioactive molecules via sequential iodination/copper-mediated cross-coupling†

Mami Horikawa, Stephen T. Joy, Liam S. Sharninghausen, Xia Shao, Anna K. Mapp, Peter J. H. Scott, and Melanie S. Sanford

This report describes a net C–H radiocyanation reaction for the transformation of electron rich (hetero)aromatic substrates into 11CN-labeled products. Electrophilic C(sp2)–H iodination of the (hetero)arene with N-iodosuccinimide is followed by Cu-mediated radiocyanation with K11CN. This sequence is applied to a variety of substrates, including the nucleobases uracil and cytosine, the amino acids tyrosine and tryptophan, and the peptide LYRAGWRAFS, which undergoes selective C–H radiocyanation at the tryptophan (W) residue.

The incorporation of 11C into organic molecules is a valuable approach for generating positron emission tomography (PET) radiotracers.1 [11C]Cyanide is a particularly valuable 11C synthon, as it is readily available from small medical cyclotrons and is an excellent nucleophile for both organic and transition metal-mediated reactions.2,3 We recently reported a Cu-mediated method for the radiocyanation of aryl halides with [11C]cyanide.4 Using CuI in combination with 1,2-dimethyl-ethylene diamine (dmeda) as a ligand5 enables the rapid reaction of aryl halides with [11C]CN− to afford [11CN]aryl nitrile products. This transformation shows extremely high functional group tolerance and thus offers an attractive approach for the radiolabeling of biological molecules such as unprotected peptides. However, a key limitation of the method is that aryl halides are not native functional groups in biology. As such, de novo solid-phase peptide synthesis (SPPS) needs to be employed to access each of the aryl halide-containing precursors required for radiocyanation (Scheme 1A). For instance, the [11C]CN radiolabeling of opioid receptor agonist nociceptin necessitated the synthesis of this 17-amino acid peptide with an iodophenylalanine inserted in place of the native leucine at residue 14. This approach is particularly undesirable in cases where (1) the native peptide or protein is readily available (such that a more direct approach for [14C]cyanation would greatly expedite radiolabeling), (2) the requisite iodo-amino acid building block for SPPS is not readily available (or is unstable), or (3) local SPPS equipment and/or expertise is unavailable (which is the case for most PET radiochemistry facilities).

A complementary approach would involve directly converting a native peptide (or other bioactive molecule) into a radiocyanated product in a single pot (net C–H radiocyanation; Scheme 1B). We reasoned that this could be accomplished by combining electrophilic C(sp2)–H iodination of a (hetero)arene with subsequent Cu-mediated radiocyanation of the in situ-generated aryl iodide. In this sequence, radiocyanation should occur selectively at the most electron rich C(sp2)–H site of the molecule. Notably, there is literature precedent for the

Scheme 1 (A) Our prior work: de novo solid phase peptide synthesis (SPPS) of iodine-containing peptides for 11CN radiolabeling. (B) This work: net C–H radiocyanation of native peptides via electrophilic iodination/Cu-mediated radiocyanation sequence, which opens the door for ultimately labeling full proteins.
electrophilic iodination of amino acids, peptides, and proteins, supporting the feasibility of the first step of this sequence on such scaffolds. In this Edge Article, we demonstrate the viability of this approach for the net C–H radiocyanation of diverse arene and heteroarene substrates, including unprotected peptides. Furthermore, we demonstrate the selective radiolabeling of tryptophan moieties in the presence of other aromatic amino acids.

Our initial studies focused on establishing a one-pot electrophilic iodination/radiocyanation sequence for two substrates: 1,1′-biphenyl (1) and tyrosine (2). These were selected to represent the range of targets of interest, from hydrophobic molecules with modest nucleophilicity (exemplified by 1) to those that are hydrophilic and electron rich and contain other functional groups (exemplified by 2). Key considerations included (i) developing mild conditions for electrophilic iodination that minimize over-functionalization and other side reactions, (ii) identifying an electrophilic iodinating reagent whose by-products do not interfere with the radiocyanation step, and (iii) developing a sequence that is practical and reproducible for both substrates.

We surveyed four reagents that have been employed in the literature for the iodination of electron rich arenes and peptides: N-iodosuccinimide (NIS),7 I(2Py)$_2$BF$_4$ (IPy)$_2$, NaI/chloramine (NaI/Chlor),9 and NaI/Selectfluor® (NaI/Select).10 Initial screens were carried out at 25 °C using dichloromethane/acetone/trifluoroacetic acid as the solvent system, since this mixture effectively dissolves both 1 and 2 and is also straightforward to remove via a nitrogen purge. The yield/selectivity of C–H iodination for each substrate was determined by 1H NMR spectroscopic analysis of the crude reaction mixture (Table 1). For both 1 and 2, NIS and IPy$_2$ afforded similarly high (70–80%) yields of the mono-iodination product. In contrast, significantly lower yields (<1–35%) were obtained with NaI/Chlor and NaI/Select.

We next moved forward to the C–H iodination/radiocyanation sequence using NIS and IPy$_2$. Both substrates 1 and 2 were subjected to the iodination conditions in Table 1, and then the volatiles were removed. Cu-mediated radiocyanation was performed on this crude material without further purification, using our previously reported conditions.4 The radiochemical yield (RCY) of each reaction was determined by radio-TLC and/or radio-HPLC. As summarized in Table 2, mass balance was primarily unreacted starting material as determined by 1H NMR spectroscopy. Mass balance was primarily unreacted starting material and 4% diiodotyrosine as determined by 1H NMR spectroscopy.

![Image](https://example.com/image.png)

Table 1 Optimization of the C(sp2)–H iodination of 1 and 2a

<table>
<thead>
<tr>
<th>Entry</th>
<th>ArH</th>
<th>I$^-$</th>
<th>Yield ArI</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>NIS</td>
<td>77%</td>
</tr>
<tr>
<td>2</td>
<td>1</td>
<td>IPy$_2$</td>
<td>78%</td>
</tr>
<tr>
<td>3</td>
<td>1</td>
<td>NaI/chlor</td>
<td><1%b</td>
</tr>
<tr>
<td>4</td>
<td>1</td>
<td>NaI/Select</td>
<td>9%b</td>
</tr>
<tr>
<td>5</td>
<td>2</td>
<td>NIS</td>
<td>75%</td>
</tr>
<tr>
<td>6</td>
<td>2</td>
<td>IPy$_2$</td>
<td>70%</td>
</tr>
<tr>
<td>7</td>
<td>2</td>
<td>NaI/chlor</td>
<td>35%c</td>
</tr>
<tr>
<td>8</td>
<td>2</td>
<td>NaI/Select</td>
<td>16%c</td>
</tr>
</tbody>
</table>

a Conditions: 1 equiv. (0.05 mmol) of ArH, 1 equiv. of [I$^-$], 0.2 mL of trifluoroacetic acid (TFA), 2 mL of dichloromethane (DCM), 0.25 mL of acetone/trifluoroacetic acid (MeCN) at 25 °C for 2 h. b Mass balance was primarily unreacted starting material as determined by 1H NMR spectroscopy. c Mass balance was primarily unreacted starting material and 4% diiodotyrosine as determined by 1H NMR spectroscopy.

![Image](https://example.com/image.png)

Table 2 Optimization of the sequential radiocyanationa

<table>
<thead>
<tr>
<th>Entry</th>
<th>ArH</th>
<th>I$^-$</th>
<th>RCY ArI13CN</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>NIS</td>
<td>68 ± 14%b (n = 6)</td>
</tr>
<tr>
<td>2</td>
<td>1</td>
<td>IPy$_2$</td>
<td>40 ± 4%c (n = 3)</td>
</tr>
<tr>
<td>3</td>
<td>2</td>
<td>NIS</td>
<td>68 ± 4%c (n = 4)</td>
</tr>
<tr>
<td>4</td>
<td>2</td>
<td>IPy$_2$</td>
<td>54 ± 7%c (n = 3)</td>
</tr>
</tbody>
</table>

a Iodination conditions: 1 equiv. (0.05 mmol) of ArH, 1 equiv. of [I$^-$], 0.2 mL of trifluoroacetic acid (TFA), 2 mL of dichloromethane (DCM), 0.25 mL of acetone/trifluoroacetic acid (MeCN) at 25 °C. Radiocyanation conditions: HI^{13}CN, 0.5 equiv. of CuI, 1 equiv. of dmeda, 0.25 equiv. of K$_3$PO$_4$, 5.5:1 DMF/H$_2$O (163 µL). b 24 h. c 2 h. RCY = radiochemical yield.
Electron rich heterocycles are also viable substrates (Scheme 2B). For instance, benzothiophene, pyrazole, pyrazolylpyridine, and aminopyridine derivatives react to form 10^{11}CN in radiochemical yields ranging from 45–79%. The nucleobases uracil and cytosine afford the 11CN-labeled analogues 14^{11}CN and 15^{11}CN in 69% and 84% radiochemical yield, respectively. Comparable radiochemical yield (75%) is obtained for the glycosylated base in cytidine (to form 16^{11}CN). Overall, the examples in Scheme 2 highlight the compatibility of this method with diverse functional groups, including 1° and 2° alcohols, carboxylic acids, amines, amides, and sulfonamides.

Finally, we evaluated three aromatic amino acids, phenylalanine, tyrosine (Tyr, Y), and tryptophan (Trp, W), along with peptides containing one or more of these residues. We sought to establish (1) which individual aromatic amino acids participate in this net C–H radiocyanation sequence and (2) the selectivity of the reaction when multiple aromatic amino acids are present. Consistent with literature reports, phenylalanine proved inert towards electrophilic iodination/radiocyanation in all contexts examined (both as a free, unprotected amino acid and in various peptides).

In contrast, tyrosine underwent high yielding iodination/radiocyanation as the unprotected amino acid (yielding 2^{11}CN in 68±14% RCY, n = 4), as an acyl-methyl protected derivative (to form 17^{11}CN in 44±5 RCY, n = 4), and in the short peptide Ac-GYG-NH$_2$ affording 18^{11}CN in 67±7% RCY, n = 3; Scheme 3A). These results are consistent with literature reports showing selective electrophilic iodination of tyrosine ortho-to the OH substituent as well as the compatibility of phenols with Cu-mediated radiocyanation of aryl halides. This radiosynthesis of 18^{11}CN from tyrosine was automated in a commercial synthesis module, and the product was purified by a preparatory HPLC, affording a 23±9% isolated RCY, 1.2±0.1 Ci μmol$^{-1}$ molar activity, n = 2; see ESI Section 6.3†.

We anticipated challenges with both steps in the net C–H radiocyanation of tryptophan. First, the reaction of tryptophan derivatives with electrophilic iodinating reagents has been reported to form mixtures of products due to the low stability of 2-iodotryptophan as well as competing oxidation and cyclization pathways. Second, in our previous studies of Cu-mediated radiocyanation, 2-haloindoles were among the poorest performing substrates. These challenges are reflected in our initial results using unprotected tryptophan and the protected derivative Ac-Trp-NH$_2$ as substrates. Under the standard electrophilic iodination/radiocyanation conditions, both afforded very low yields of 11CN-labeled products (none detected and 2%, respectively). We hypothesized that judicious selection of protecting groups (specifically eliminating nucleophilic NH$_2$...
groups proximal to the 2-position) might enable the target transformation. Indeed, using Ac-Trp-OMe as a substrate, the radiolabeled product $^{20-11}$CN was formed selectively in $10 \pm 3\%$ RCY ($n = 5$). The selectivity of C–H radiocyanation for the 2-position was confirmed by comparison with a 12CN-containing authentic sample. While the yield of this transformation is modest, it is sufficient for most radiochemistry applications.

Our final objective was to achieve selective 11CN-radiolabeling of peptides containing multiple aromatic amino acids. To test the selectivity of this C–H radiocyanation reaction, a competition experiment was conducted between Ac-Trp-OMe and Ac-Tyr-OMe. As shown in Scheme 3B, treatment of a 1:1 mixture of these protected amino acids with 1 equiv. of NIS followed by the standard radiocyanation sequence, a competition experiment was conducted between Ac-Trp-OMe and Ac-Tyr-OMe. As shown in Scheme 3B, treatment of a 1:1 mixture of these protected amino acids with 1 equiv. of NIS followed by the standard radiocyanation conditions resulted in selective formation of $^{20-11}$CN (in $8 \pm 1\%$ RCY, $n = 3$). $^{17-11}$CN was not detected. The observed selectivity is consistent with the higher nucleophilicity of tryptophan versus tyrosine. The modest overall RCC of $^{20-11}$CN is likely due to a combination of side reactions during the iodination step, the modest stability of iodotryptophan intermediate, and low efficiency of the radiocyanation at the 2-position of the indole.

Based on the high selectivity of this competition experiment, we pursued the net C–H radiocyanation of the peptide LYRAGWRAFS, which contains three different aromatic amino acids (Scheme 4). Subjecting the peptide to our optimal electrophilic iodination/radiocyanation conditions in an automated radiosynthesis module afforded a single detectable radiocyantated product (as determined by radio-HPLC analysis) in $17 \pm 3\%$ RCC. A series of experiments was conducted to establish the site selectivity of radiolabeling, including synthesis of an authentic sample of the 12CN-tyrosine peptide (which does not match the observed product by HPLC) and trypsin digestion of the initial C–H iodination product (which shows that the iodine is incorporated exclusively on the tryptophan fragment). Overall, our data (see ESI† p. S56–S61 (Section 7) for a complete summary) are fully consistent with selective radiocyanation of the tryptophan residue in this peptide as shown in Scheme 4. Notably, this 11CN-labelled peptide would not be accessible via the original SPPS approach in Fig. 1A,† since the required 2-iodotryptophan building block is not sufficiently stable for isolation and use in peptide synthesis.

Conclusions

In conclusion, this report demonstrates a simple two-step net C(sp2)–H radiocyanation reaction. This transformation is operationally simple, proceeds smoothly with peptides, and can be conducted in automated in a commercial radiosynthesis module (substrates $^{18-11}$CN and $^{21-11}$CN). It provides a straightforward approach to selectively introducing a 11CN moiety on tryptophan residues in a peptide containing multiple other aromatic amino acids without the need to synthesize dedicated labelling precursors. Ongoing work is focused on applying this method to the 11CN-radiolabeling of various bioactive molecules of interest to our PET imaging program, including proteins.

Data availability

Further details of experimental methods, additional analysis, and analytical data, as well as supplemental figures including NMR spectra, analytical TLC and HPLC traces, and additional screening and control experiments are included in the ESI.†

Author contributions

M. S. S., P. J. H. S. and A. K. M. conceived the idea, provided funding and directed the project. M. H., L. S. S. and S. T. J. synthesized reference standards and labeling precursors. M. H., L. S. S. and X. S. performed radiolabeling studies. M. H., M. S. S. and P. J. H. S. wrote the manuscript. All authors reviewed and approved the final version.

Conflicts of interest

The authors declare no competing financial interests.

Acknowledgements

The National Institutes of Health (R01EB021155) is gratefully acknowledged for supporting this work. We thank Dr Eric Webb and Dr Tanpreet Kaur for the preparation of 13CN solutions, Dr Allen Brooks for helpful discussions, and Dr Mónica Rivas for helping with purification of several compounds.
Notes and references

11 We hypothesized that the pyridine released from IPy2 might inhibit the radioiodination, resulting in lower yields with this oxidant. However, the addition of 2 equiv of pyridine to the radioiodination of 4-iodobiphenyl led to minimal change in yield compared to the control study (n = 3), suggesting that this is likely not an issue.

15 The reproducibility of reactions forming 20-11CN and 21-11CN was enhanced by the addition of sodium ascorbate (1 equiv.) to the mixture during the radioiodination step. However, the sodium ascorbate additive did not have a similar favorable impact with the other substrates. With 20-14CN and 21-14CN there is often a significant amount of NIS remaining following the iodination step, and we hypothesize that the role of sodium ascorbate is to quench this so that it does not oxidize the CuI mediator to the unreactive CuII state.