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Transition metal-based charge-transfer complexes represent a broad class of inorganic compounds with
diverse photochemical applications. Charge-transfer complexes based on earth-abundant elements have

512", Photoexcitation into the singlet

been of increasing interest, particularly the canonical [Fe(bpy)
metal-ligand charge transfer (MLCT) state is followed by relaxation first to the ligand-field manifold and
then to the ground state. While these dynamics have been well-studied, processes within the MLCT
manifold that facilitate and/or compete with relaxation have been more elusive. We applied ultrafast
two-dimensional electronic spectroscopy (2DES) to disentangle the dynamics immediately following
MLCT excitation of this compound. First, dynamics ascribed to relaxation out of the initially formed
IMLCT state was found to correlate with the inertial response time of the solvent. Second, the additional

dimension of the 2D spectra revealed a peak consistent with a ~20 fs *MLCT — 3MLCT intersystem
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intersystem crossing and direct conversion to ligand-field state(s). Resolution of these parallel pathways

DOI: 10.1039/d35c02613b in this prototypical earth-abundant complex highlights the ability of 2DES to deconvolve the otherwise
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1. Introduction

Transition metal-based polypyridyl complexes represent an
important class of inorganic chromophores with photophysical
properties amenable for applications ranging from solar energy
conversion'” to organic transformations.®® Amongst this class
of complexes, the prototypical chromophore is tris(2,2"-bipyr-
idine)ruthenium(u), i.e., [Ru(bpy)s]**. The photophysical prop-
erties of [Ru(bpy)s;]** - specifically the existence of a metal-to-
ligand charge-transfer (MLCT) excited state that stores ~2 V of
energy® and persists for ~1 ps in deoxygenated solution - lie at
the heart of its utility in such a wide range of settings. Despite
its advantages, the elemental scarcity of ruthenium (as well as
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obscured excited-state dynamics of charge-transfer complexes.

related chromophores containing iridium, rhenium, osmium,
etc.) raises important questions about the cost and scalability of
processes built on these materials."* This realization has spur-
red recent efforts to develop alternatives that replicate the
photochemical properties of compounds such as [Ru(bpy)s]**
while using components for which material availability ceases
to be an issue.””"” Accordingly, there has been a rapid expan-
sion of research into the synthesis and photophysical properties
of chromophores based on elements of the first transition series
(e.g:, iron, cobalt, nickel, chromium).

Many of these efforts have focused on ions possessing a d°
configuration due to their valence isoelectronic relationship
with Ru(u). The canonical example of this class of compounds,
[Fe(bpy)s]*", exhibits similar steady-state optical properties to
its second- and third-row transition metal analogs, namely
a strong MLCT absorption in the mid-visible region, yet its
excited-state properties bear little resemblance to its heavier
group 8 congeners.'® Specifically, the absence of a spectroscopic
signature associated with the bipyridyl radical anion (i.e., bpy ™)
within 10 ps following MLCT excitation was an early indication
of an excited-state lifetime that was many orders of magnitude
shorter than its Ru(u) counterpart.* The sub-100 fs lifetime of
the MLCT manifold for an Fe(u) polypyridyl complex was first
quantified in 2000 using ultrafast time-resolved absorption
spectroscopy  in  conjunction = with  spectrochemical

© 2023 The Author(s). Published by the Royal Society of Chemistry
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identification of an optical signature for the MLCT excited
state.’ This was later observed specifically in [Fe(bpy)s]”" using
XANES* and ultraviolet transient absorption spectroscopy.*
Similar timescales have also been seen for a range of related
compounds.’>**>* The dramatic attenuation in MLCT-state
lifetime observed for the Fe(n) complexes results from an
inversion in the relative energies of the charge-transfer and
ligand-field excited states compared to what exists in the
second- and third transition series due to the so-called primo-
genic effect.””” These ligand-field states are characterized by
large geometric distortions relative to both the ground- and
MLCT excited states, thereby facilitating rapid non-radiative
decay out of the charge transfer-state manifold and the even-
tual formation of the high-spin °T, excited state on a timescale
of ~200 fs.

Following conversion from the MLCT excited state manifold
to the lowest-energy ligand-field excited state, specifically the
°T, state, ground state recovery (i.e., °T, — 'A; relaxation)
occurs on a timescale of ~1 ns. Recently, Miller and McCusker
identified solvent dependent kinetics for this ground-state
recovery.”® The dependence was attributed to solvent reorgani-
zation in response to the large decrease in molecular volume
associated with the conversion from a high-spin to a low-spin
configuration. Although subtle, the solvent dependence asso-
ciated with electronic state evolution localized on the metal
center and relatively insulated from the solvent environment
raises questions about the solvent dependence of dynamics in
the charge-transfer manifold. Here, the transfer of an electron
from the metal to the ligand places negative charge density on
the periphery of the molecule and therefore in direct contact
with the surrounding solvent. Despite there being ample
evidence from studies on complexes possessing long-lived
charge-transfer states that ultrafast solvent-coupled processes
can influence their initial evolution,?>*#-*° the effect of solvent at
early timescales and its coupling to intersystem crossing
processes in [Fe(bpy);]** have not been investigated.

Although relaxation from the MLCT manifold into the ligand-
field °T, state has been established for [Fe(bpy);]**, the pathway
involved in this relaxation is still under debate. Direct relaxation
from the MLCT band into the T}, state is formally a two-electron
process, thus making a direct transition highly improbable.>" It
has therefore been proposed that the '"MLCT — °T, conversion
likely occurs via intermediate metal-centered states. While
progress has clearly been made with regard to bringing processes
localized on the metal center into better focus, details are sparse
when it comes to dynamics occurring within the initially formed
charge-transfer state(s). Transient absorption spectroscopy con-
ducted by Aubdck and Chergui was interpreted in terms of
a 'MLCT — °MLCT intersystem crossing event followed by
a *MLCT — °T, direct relaxation mechanism with an overall
timescale of <50 fs,>* whereas X-ray fluorescence spectroscopy
data were modeled without invoking an intersystem crossing
event within the charge-transfer manifold.** Because the photo-
excited MLCT state relaxes into the high-spin °T, state within
a few hundred femtoseconds, fast time resolution®-° is required
to properly resolve the early-time dynamics within the MLCT
manifold. A range of time-resolved methodologies are available
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to access this regime, but the issue is compounded by the broad
and overlapping spectroscopic features associated with relevant
processes in [Fe(bpy);]**. These temporal and spectral require-
ments present significant challenges for determining what
mediates the excited-state dynamics. Two-dimensional elec-
tronic absorption spectroscopy (2DES) is an advanced spectro-
scopic technique that combines the ability of transient
absorption spectroscopy to probe ultrafast dynamics with direct
excitation and detection frequency correlation. The additional
dimension attained through this correlation allows for energetic
deconvolution of different contributions to the excited-state
dynamics of systems, providing information about the energy
landscape that would be difficult, if not impossible, to divine
from transient absorption spectroscopy alone. Although 2DES
has been commonly used to study light harvesting systems,***-*°
inorganic nanomaterials,**** and organic molecular chromo-
phores,*>***> amongst other systems, it has been underutilized as
a tool to understand ultrafast dynamics in molecular, transition-
metal based chromophores.

In this report, we show that challenges associated with char-
acterizing early-time dynamics within the MLCT manifold of
[Fe(bpy)s]** can be overcome using 2DES. Here, the additional
spectral separation afforded by this technique uncovered a previ-
ously hidden "MLCT — *MLCT cross peak while simultaneously
resolving sub-100 fs dynamics of intersystem crossing and transfer
out of the MLCT manifold. Collectively, these observations
revealed parallel pathways of triplet-mediated and direct relaxation
to the metal centered states. These results demonstrate the ability
of 2DES to be a particularly effective tool for elucidating the early-
timescale excited-state dynamics in the class of transition metal-
based chromophores (like [Fe(bpy)s]**) to provide new insights
into the ultrafast processes underlying their functionality.*

2. Results

2.1. Steady-state absorption features

Fig. 1A shows the steady-state absorption spectrum of
[Fe(bpy)s]*" in methanol. In this frequency range, the dominant
peak at ~19 200 cm " is the 'A; — "MLCT transition with a tail
on the red edge associated with the formally spin forbidden 4,
— MLCT transition.” Consistent with this assignment, TD-
DFT calculations (Fig. 1B) showed that the *MLCT states
primarily contribute to the lower-energy range of the absorption
spectrum while the higher-energy range of the spectrum is
dominated by a 'MLCT transition with a large oscillator
strength. The dominant calculated excitation at 21832 ¢cm ™"
seen in Fig. 1B corresponds to a doubly-degenerate "MLCT state
(Table S91). Only minor solvatochromic effects were observed in
the absorption spectra of [Fe(bpy)s]”" (Fig. S1A and S177).

2.2. 2DES spectra features

To investigate the dynamics of the charge-transfer transitions,
2DES was used to measure a series of spectra that map out the
excited-state evolution. Correlation plots of excitation (w,) and
detection (w,) energies were created as a function of the delay
time between excitation and detection events, known as the
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— 3MLCT, purple). The molecular structure of [Fe(bpy)s]>* is shown in the inset. (B) Calculated stick spectrum (top, black sticks) and broadened
line spectrum (top, black line) obtained from TD-DFT calculations of [Fe(bpy)s]** in acetonitrile. Energy spectrum of the singlet metal-centered
(dashed red lines) and *MLCT (solid red lines) and triplet metal-centered (dashed purple lines) and *MLCT (solid purple lines) transitions, including
those with zero oscillator strength, are shown below the plotted spectrum (see Tables S9 and S10+ for full information of the calculated singlet
and triplet states, respectively). (C) Phased 2D spectra of [Fe(bpy)s]?* in methanol at T = 66 fs (left) and T = 200 fs (right). Positive intensity
corresponds to ground state bleach or stimulated emission signals and negative intensity corresponds to excited state absorption signal. Plots are
normalized to the maximum and minimum intensities of the T = 200 fs spectrum. Contour lines are drawn at 20% intervals. Arrows denote

Fig. 1 (A) Absorption spectrum of [Fe(bpy)s

predominant peaks.

waiting time (7).*** The spectra were measured with ~10 fs
temporal resolution. The nonresonant response (coherent arti-
fact) of the pulse was also characterized spectrally (Fig. S2t). To
minimize contributions from the nonresonant response, the 2D
data were analyzed only for T > 47 fs. Representative 2D spectra
of [Fe(bpy);]*" in methanol are shown in Fig. 1C. For 2DES
experiments performed in the BOXCARS geometry, positive
intensity corresponds to ground state bleach/stimulated emis-
sion and negative intensity corresponds to excited state
absorption.

The 2D spectra contain three primary features. First, the
spectra are dominated by a positive peak on the diagonal at w, =
18500 cm™ ', w; = 18000 cm " (Fig. 1C, red arrow). Second,
a positive peak grows in below the dominant peak at approxi-
mately @, = 18250 cm " and w; = 16500 cm " at T = 200 fs
(Fig. 1C, right, blue arrow, Fig. S13%). Third, a negative peak is

also present, particularly at later waiting times, at

13142 | Chem. Sci,, 2023, 14, 13140-13150

approximately w, = 16 500 cm ™" and w, = 17 000 cm "
right, purple arrow).

Previous studies of [Fe(bpy);]*" using more traditional
spectroscopic methods allow us to orient our understanding of
these three features. First, the initially-formed (<200 fs) excited
state is a '"MLCT state that can be described in terms of oxida-
tion of the metal center (i.e., Fe(u) to Fe(ur)) and the creation of
aradical anion associated with the bipyridyl ligand (bpy" ™). This
formulation allows for the use of spectroelectrochemistry to
approximate the optical signatures that will characterize this
initial state (Fig. S47).® These data indicate that the '"MLLCT
excited state will consist of two overlapping contributions: first,
a loss of absorption (and stimulated emission at early times
<100 fs) due to ground-state depletion and the concomitant
change in oxidation state of the metal,> which contributes
positively to the 2D signal; and second, a new absorption feature
associated with the bpy radical anion (bpy' ™), which contributes

(Fig. 1C,

2+

© 2023 The Author(s). Published by the Royal Society of Chemistry
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negatively to the 2D signal. The former appears at the steady-
state absorption of the MLCT states (Fig. 1A) whereas the
latter manifests as a broad feature starting at 16 000 cm™ ' and
extending into the UV regime. Owing to the large oscillator
strength associated with the charge-transfer band, the overall
spectrum will be dominated by the former. Consistent with this
picture, the dominant positive feature on the diagonal is
approximately at the '"MILCT absorption in the steady-state
spectrum, although the maximum is slightly red-shifted due
to the spectral profile of the ultrafast laser pulse (Fig. S1Bf).
Therefore, the dominant positive diagonal feature is denoted as
the "MLCT ground-state bleach/stimulated emission (*MLCT
GSB/SE) peak. Any ESA contribution from the bpy radical anion
at T< 200 fs at lower energies (w, < 17 000 cm ') is obscured due
to contribution from the nonresonant response signal (Fig. 1C,
left). Second, the positive cross peak below the diagonal corre-
sponds energetically to excitation into the 'MLCT state and
detection of population in the *MLCT state at early waiting
times (7 < 200 fs). It is important to note that the contribution of
stimulated emission to these features is tied to the persistence
of the "MLCT state. Further details about this assignment will
be discussed in Section 2.3.4.

After initial photoexcitation into the MLCT manifold, the
molecule relaxes into the ligand-field excited state manifold
within 200 fs.?>* This relaxation corresponds to the electron in
the ligand-based =* orbital transferring back to the metal.
Formation of these ligand-field excited state(s) has two
consequences for the absorptive properties of the complex:
loss of absorption associated with the bpy radical anion; and
the eventual creation of an MLCT excited-state absorption
feature associated with the lowest-energy ligand-field excited
state of the molecule. These new net absorptive contributions
to the spectrum can be expected to arise from MLCT transi-
tions associated with the excited ligand-field states, in partic-
ular a °T, — *MLCT transition that will persist until ground-
state recovery (~1 ns). The intensity of this band is expected
to be roughly an order of magnitude less than that associated
with the ground state.*® Its contribution to the overall signal
depends on the nature of its overlap with the ground-state

View Article Online
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bleach. Thus, the ESA feature observed is assigned to the >T,
— °MLCT transition, supported by TD-DFT calculations (dis-
cussed in more detail in Section 2.3.3) and a nanosecond decay
consistent with ground-state recovery (Fig. S5D and Table S37).
Although previous studies of similar complexes have shown an
ESA signature in this region as a result of multi-photon exci-
tation,* the intensity of the laser pulse used in this study, is
ten-fold below the advent of these multi-photon features. By T
= 200 fs, the "MLCT peak, which by this time is comprised
solely of the ground-state bleach, also shifts slightly below the
diagonal. Given the broad peak structure of the *T, ESA peak,
the redshift in detection frequency of the "MLCT GSB/SE peak
is therefore most likely from partial cancellation from the rise
of the >T, ESA.

2.3. Kinetic analysis of 2DES spectra

2.3.1. Early-time evolution of the "MLCT state. To investi-
gate the kinetics, a waiting time trace from T = 47-1000 fs for
the "MLCT peak was constructed by integrating the peak
intensity within w, = 18 500-20 000 em ™! and w, = 18 000-20
000 cm ™' (i.e., the region indicated by the red arrow in Fig. 2A,
B, S6, and S18t) and normalized to the time point with
maximum intensity. The asymmetric ranges were selected to
minimize the contribution from the nonresonant response at
early waiting times, and thus should best capture the dynamics
associated with [Fe(bpy)s]*" (Fig. S21). The waiting time trace
was fit to a biexponential function (Fig. 2B, solid line) where the
where the first term (which has negative amplitude) tracks the
rapid rise (with its time constant called the “rise time”) and
second term tracks the slow ground-state recovery (Eqn S1,
Table S17). A biexponential function was used because addi-
tional terms did not lead to a significant improvement in fit
quality, consistent with previous experiments that reported
a monoexponential decay*® and a monoexponential rise.** The
initial rise in peak intensity occurred on a ~30 fs timescale. The
lower intensity at early times is consistent with spectrally
overlapped "MLCT GSB/SE and bpy'~ ESA signatures generated
upon photoexcitation into the MLCT manifold.*® Excited-state
evolution from the MLCT manifold to the lower-lying ligand-
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Fig. 2
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(A) Reproduction of the positive, on-diagonal region of the T = 200 fs 2DES spectrum in Fig. 1C with the corresponding linear absorption

spectrum on the right. The red arrow indicates the GSB signal of the *MLCT (and, at early times, the SE signal). (B) Intensity trace (dashed line) of
the *MLCT diagonal peak over waiting time T with its respective biexponential fit (solid lines) in methanol. See text for details. (C) Fourier transform
of the residuals from the exponential fit depicted in (B) see also Fig. S12.1 The peaks denoted correspond to the N-Fe—N bending (lower
frequency) and N—Fe—N stretching (higher frequency) from a hot ground state during the waiting time.#8-5
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field manifold results in the disappearance of the bpy' ~ (and
therefore loss of the bpy'~ ESA signature), leaving only the
contribution from the underlying ground-state bleach signal.
The increase in magnitude of the ground-state bleach can only
be rationalized through the removal of a partial cancellation
from an overlapping negative signal. For this reason, the
intensity rise in the bleach signal can be assigned to conversion
from the charge-transfer to ligand-field manifold of the
compound due to loss of the partial cancellation from the ESA
as opposed to relaxation within the charge-transfer band where
no such change in partial cancellation would occur.

The waiting time traces also exhibit rapid oscillations.

Fourier analysis of the residuals from the biexponential
fitrevealed two primary frequencies at 129.4 & 0.4 cm™ " and 209
+ 1 em ™' (Fig. 2C) corresponding to a N-Fe-N bending mode
(~114-157 cm™ ') and a Fe-N stretching mode (~185-280 cm )
(see also Fig. S12 and Table S4t).*~** Fourier filtering and
subsequent biexponential fitting revealed similar rise time-
scales as reflected in the biexponential fit of the unfiltered data
(Fig. S111); in order to minimize assumptions made in the
kinetic analysis, the unfiltered data were used. In addition,
global kinetic analysis was performed on the region of the
MLCT peaks using the method illustrated in Volpato et al.** The
ESA peak was not included in the analysis as the region is
dominated by the nonresonant response signal at early time-
scales. Consistent with the results from the analysis described
above, growth of both the "MLCT GSB/SE peak and the "MLCT
— 3MLCT cross peak was observed with a sub-100 fs timescale
(Section 2.3.4).

2.3.2. Solvent dependent evolution of the "MLCT state. As
a dicationic species, [Fe(bpy);]>" is expected to be strongly
solvated in polar solvents in the ground state. Upon photoex-
citation into the MLCT manifold, the solvent must respond to
the formation of the bpy" ™. DFT calculations predict the excited
electron in one of these initially-excited 'MLCT states to be
delocalized over two bipyridyl ligands (Fig. S24B¥) with a dipole
moment of 3.94 Debye, while the second transition is localized
on a single bipyridyl ligand with a dipole moment of 3.97 Debye
(Fig. 3A). Any initially-excited delocalized MLCT state is ex-
pected to quickly localize on a single bipyridyl ligand, further
increasing the dipole moment.***” The fully optimized structure
of the lowest-energy "MLCT, as well as the *MLCT state, predicts
stabilization of the state that localizes the electron in a w*
orbital of a single bipyridyl ligand (Fig. 3B) with an overall
dipole moment of 9.0 Debye and 6.7 Debye, respectively
(Fig. S257). These calculations are consistent with those ob-
tained through Stark spectroscopy.

The electron placed in the w* orbital of the bpy ligand
dramatically alters the nature of the charge density with which
the solvent interacts. In the ground state, the solvent organizes
around an overall dicationic state wherein the charge is buried
on the metal ion whereas, in the excited "MLCT state, the charge
is localized on the periphery of the complex. Alcohols can
respond by simply rotating about the C-O single bond, whereas
the rigid-rod nature of nitriles requires at least a partial rotation
of the entire solvent molecule. The timing of this molecular
rotation is therefore dependent on the moment of inertia of the

13144 | Chem. Sci,, 2023, 14, 13140-13150
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Fig. 3 (A) Electron density difference surface between the ground and
the initially-excited MLCT state densities (isovalue = 0.0004 electrons
per a.u.%). The IMLCT state depicted here corresponds to one of the
double degenerate transitions at 21832 cm™ shown in Fig. 1B (see
Fig. S24+1 for both states). Red values indicate an increase in the
excited-state electron density relative to the ground state (particle),
while blue values indicate a decrease (hole). The excited-state dipole
moment (3.97 Debye) is depicted by an arrow pointing in the positive
direction. (B) Molecular orbitals associated with excitation of the
IMLCT state (see Fig. S257 for depictions of both the singlet and triplet
MLCT transitions). (C) Plot of the bpy®~ decay lifetime in nitriles (black
circles) and alcohols (gray triangles) as a function of carbon chain
length (R). Error bars reflect standard error from three replicates. The
moment of inertia (I) of the nitrile solvents is also plotted (light red
dashed line).

molecule,” which can be as fast as 25 fs.** 2D spectra were
measured in these two classes of solvents, alcohols and nitriles,
to examine the effect of these different mechanisms of reorga-
nization in response to the creation of the MLCT excited state.

The kinetics from 2D spectra of [Fe(bpy);]* in methanol, 1-
propanol, acetonitrile, butyronitrile, are compared in Fig. 3C,
with values from the biexponential fit reported in Table 1. The
rise times, shown as gray triangles in Fig. 3C, were ~30 fs for
both methanol (carbon chain length R = 1) and 1-propanol (R =
3). The similarity observed can be attributed to the fact that an
extension of the aliphatic chain from methanol to 1-propanol
should have little effect on the dynamics of rotation about the
C-0 bond.?® On the other hand, the time constant for the same

© 2023 The Author(s). Published by the Royal Society of Chemistry
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Table 1 Kinetics associated with the disappearance of the bpy radical

anion

Solvent bpy ™ decay lifetime (fs)
Methanol 32+6

1-Propanol 24 + 10

Acetonitrile 25+ 5

Butyronitrile 70+ 5

Pentanenitrile 140 + 40

Hexanenitrile 180 + 20

signal in the nitrile solvents was observed to increase from ~30
fs acetonitrile (R = 1) to ~70 fs for butyronitrile (R = 3). This
solvent-dependent evolution observed in the nitrile solvents
likely originates from the nature of the anticipated solvent
response, a rotation of the entire molecule.

To further investigate the nature of this solvent response,
2DES studies were performed in commercially-available nitriles
with longer carbon chains, namely pentanenitrile (R = 5) and
hexanenitrile (R = 6). The dynamics in propionitrile were not
measured because [Fe(bpy);]*" was observed to interact with
impurities in the solvent and degrade too fast for 2DES exper-
iments (ESI Section 6.11). The bpy'~ ESA decay lifetime in all
nitrile solvents is as a function of carbon chain length (R) is
plotted as black circles in Fig. 3C (black circles).

The reported lifetimes of the bpy'~ decay increased to ~140
fs and ~180 fs for pentanenitrile and hexanenitrile, respec-
tively. The overall trend follows closely with the trends of the
moment of inertia (I) of the solvent, plotted as a light-red
dashed curve in Fig. 3C (see also ESI Section 47). This clear
scaling reflects the ability of the surrounding solvent to stabilize
the change in charge density upon photoexcitation.

These data represent the first observation of solvent
dynamics coupled to MLCT-state evolution in an Fe(u) poly-
pyridyl complex and moreover suggest that the conversion from
the charge-transfer to ligand-field manifolds may indeed be
gated by solvent response.

2.3.3. Properties of the T, ESA feature. The early-time
kinetics of the negative peak could not be well-characterized
as the spectral region contains significant nonresonant
response at T < 100 fs (Fig. S2t). Instead, the magnitude of the
peak intensity was compared to the magnitude of the positive
"MLCT peak intensity (Fig. 4A and B) to quantify its relative
contribution, or effective oscillator strength. The relative
magnitude of the ESA peak was averaged for each triplicate data
set in each solvent from T = 200-3000 fs to minimize contri-
butions from both the initial photophysics and the nonresonant
response. The intensity of the negative peak was integrated over
w, = 16 000-17 000 cm * and w, = 16 800-17 800 cm ™ * and the
intensity of the positive peak was integrated over w, = 17 500—
19500 cm ™! and w, = 17 000-19 000 cm™'. These limits were
selected to span the contour lines that denote this feature
(Fig. 1C) as no other overlapping contributions are present in
this spectral region. The magnitude of the negative peak was
~10% of the positive peak (Fig. 4D and S167), consistent with
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Fig. 4 (A) Region of representative [Fe(bpy)s]®* 2DES spectrum in
methanol centering the ESA peak (blue arrow) at T = 200 fs. (B)
Horizontal slice in detection frequency at w, = 17 000 cm™! (shown as
a blue line in Fig. 4A) that shows the presence of the negative ESA peak.
(C) Absorption spectrum obtained from TD-DFT calculations in
acetonitrile utilizing the fully-optimized lowest-energy quintet state
(°T,) of [Fe(bpy)s]>* as a reference. Calculated stick spectrum (black
sticks) along the broadened li