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eficient 3,6-diaza-9-borafluorene
scaffolds for the construction of luminescent
chelate complexes†

Jan Adamek,a Paulina H. Marek-Urban,ab Krzysztof Woźniak, b Krzysztof Durka *a

and Sergiusz Luliński*a

The synthesis and characterization of two fluorinated 3,6-diaza-9-hydroxy-9-borafluorene oxonium acids

featuring improved hydrolytic stability and the strong electron-deficient character of the diazaborafluorene

core is reported. These boracycles served as precursors of fluorescent spiro-type complexes with (O,N)-

chelating ligands which revealed specific properties such as delayed emission, white light emission in the

solid state and photocatalytic performance in singlet oxygen-mediated oxidation reactions.
Introduction

Boracyclic compounds attract a considerable interest due to
their numerous applications in organic synthesis, catalysis and
materials chemistry. An important class of these compounds
are dibenzo-fused derivatives comprising a central six-
membered boracyclic ring with incorporated another hetero-
atom such as oxa-, aza-, sila-, and thiaborins as well as dibor-
aanthracenes.1 Such compounds are usually more stable than
diarylboron derivatives with a non-annulated boron atom.
Modications within a boracycle or adjacent aromatic rings
result in varying electron-acceptor properties stemming from
the presence of the vacant 2p orbital on the boron atom.
Importantly, boracyclic precursors can be easily converted to
various chelate complexes featuring the spiro arrangement of
a tetracoordinated boron center. In most cases, aromatic
chromophore ligands (O,O-, O,N-, and N,N-) were used which
enabled ne-tuning of the photophysical properties of respec-
tive products.2

Recently, the 9-borauorene scaffold has been extensively
used for designing numerous boracycles and offers a useful
alternative to its ring-expanded analogues.3 The presence of the
ve-membered borole ring results in an increase of Lewis
acidity which is benecial for the stability of respective chelate
complexes. Further enhancement of the electron-acceptor
of Technology, Noakowskiego 3, 00-664
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character of the 9-borauorene scaffold can be achieved by
uorination of aromatic rings or replacement of one of the
benzene rings with the pyridine one.4 The obtained azabora-
uorene derivative showed dual-uorescence behaviour
promoted by the formation of a B–N four-coordinate adduct.
However, it was prone to hydrolytic cleavage of the boracyclic
ring. Herewith, we present a combined strategy involving (i)
annulation of a central borole moiety with two pyridine rings
and (ii) installation of uorine substituents as a tool for strong
enhancement of electron-acceptor properties (Scheme 1). The
designed uorinated 3,6-diaza-9-borauorenes feature strong
Lewis acidity of the boron atom and thus they were isolated in
the form of highly stable water adducts, which were further
converted to luminescent (O,N) chelate complexes.
Results and discussion

The synthesis of 3,6-diaza-4,5-diuoro-9-hydroxy-9-
borauorene oxonium complex 2 was accomplished using
2,2′-diuoro-6,6′-diiodo-3,3′-bipyridine 1 as a convenient
precursor (Scheme 2).5 Compound 1 was converted to the
Grignard reagent via a double I/Mg exchange followed by
treatment with B(OSiMe3)3 (1 equiv.)6 and careful hydrolysis
with dilute aq. HCl yielding 2. A similar protocol was applied for
Scheme 1 Molecular design of 3,6-diaza-9-borafluorenes and their
chelate complexes.
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Scheme 2 Synthesis of fluorinated 3,6-diaza-9-borafluorenes.

Fig. 1 (a) HB linear motif in the crystal structure of 5 (I-42d space
group). Thermal ellipsoids were generated at the 50% probability level.
Aromatic hydrogen atoms were omitted for clarity. (b) Packing
diagram showing the formation of a symmetric tetragonal network
based on O–H/N HB interactions.
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the synthesis of 5 starting with 2,2′,4,4′-tetrauoro-6,6′-diiodo-
3,3′-bipyridine 4. The products 2 and 5 were isolated as white
powders soluble in DMSO and MeOH but insoluble in water,
Et2O and acetone. They were characterized by multinuclear 1H,
11B, 13C and 19F NMR spectroscopy. A notable feature of 2 is
a large through-space 19F–19F coupling constant of 82 Hz esti-
mated from the simulation of the 13C NMR multiplet of the
uorine-bound carbon atom centered at 157.2 ppm, i.e., the “X”
part of the ABX spin system (Fig. S8.3, ESI†). Taking into
account the F/F distance of 2.579(2) Å, this JFF value is in
agreement with the empirical correlation equation proposed by
Ernst.7

The single-crystal X-ray diffraction analysis of 5 conrmed
that the boron atom is tetracoordinate due to the complexation
of the water molecule.8 The molecules are assembled into the
linear motifs held by very strong O–H/O hydrogen bond (HB)
interactions (dO/O = 2.400(2) Å) formed between coordinated
water (HB donor) and the B–OH group (HB acceptor) from
a neighbouring molecule (Fig. 1a). In fact, the difference-
Fourier density map indicates that the H atom is delocalized
between two oxygen atoms (Fig. S2.1, ESI†). This was further
conrmed by theoretical calculations (M062X/6-311++G(d,p))
showing that the proton can freely migrate between oxygen
atoms (Fig. S3.7, ESI†). The estimated energy of this HB is −84
kJ mol−1 (calculation details are provided in the ESI†) and the
amount of electron density at the bond critical point is r = 0.73
e$Å−3 which is comparable to the values found in very strong
charge-assisted HBs.9 The structure 5 is related to the oxonium
acid structures of boronophthalide,8a 3,4,5,6-
tetrauorophenylene-1,2-diboronic acid8c and 1-hydroxy-1H,3H-
naphtho[1,8-cd][1,2]oxaborinin-3-one,10 which also feature
comparably strong intermolecular HB interactions (dO/O =

2.424–2.486 Å, Table S2.3, ESI†) correlating with high Brønsted
acidity (pKa = 2–3). Indeed, pKa values for 2 and 5 are 2.4 and
1.4, respectively, as determined by potentiometric titration with
0.1 M aq. NaOH and pH-metric measurements of 0.02 M solu-
tions in H2O/MeOH (1 : 1). In pure water, the pKa values should
be lower by ca. 0.3–0.5 units and thus 5 is signicantly more
acidic than boronophthalide (pKa = 2.0).8a,10 However, it should
be noted that 5 is poorly soluble in water which can be ratio-
nalized by its strong aggregation as the molecular chains are
further interconnected by O–H/N interactions (dN/O =

2.833(2) Å) producing a very compact and highly symmetric HB
network (Fig. 1b). The 11B NMR spectra for 2 and 5 in DMSO-d6
conrmed the presence of a tetracoordinated boron center with
chemical shis of 7.9 and 6.0 ppm, respectively. This indicates
that the water adduct observed in the crystal structure of 5
persists in solution which was unambiguously proved by ESI
12134 | Chem. Sci., 2023, 14, 12133–12142
HRMS analysis of both 2 and 5. Finally, the phase purity of 5was
conrmed by PXRD analysis showing perfect overlap between
experimental and simulated patterns (Fig S2.6, ESI†). We were
unable to grow single crystals of 2, whilst the PXRD pattern of
a powder sample roughly resembles that of 5 albeit it shows
strongly broadened peaks. Thus, it can be supposed that 2 is
isostructural with 5 although the crystallinity of the former is
very low.

The cyclic voltammetry measurements gave the reduction
potentials of −1.71 eV (2) and −0.90 eV (5) vs. the FeCp2/FeCp2

+

pair (Fig. S5.1, Table S5.1 and ESI†), which correspond to the
LUMO energy levels of −3.39 eV (2) and −4.20 eV (5). This
conrms the strong electron-acceptor character of the dia-
zaborauorene core in 5. It should be noted that the tetra-
coordinate nature of the boron atom in 2 and 5 must result in
strong weakening of the electron-acceptor character compared
to related putative systems 2-dehydr and 5-dehydr with the
three-coordinate boron atom, i.e., lacking water molecules as
donors. The Lewis acidity of 2-dehydr and 5-dehydr was further
evaluated by DFT calculations (M062X/6-311++G(d,p) level of
theory) of enthalpies of coordination of water molecules to the
boron atom (Table 1). For comparison, 9-hydroxyborauorene
(BF-OH) and the parent (non-uorinated) 9-hydroxy-3,6-diaza-9-
© 2023 The Author(s). Published by the Royal Society of Chemistry
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Table 1 DFT-derived enthalpies of water coordination to the boron
center and zwitterion formation for BF-OH, DABF-OH, 2-dehydr and
5-dehydr

BF-OH DABF-OH 2-dehydr 5-dehydr

DHB–H2O/kJ mol−1 −1.0 −16.4 −22.8 −29.2
DHzwitterion/kJ mol−1 — −47.8 −17.6 +13.5
dB–OH2

/Å 1.754 1.704 1.688 1.674

Fig. 2 (a) Normalized emission spectra of 2 and 5 in EtOH solution
with a drop of conc. aq. HCl. (b) Frontier molecular orbitals in 2 (B3LYP/
6-311++G(d,p)).

Scheme 3 Synthesis of complexes 3a–3g and 6a–6c.
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borauorene (DABF-OH) were also studied. Overall, the results
point out that the uorination of the diazaborauorene system
systematically increases boron Lewis acidity. This is also re-
ected in the shortening of B–OH2 bond distances (Table 1). In
general, for 3,6-diaza-9-borauorenes the oxonium acid species
may equilibrate with the zwitterionic tautomer resulting from
proton transfer to the pyridine nitrogen atom. According to
calculations, the latter form dominates in the case of DABF-OH.
In contrast, the oxonium acid tautomer is slightly more stable
than the zwitterionic one for 2, however, since the DHB–H2O and
DHzwitterion enthalpies are quite similar, it is expected that both
forms equilibrate in solution. The structural lability of 2 could
disrupt its crystal packing resulting in a partial amorphization.
For 5, the proton transfer to the nitrogen atom is highly
unfavourable which is in line with the strongly reduced basicity
of pyridine nitrogen anked by two uorine substituents (see
discussion in ESI, Table S3.2†). Finally, the B–N coordination of
the pyridine unit to the boron atom could be also considered11

but DFT calculations indicate that the aggregation through B–
OH2/N HB interactions is energetically more favoured for all
studied diazaborauorenes (Table S3.4, ESI†). The TGA analyses
performed for 2 and 5 showed that both systems apparently lose
a water molecule at ca. 150–170 °C (Fig S7.1 and S7.2, ESI†). It
can be expected that this would be followed by network reor-
ganization through pyridine–boron coordination. In the case of
2, the resulting material is stable up to 350 °C, while dehydrated
5 decomposes already at 200–300 °C suggesting that its stabi-
lization through N–B coordination is not effective which is
consistent with other experimental and theoretical results.

UV-Vis spectra of 2 and 5 showed the absorption maxima at
labs = 304 nm in EtOH solution (Fig. 2a). To ensure that the
oxonium acid forms persist in solution, the measurements were
performed upon the addition of a drop of conc. aq. HCl.
According to B3LYP/6-311++G(d,p) calculations, the observed
absorption band can be assigned to the p–p* transition (2: lcal-
c
abs = 320 nm, f = 0.109; 5: lcalcabs = 328 nm, f = 0.067) occurring
between HOMO and LUMO orbitals (Fig. 2b).
© 2023 The Author(s). Published by the Royal Society of Chemistry
Diazaborauorene 2 exhibits intense sky-blue uorescence (lem
= 450 nm, uorescence quantum yield QYF = 53%) in EtOH
solution. Substitution with two additional uorine atoms in 5
enhances the uorescence intensity (QYF = 65%) and leads to
the bathochromic shi of the emission band (lem = 472 nm).
This is in agreement with TD-DFT calculations performed in the
EtOH solvent eld (Tables S3.6 and S3.7, ESI†), however the
origin of this effect is not fully clear; it may result from the
stronger stabilization of the excited state of 5 due to its stronger
interaction with the polar solvent. It should be noted that the
uorescence spectra of 2 and 5 are somehow reminiscent of
their 9-borauorene analogue, namely 9-(tert-butoxy)-9-bora-
uorene.3g However, since the boron center is tetracoordinate,
the absorption spectra of diazaborauorenes lack longer wave-
length bands (labs > 350 nm) of p–B(2p) transitions observed for
various 9-borauorenes.3g Finally, it should be pointed out that
uorescence was almost completely quenched in pure EtOH
solutions, i.e., without HCl additive. This indicates that anionic
forms of 2 and 5 are not luminescent.

In the next step, diazaborauorenes were employed for the
preparation of a series of (O,N)-chelate complexes 3a–3g and
6a–6c with selected proligands including 8-hydroxyquinoline, 2-
(2-pyridyl)phenol, two salicydeneaniline derivatives and three 2-
(hydroxyphenyl)benzoheteroazoles (Het]O, S, NPh) (Scheme
Chem. Sci., 2023, 14, 12133–12142 | 12135
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3). All compounds were obtained in reasonable yields (45–78%)
as cream-white, pale yellow or intense yellow solids soluble in
organic solvents such as CHCl3 and acetone but in most cases
insoluble in Et2O and hexane. They are stable in solution as
their 1H NMR spectra did not show any visible changes aer
several weeks. This can be ascribed to the high Lewis acidity of
the boron centre which strengthens coordination to the
chelating ligands. In fact, 11B NMR chemical shis are in the
range of 4.0–11.0 ppm, i.e., in agreement with the values re-
ported for analogous organoboron complexes.12

Themolecular structures of 3a–3f and 6c were determined by
single-crystal X-ray diffraction. Overall, they feature the spiro
geometry of boron with an orthogonal arrangement of dia-
zaborauorene and ligand moieties (Fig. 3a). The B–N, B–O and
B–C distances (Table S2.4, ESI†) are within a range typical of
organoboron tetracoordinate complexes except for the remark-
ably short B–N dative bond in 6c (dB–N = 1.569(2) Å). A
comprehensive analysis of all structures shows that the mole-
cules remain quite rigid in the diazaborauorene plane, but
regain some additional degree of exibility of the chelate ligand
reected in the distortion of the B(O,N) heterocyclic ring and
ligand in-plane or out-of-plane shiing (Fig. 3b). Such a behav-
iour was previously observed for crystal structures of related 9-
borauorene chelate complexes.12 Concordantly with these
studies, the B(O,N) chelate ring can adopt either at or half-
chair conformations; the latter features boron and/or oxygen
atoms distorting out of the ligand plane (Fig. 3c). According to
DFT calculations, the conformers have similar electronic ener-
gies with low interconversion barriers (below 5 kJ mol−1). Thus,
molecules should retain some conformational exibility in
solution.
Fig. 3 (a) Molecular structures of diazaborafluorene complexes. Thermal
were omitted for clarity. (b) Overlay of the molecular structures of 3a–3f,
studied complexes.

12136 | Chem. Sci., 2023, 14, 12133–12142
The supramolecular structures of the studied complexes are
dominated by weak HB interactions mostly arranging pyridine
nitrogen, chelating oxygen or uorine atoms as HB acceptors
(Fig. 4). The propagation of these contacts results in two types of
supramolecular arrangements, i.e., innite one-dimensional
chains (structures 3a, 3c, 3d and 3f) or discrete dimeric motifs
(structures 3b, 3e and 6c). The weak HB interactions are usually
accompanied by C–H/C(p) interactions, although they are not
very common as they were observed in the crystal structures of
their 9-borauorene analogues.12 Conversely, diazaborauorene
chelates more likely form p-stacking aggregates (Fig. 5), mainly
through mutual interactions between ligands (3c and 3d) or
alternating ligand-borauorene moiety stacking (3f). Notably, J-
aggregate motifs, commonly encountered in spiro-organoboron
compounds,13 are solely observed for 3e (Fig. S2.4, ESI†).

The obtained complexes show the longest wavelength
absorption bands with maxima in the range of 360–421 nm
(CHCl3) with molar extinction values ranging from 2680–16
500 M−1 cm−1 (CHCl3) except for 3g showing much higher 3 =
109 000 M−1 cm−1 (Table 2). Their emission maxima vary in the
range of 427–531 nm depending mainly on the ligand type and
their luminescence colour can be further tuned by ligand
functionalization. For instance, the introduction of the NEt2
group in 3g naturally increases the HOMO energy level, but even
more strongly elevates the LUMO (Fig. S3.8, ESI†), leading to an
increased band gap and hypsochromic shi of the emission
band with respect to 3b (Fig. 6).14 Interestingly, 3g shows the
very narrow emission band in the solid state (FWHM =

1700 cm−1). Emission maxima are typically red-shied in the
bulk solid-state (usually up to 20 nm). Exceptionally, complex 3b
displays a signicant hypsochromic shi of the emission band
in the solid state (by 28 nm; 1050 cm−1). This can be connected
ellipsoids were generated at the 50% probability level. Hydrogen atoms
6c. (c) Two types of B(O,N) chelate ring conformations adopted by the

© 2023 The Author(s). Published by the Royal Society of Chemistry
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Fig. 4 (a) C–H/O and C–H/N hydrogen-bonded molecular chains in 3a. (b) C–H/O and C–H/N hydrogen-bonded dimeric motifs in 6c.
The supramolecular motifs of remaining structures are presented in the ESI.†
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with the ligand conformational exibility resulting from the
possible rotation of the phenyl group around the single Car–N
bond (sPh, Fig. 3) in the less strained solution environment. The
TD-DFT calculations for single molecule 3b indicate that the
ligand is attened upon excitation (sPh = 36°), while in the
crystal structure it remains twisted around the Car–N bond by
sPh = 52(1)° resulting in weakening of p-electron conjugation.
In contrast, compound 3e exhibits substantial red-shi of the
emission band in the bulk solid-state. The examination of the
behaviour of 1 wt% and 5 wt% Zeonex thin lms revealed
evidence that the emission is systematically shied as the
concentration of the sample is increased. Thus it can be
Fig. 5 p-Stacking interactions in the crystal structures of (a) 3c (b) 3d a
along with the projection in the direction perpendicular to the planes of

© 2023 The Author(s). Published by the Royal Society of Chemistry
postulated that the observed behaviour is strongly affected by
the formation of J-aggregates, which is consistent with the
behaviour of other dyes displaying J-aggregate crystal motifs.15

Furthermore, a small shoulder in the emission band of 3e
(powder) appears at a wavelength similar to that recorded for
respective spectra in solution and Zeonex. This may point to the
presence of a fraction of an amorphous or highly disordered
phase of 3e in the powder sample.

All complexes are moderate to good emitters with quantum
yields in the range of 22–73% (CHCl3) and 16–66% (powder).
Notably, in most cases the uorescence intensities are not
affected by solid state aggregation effects. Exceptionally,
nd (c) 3f. Distances between stacked planes are additionally provided
the stacking ligands.

Chem. Sci., 2023, 14, 12133–12142 | 12137
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Table 2 UV-Vis absorption and emission data for diazaborafluorene complexes in CHCl3 solution and the solid state (powder and Zeonex)

CHCl3 solution Bulk solid-state Zeonex

labs/nm (3/103 M−1 cm−1) lem/nm QYF/% lem/nm QYF/% lem/nm

3a 395 (4.26) 508 49 510 48 498 (1%)
3b 410 (8.38) 531 24 503 37 —
3c 380 (16.5) 444 36 463, 539 50 448 (1%)
3d 398 (11.4) 476 49 493 20 —
3e 360 (14.6) 427 38 494 37 441 (1%)

458 (5%)
3f 364 (6.16) 466 37 464 33 —
3g 421 (109.0) 476 73 493 50 —
6a 396 (2.68) 505 46 512 66 505 (1%)
6b 407 (6.97) 525 22 526 16 —
6c 377 (9.61) 439 32 437, 488 37 429 (1%)

Fig. 6 Normalized emission spectra of 3a–3g and 6a–6c in CHCl3
solution, bulk powder and Zeonex thin films.

Fig. 7 (a) TCSPC and (b) MCS decay traces for 3a and 6a recorded in
deoxygenated CHCl3 at RT.
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aggregation-caused quenching was observed for 2-(2-oxyphenyl)
benzo[d]thiazole complex 3d (QYF

solution = 49% / QYFpowder =
20%). Although this might be attributed to p-stacking aggre-
gation, the oxazole analogue 3c is characterized by enhanced
emission in the solid state (QYF

solution = 36% / QYF
powder =

50%) despite displaying similar p-stacking structural motifs
(Fig. 5). The aggregate behaviour of the latter compound (and
also its analogue 6c) is also strongly manifested by the
appearance of additional intense bathochromically shied
emission bands covering a wide range of the visible spectrum,
responsible for net white emission. Even though the TD-DFT
calculations may suggest that they result from the emission
from the lowest charge transfer state (CT), the emission spectra
12138 | Chem. Sci., 2023, 14, 12133–12142
in Zeonex thin lms (1 wt%) are generally retained from the
CHCl3 solution conrming the aggregation-caused origin of
observed band broadening in the bulk solid-state.

Another interesting luminescent behaviour was observed for
quinolate complexes 3a and 6a. The normalized emission
spectra in solution, Zeonex thin lms and the bulk solid-state
perfectly overlap indicating that the emission process is
neither dependent on the environment nor on conformational
effects. However, we have noted that emission amplies to some
extent upon degassing the CHCl3 solution (Fig. S4.11, ESI†).
Furthermore, both systems exhibit biexponential uorescence
decay in CHCl3 with the shorter component attributed to the
prompt uorescence (3a: sPF = 27.7 ns; 6a: sPF = 23.8 ns) and
the longer one characteristic for delayed uorescence (3a: sDF =
10.3 ms; 6a: sDF = 5.7 ms) (Fig. 7).16 The origin of the delayed
uorescence is still not clear, i.e., it may originate either from
thermally activated delayed uorescence (TADF) or triplet–
triplet annihilation (TTA). The latter mechanism was recently
suggested for related quinolate complexes based on the 9-bor-
auorene core.17

The DFT calculations (B3LYP/6-311++G(d,p)) of 3a–3g and
6a–6c revealed that the HOMO is localized on the diazabora-
uorene scaffold whilst the LUMO is spread over the ligand
(Fig. 8). Since HOMO−1 is localized on the ligand, the effective
p–p* excitation can be described as the HOMO−1 / LUMO
transition. This is further conrmed by TD-DFT calculations
showing that the observed uorescence emission is attributed
to the second ligand-localized singlet excited state {1LE2(Q)},
while the lowest laying singlet excited state possesses
© 2023 The Author(s). Published by the Royal Society of Chemistry
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Fig. 8 Molecular orbitals for 3a. MOs for remaining systems are pre-
sented in Fig. S3.5 and S3.6 in the ESI.†

Fig. 9 (a) Mechanism underpinning observed photoluminescence and
photocatalytic activity in 3a. (b) Visualization of natural transition
orbitals in 3a.

Fig. 10 (a) 2-Furoic acid conversion after 4 h of irradiation. (b) Reac-
tion profiles of the best-performing complexes: 3a and 6a.
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a diazaborauorene-to-ligand charge transfer character (1CT1)
and it is not visible due to its low oscillator strength (Table S3.7,
ESI†). In accordance with the above results, the cyclic voltam-
metry (CV) measurements show that the red-ox processes occur
solely on the ligand and are not strongly inuenced by the type
of organoboron moiety (Fig. S5.1 and Table S5.1, ESI†). It
should be noted that reduction and oxidation processes are
irreversible, i.e., they are followed by the chemical reactions.

The calculations of triplet energy levels for 3a and 6a reveal
the occurrence of the two lowest triplet excited states with
quinoline-localized (3LE1(Q), E = 1.70 eV) and charge transfer
(3CT2, E = 2.25 eV) nature, respectively. As initially postulated
for boron dipyrromethene (BODIPY) compact donor–acceptor
dyads,18 the molecule can transfer to the lowest laying 3LE1(Q)
triplet state (E = 1.70 eV) due to direct conversion from the
singlet 1CT1 state via the spin–orbit charge transfer intersystem
crossing mechanism (SOCT-ISC, Fig. 9). The experimental and
theoretical studies conrmed that the SOCT-ISC mechanism
operates in a number of BODIPY dyads19 as well as other orga-
noboron complexes based on the borauorene core2b and it is
responsible for the formation of the long-lived triplet state of
the molecule.

The interaction of the photoexcited triplet molecule with
naturally abundant triplet oxygen (3O2) leads to the excitation of
the latter species to its singlet state (1O2). Since singlet oxygen
serves as a powerful oxidant for both small organic molecules
and biological macromolecules, it is widely utilized in anti-
cancer photodynamic therapy (PDT),20 organic synthesis,21 and
water purication.22 Thus, in the next step we have decided to
check the usability of studied diazaborauorene complexes 3a–
3g and 6a–6c as singlet oxygen generators. The photocatalytic
activity was quantied by tracking the singlet oxygen-mediated
oxidation of 2-furoic acid (FA) – a model reductant. All reactions
were performed in CHCl3 using 0.25 mol% photocatalyst
loading and the irradiation wavelength was adjusted to
respective absorption maxima. The samples were irradiated
with a 365 nm (3b, 3c, 3e, 3f, 6b and 6c), 395 nm (3a, 3d and 6a)
or 415 nm (3g) LED light source using our home-made reactor
(Fig. S6.1, ESI†). All reactions were performed under air at 25 °C
and their progress was monitored by 1H NMR spectra analysis
of the reaction mixture sampled aer a given time. The control
experiments showed that the reactions do not proceed in the
absence of light or a photocatalyst. We found that quinolate
© 2023 The Author(s). Published by the Royal Society of Chemistry
complexes 3a and 6a feature the highest activity with FA
conversion reaching 98 and 90%, respectively, aer 10 h of
irradiation (Fig. 10). Reaction proles for 3a and 6a show
a continuous increase in oxidation product concentration
indicating the high stability of photosensitizers under applied
conditions. The photostability experiments performed under
the same conditions but without FA demonstrate that 6a is
characterized by higher stability (half-time decomposition t1/2=
16 h) with respect to its 3a analogue (t1/2 = 9.2 h). In addition,
both complexes are stable in the dark whichmeans that they are
not susceptible to chemical degradation (Fig S6.2, ESI†), e.g.,
hydrolysis resulting from the presence of traces of water in the
used solvent.

Conclusions

In summary, two uorinated diazaborauorenes 2 and 5 were
obtained and characterized as stable water adducts due to the
Chem. Sci., 2023, 14, 12133–12142 | 12139
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strong Lewis acid properties of the boron atom. DFT calcula-
tions conrmed that the oxonium acid form is the most stable,
although compound 2 may also equilibrate with its zwitter-
ionic tautomer. Both compounds are characterized by intense
blue uorescence in acidied EtOH solution. In the next step
diazaborauorenes were converted to respective
chelate complexes with various (O,N)-ligands. The structural
analysis suggests that they are characterized by partial
conformational exibility resulted from B(O,N) chelate ring
inversion and ligand in-plane and out-of-plane movements.
The molecules interact mainly through C–H/O and C–H/N
hydrogen bonds as well as p-stacking intermolecular interac-
tions, while C–H/C(p) contacts are rather avoided. All
complexes exhibit moderate-to-good luminescence properties
both in solution and the solid state. In most cases the lumi-
nescence is red-shied in the solid state compared to that in
solution, but the photoluminescence quantum yields remain
at a similar level. In the cases of 3c and 6c, the aggregation
leads to the appearance of additional bands covering the wide
range of the visible spectrum and resulting in white emission
colour. The peculiar nature of electronic excitations and
relaxation in quinolate complexes 3a and 6a, manifested by
delayed emission and activity in photosensitized 1O2 genera-
tion, is the most appealing among other results regarding the
optical properties of studied compounds. In fact, such a dual
photophysical behaviour was not previously reported for
organoboron quinolates. Thus, it seems that the use of
proposed boracyclic scaffolds featuring a strong electron-
acceptor character can give rise to promising systems for
potential diverse applications including organic electronics
(electron transport and/or light-emitting materials), photo-
and organocatalysis and analytical chemistry (e.g., anion
receptors).
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