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Spectroscopy is one of the most accurate probes of the molecular world. However, predicting molecular

spectra accurately is computationally difficult because of the presence of entanglement between

electronic and nuclear degrees of freedom. Although quantum computers promise to reduce this

computational cost, existing quantum approaches rely on combining signals from individual eigenstates,

an approach whose cost grows exponentially with molecule size. Here, we introduce a method for

scalable analog quantum simulation of molecular spectroscopy: by performing simulations in the time

domain, the number of required measurements depends on the desired spectral range and resolution,

not molecular size. Our approach can treat more complicated molecular models than previous ones,

requires fewer approximations, and can be extended to open quantum systems with minimal overhead.

We present a direct mapping of the underlying problem of time-domain simulation of molecular spectra

to the degrees of freedom and control fields available in a trapped-ion quantum simulator. We

experimentally demonstrate our algorithm on a trapped-ion device, exploiting both intrinsic electronic

and motional degrees of freedom, showing excellent quantitative agreement for a single-mode vibronic

photoelectron spectrum of SO2.
Spectroscopy—the measurement of light's interaction with
matter—is one of the most important and precise experimental
techniques for probing microscopic phenomena. The predic-
tion of spectra via computational techniques serves as
a benchmark for theoretical models of molecules, and good
agreement between theory and experiment is essential if we are
to truly understand chemical phenomena.

However, predicting molecular spectra remains difficult,
especially for large molecules, those with signicant entangle-
ment between degrees of freedom, those that are open to an
environment, or when high precision is required.1 In particular,
there are regimes where all common approximations break
down, leaving critical cases without practical computational
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solutions. For example, the Franck–Condon approximation of
vibronic (vibrational + electronic) spectroscopy states that
a transition is proportional to the overlap of initial and nal
vibrational wavefunctions;2,3 while oen a good approximation,
it can fail when the dipole moment depends on nuclear
displacements. More generally, strong vibronic coupling
between electronic states can lead to failures of the Born–
Oppenheimer approximation and substantial nuclear-
electronic entanglement.1 Methods that include vibronic
coupling are generally limited in molecule size or accuracy; for
example, surface hopping uses an approximate form of the
wavefunction and its evolution to reduce computational cost,4

whereas multicongurational time-dependent Hartree is
numerically exact but heuristic, with an unpredictable compu-
tational cost that can be exponential in system size.1,5

Quantum computers promise to reduce the computational
cost associated with predicting molecular spectra by offering
a new means of computational simulation. As in other appli-
cations of quantum computers to chemistry,6–15 the advantage
of quantum simulation lies in the ability to naturally represent
complicated, entangled wavefunctions using quantum coherent
degrees of freedom. Indeed, recent proposals and experiments
have shown that quantum computers can predict vibronic
spectra,16–22 starting with the simulation of Franck–Condon
spectra by encoding Duschinsky transformations in the
Chem. Sci., 2023, 14, 9439–9451 | 9439

http://crossmark.crossref.org/dialog/?doi=10.1039/d3sc02453a&domain=pdf&date_stamp=2023-09-09
http://orcid.org/0000-0002-0459-9546
http://orcid.org/0000-0001-6840-6267
http://orcid.org/0000-0002-6763-7132
http://orcid.org/0009-0006-2513-6950
http://orcid.org/0000-0002-4371-2580
http://orcid.org/0000-0003-4520-6419
http://orcid.org/0000-0002-4053-722X
http://orcid.org/0000-0002-8376-0819
http://creativecommons.org/licenses/by-nc/3.0/
http://creativecommons.org/licenses/by-nc/3.0/
https://doi.org/10.1039/d3sc02453a
https://pubs.rsc.org/en/journals/journal/SC
https://pubs.rsc.org/en/journals/journal/SC?issueid=SC014035


Chemical Science Edge Article

O
pe

n 
A

cc
es

s 
A

rt
ic

le
. P

ub
lis

he
d 

on
 1

0 
A

ug
us

t 2
02

3.
 D

ow
nl

oa
de

d 
on

 2
/2

/2
02

6 
7:

56
:2

9 
A

M
. 

 T
hi

s 
ar

tic
le

 is
 li

ce
ns

ed
 u

nd
er

 a
 C

re
at

iv
e 

C
om

m
on

s 
A

ttr
ib

ut
io

n-
N

on
C

om
m

er
ci

al
 3

.0
 U

np
or

te
d 

L
ic

en
ce

.
View Article Online
displacement, squeezing, and unitary rotations of optical
modes.16 This approach has been extended to thermal initial
states17 and non-Condon transitions,22 and demonstrated on
other quantum platforms with experimentally accessible
bosonic modes, including trapped ions19 and circuit quantum
electrodynamics (cQED).21 These approaches are examples of
analog quantum simulations, where the Hamiltonian of
a system of interest is mapped onto a controllable quantum
system in a laboratory. In contrast, a digital quantum simula-
tion (i.e., comprised of qubits and quantum gates) has also been
proposed with a straightforward extension to include anhar-
monic vibrational modes.20

All existing approaches to quantum simulation for molecular
spectroscopy suffer the same drawback, requiring exponential
resources as the number of molecular vibrational modes
increases. Most methods directly simulate the intensity of every
spectral line,16,17,19–22 whose number can reach astronomical
sizes even in small molecules. For example, if 10 states in each
quantised vibrational mode are optically accessible, the number
of states in an N-atommolecule is 103N−6. Most approaches also
rely on the Franck–Condon principle16,17,19–21 and exclude
vibronic coupling, which limits their use to describing single
electronic states that are energetically separated from other
electronic states. The approach of Hu et al.18 predicts the
spectrum of uncoupled, displaced harmonic oscillators by
measuring overlaps between initial and nal states; however,
extending the method to more general chemical Hamiltonians
requires exponential classical resources to predict the nal
state.

Systems with coupled electronic states and vibrational
modes are well-suited for simulation on a class of analog
quantum devices known as mixed qudit-boson (MQB) simula-
tors.24 These are comprised of a qudit, i.e., a d-level system with
controllable transitions between all d levels, and a set of
quantum oscillators or resonators making up the bosonic
modes. Example architectures include trapped ions and cQED.
In addition to spectroscopic prediction,14,18,19,21 MQB devices
have been proposed for the analog quantum simulation of
vibrationally assisted electron transfer,11,25 spin-boson
models,26 and dynamics under vibronic-coupling
Hamiltonians.24

Here, we describe a general approach to the quantum
simulation of molecular spectra that avoids the exponential
measurement requirements, instead requiring a number of
measurements that is independent of molecular size. Our
approach (Fig. 1e and f) uses analog quantum simulation
techniques to predict the spectrum based on molecular
dynamics in the time domain, unlike previous approaches that
compute transition probabilities in the frequency domain
(Fig. 1c and d). We show how our scheme can be efficiently
implemented on MQB simulators. The core of our method is
a one-to-one mapping between molecular vibrational modes
and bosonic degrees of freedom, and between molecular elec-
tronic states and qudit states, both available in several
quantum-computing architectures. Notably, the time-domain
MQB approach allows for the inclusion of effects such as
vibronic coupling, mixed states, and open quantum systems, all
9440 | Chem. Sci., 2023, 14, 9439–9451
of which can have dramatic effects on the nal spectrum, and
are otherwise inaccessible in existing techniques. We validate
this approach by performing a proof-of-principle experimental
demonstration by simulating a vibronic spectrum of SO2 using
a trapped-ion quantum simulator, and achieving strong agree-
ment between our experimental measurements, theory, and
molecular spectroscopy measurements from the literature.
1. Time-domain spectroscopy on an
analog quantum simulator

Time-domain simulation avoids the individual measurement of
the exponentially growing number of spectroscopically relevant
states.27–30 The desired spectrum contains much less informa-
tion than all the eigenstates of the molecule, and time-domain
approaches can obtain it more directly.

In the frequency-domain approach,16,17,19–22 the spectrum is
a sum of individually calculated (or sampled) contributions
from each eigenstate of the molecule, in proportion to how
strongly they interact with light (Fig. 1c). For example, the rst-
order absorption spectrum of a molecule initially in eigenstate
jJ0i with frequency u0 is

sðuÞ ¼
X
n

jhJnj3$bmjJ0ij2dðu� un þ u0Þ; (1)

where u is the frequency, jJni is the eigenstate of the molecular
Hamiltonian Ĥ with frequency un, m̂ is the dipole moment
operator, and 3 is the polarisation of the light, both of which are
vectors in three dimensions. For simplicity, in what follows we
write m̂ = 3$m̂. The computational cost is exponential in the
number of modes because of the need to calculate the expo-
nentially many contributions in the sum, even if many peaks
overlap or have zero intensity. Although approaches that involve
sampling of the wavefunction can reduce the number of
measurements required,21 the number of relevant eigenstates in
the spectrum (i.e., the number of peaks) still grows exponen-
tially with the number of modes. Therefore, obtaining an
accurate spectrum requires an exponential number of samples
to ensure that relevant features are not missed.

By contrast, the well-established time-domain view of spec-
troscopy (Fig. 1e) was developed to avoid having to calculate
(originally on classical computers) all the eigenstates.27–30 Eqn
(1) can be rewritten30 using the Fourier denition of the delta
function as

sðuÞ ¼ 1

2p

ðN
�N

dt eiut
D
J0

���bm†
e�iĤt=ħbm eiĤt=ħ

���J0

E
¼ F ½�Jmð0Þ

��JmðtÞ
�� ¼ F ½aðtÞ�;

(2)

whereF is the Fourier transform, and jJm(t)i= e−iĤt/ħm̂ eiĤt/ħjJ0i,
i.e., the initial state evolved backwards in time for a time t, per-
turbed by the dipole operator, and evolved forwards in time t. The
(dipole) autocorrelation function a(t) is the overlap of the initial
and time-evolved wavefunctions. Eqn (2) is a more general
expression for the absorption spectrum than eqn (1), since a(t) is
the dipole linear response function, hm†(0)m(t)i, which can also
describe the evolution of mixed and non-stationary initial states,
© 2023 The Author(s). Published by the Royal Society of Chemistry
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Fig. 1 Different approaches to obtain a molecular vibronic spectrum. (a) Absorption of light by a molecule (shown: SO2) can be measured
experimentally to give a spectrum (grey line in (b)23). (c) Several quantum simulation techniques can find Franck–Condon factors16,17,19,21,22

(illustrated with a boson-sampling optical circuit). (d) These techniques measure the overlaps of the initial state with final eigenstates, here given
by vibrational quanta n1 and n2 for two vibrational modes. The corresponding intensities give peak heights in the frequency domain (blue sticks in
(b)). (e) We show that the molecule can instead be mapped to a time-domain MQB simulation (illustrated with a trapped-ion simulator), with the
ability to include vibronic coupling, mixed initial states, and open quantum systems.24 The time-domain procedure is scalable with the number of
vibrational modes, because it reconstructs the spectrum directly, not via exponentially many vibronic eigenstates. (f) Measurements of the MQB
simulation give the autocorrelation function a(t), whose Fourier transform,F ½aðtÞ�, is the vibronic spectrum (red line in (b)), including lineshapes in
the presence of noise.
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as well as open quantum systems. It is a complex, Hermitian
function, meaning that its Fourier transform is real and can be
calculated with only t > 0. Due to the Fourier relation between a(t)
and the spectrum, the spectral resolution of the simulation is
determined by the maximum propagation time and the frequency
range by the size of the time steps. Therefore, the cost of the
simulation (i.e., the number of samples of a(t) needed) is deter-
mined by the desired properties of the spectrum (resolution and
range) and not by the number of eigenstates.

Therefore, a(t) is the only quantity whose measurement is
required to generate a vibronic spectrum. It can be measured
on a quantum simulator by keeping a copy of the initial
Fig. 2 Quantum circuits for simulating vibronic spectra. (a) General cir
d qudit states (thick line) and N bosonic modes (wavy line). By adding a
components of a(t) can bemeasured as the ŝz expectation value of the an
not. Âinit prepares the initial state, and R̂H is a Hadamard gate. (b) Simplifie
R̂(0,ref)
H and R̂(0,ref)

x represent gates acting on qudit states j0i and jrefi, and t
The initialisation Â(0)

init and backwards time propagation eiĤ
(0)t/ħ act only on

jrefihrefj leads to the same measurement outputs as in (a).

© 2023 The Author(s). Published by the Royal Society of Chemistry
wavefunction in superposition with the time-evolved wave-
function, so that their overlap can be determined at the end of
the simulation via an interference measurement. Fig. 2a
shows the conceptually simplest approach to do so on
a quantum simulator (either digital or analog) using the
phase kickback technique with an ancilla qubit,31,32 with
a circuit that is similar to more general approaches to
correlation-function measurement.33–35 An operation Âinit
prepares the initial state jJ0i on the quantum simulator (or
r̂0 for a mixed initial state), which is then evolved by eiĤt/ħjJ0i
(i.e., evolving with −Ĥ for a time t). A Hadamard gate places
the ancilla qubit in the superposition R̂Hj0i ¼ ðj0i þ j1iÞ= ffiffiffi

2
p

.

cuit to obtain the autocorrelation function from an MQB device with
n ancilla qubit (top row) to the MQB simulator, the real and imaginary
cilla, depending on whether the dashed-line gate R̂x(−p/2) is applied or
d circuit on an MQB simulator with an additional reference qudit state.
he Hamiltonian Ĥ′ and state preparation m̂′ are modified to include jrefi.
the initial electronic state. The expectation value of ŝ(0,ref)z = j0ih0j −

Chem. Sci., 2023, 14, 9439–9451 | 9441
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The dipole operator is then controlled by the ancilla to give

ðj0i5eiĤt=ħjJ0i þ j1i5bm eiĤt=ħjJ0iÞ=
ffiffiffi
2

p
. Forward time evolu-

tion followed by a controlled m̂† returns the j0i state to jJ0i,
with a total state given by ðj0i5jJ0i þ j1i5bm†

��JmðtÞiÞ=
ffiffiffi
2

p
.

The real part of a(t) is then given by the expectation value of ŝz
measurements on the ancilla, while the imaginary part can be
obtained by inserting an additional R̂x(−p/2) = eiŝxp/4 rotation
before measurement, either before or aer the two Hadamard
gates. Equivalently, the ancilla can be used to control both of
the time evolutions instead of the dipole operators.

The potentially impractical controlled unitary gates can, in
most cases, be avoided if using an MQB simulator. We
assume that the initial state jJ0i is well described by a single
electronic state, labelled j0i, although extension to more
electronic states is straightforward. To measure a(t) without
an ancilla and controlled unitary gates, we add an additional
electronic state to the simulator, i.e., for a simulation with
d electronic states, we require a (d + 1)-level qudit for
measurement of a(t). We call this additional electronic state
the reference state, jrefi, and use it to keep a copy of the initial
wavefunction jJ0i in superposition with the time-evolving
wavefunction (Fig. 2b). This is achieved using the

R̂(0,ref)
H gate, which prepares the state ðj0i þ jrefiÞ= ffiffiffi

2
p

, where
j0i is the electronic state of the initial wavefunction. jJ0i is
prepared on the bosonic modes by a single-electronic-state

operation Â(0)init, aer which its initial evolution is simulated

with eiĤ
(0)t/ħ, where Ĥ(0) = h0jĤj0i is the Hamiltonian

describing evolution on only the initial electronic state. The
modied operator m̂′ = m̂ + jrefihrefj acts on the original

d qudit states, giving ðbm eiĤ
ð0Þ

t=ħjJ0i þ jrefi5eiĤ
ð0Þ

t=ħjJ0iÞ=
ffiffiffi
2

p
.

This state then undergoes time evolution under the expanded
Hamiltonian

Ĥ ′ = Ĥ + Ĥ (0) 5 jrefihrefj, (3)

so that the jrefi component of the wavefunction returns to jJ0i
while the rest of the wavefunction propagates to jJm(t)i. Aer
the nal m̂†, a(t) is measured as the expectation value of ŝ(0,ref)z =

j0ih0j − jrefihrefj (with the R̂(0,ref)
x gate differentiating between

the real and imaginary parts).
In either scheme, the simulation needs to be repeated

sufficiently many times to numerically converge both the real
and imaginary parts of a(t) to the required precision for
a discrete number of times t. It is possible to halve the
number of measurements because the hermiticity of a(t)
implies that the spectrum can be reconstructed from only Re
a(t) (see Appendix A).

An MQB device such as a trapped-ion or cQED system can
simulate a wide range of realistic molecular Hamiltonians.24

Specically, an MQB simulator with second-order light–matter
interactions36 can simulate a quadratic vibronic-coupling (QVC)
Hamiltonian,24

ĤQVC ¼ Ĥ0 þ
Xd�1

n;m¼0

Ĉn;mjnihmj; (4)
9442 | Chem. Sci., 2023, 14, 9439–9451
which includes N free harmonic oscillators,

Ĥ0 ¼
PN
j¼1

ħuj

�
n̂j þ 1

2

�
, and expansion coefficients

Ĉn;m ¼ c
ðn;mÞ
0 þ

XN
j¼1

c
ðn;mÞ
j Q̂j þ

XN
j;k¼1

c
ðn;mÞ
j;k Q̂jQ̂k; (5)

describing perturbations of individual electronic potential
energy surfaces (n=m) and vibronic couplings between them (n
sm). In these equations, Q̂j ¼ ðMjuj=ħÞ1=2q̂j ¼ ðâ†j þ âjÞ=

ffiffiffi
2

p
are

the nuclear normal modes q̂j weighted by reduced mass Mj and
frequency uj, n̂j = â†j âj are the number operators, â†j and âj are
the bosonic creation and annihilation operators, jni are the
electronic states, and c are the vibronic expansion terms.

For the simulation of a QVC model spectrum, Ĥ(0) can
usually be chosen to be equal to Ĥ0. Mathematically, there are
two requirements for this to be met. First, as is usually the case
in molecular systems, the ground electronic state should have
negligible coupling to excited ones, Ĉn,0 = Ĉ0,n = 0. Second,
without loss of generality, we can choose Ĉn,m such that Ĉ0,0= 0.
2. Example: one-mode model of SO2

The simplest example of our approach involves dynamics on
a single electronic state with a single vibrational mode. This
type of model can be used to describe the photoelectron spec-
trum of the S0 / D0 transition of SO2 (Fig. 3a), which has
a bending mode with frequency ub = 2p × 12.44 THz, along
which the D0 electronic potential energy surface has
a displacement relative to S0 given by a = 1.716 (ref. 37) (in
unitless, mass- and frequency-scaled coordinates). This model
is described by the Hamiltonian

ĤSO2
¼ ħubn̂þ ES0jS0ihS0j þ

�
ED0

�
ffiffiffi
2

p
ħubaQ̂

	
jD0ihD0j; (6)

where ES0 and ED0
are the potential energies of S0 and D0 at Q =

0, and we removed the (constant) zero-point energy ħub/2. For
approximations involved, see Sec. 5.

Under the Condon approximation, we assume that the
electronic (dipole) transition completely transfers the pop-
ulation from S0 to D0 with no effect on the nuclear coordinates,
i.e., m̂ = jD0ihS0j + h.c. Aer transitioning to D0, the wave-
function is no longer stationary and the molecule begins to
vibrate (Fig. 3b).

To measure the autocorrelation function of SO2 on an MQB
simulator, we add a reference state to the model, with corre-
sponding Hamiltonian Ĥ(0) 5 jrefihrefj, where Ĥ(0) = Ĥ0 =

ħubn̂. This results in a Hamiltonian with three electronic states:
jS0i, jD0i, and jrefi. However, because m̂ causes 100% pop-
ulation transfer to D0 and ĤSO2

contains no terms that couple
the two electronic states, we can remove S0 from the model
completely, replacing ED0

with DE = ED0
− ES0 to conserve the

excitation energy. We can also remove the initial time evolution
eiĤ

(0)t/ħ, since jJ0i is a stationary state of Ĥ(0). The two remaining
electronic states can be represented by a qubit, j0i= jD0i and j1i
= jrefi, giving
© 2023 The Author(s). Published by the Royal Society of Chemistry
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Fig. 3 The trapped-ion simulation of the SO2 photoelectron spec-
trum. (a) Photoexcitation of SO2 from the neutral ground electronic
state (S0) leads to the ground cationic electronic state (D0), at

a geometry that is
ffiffiffi
2

p
a from the D0 minimum along the vibrational

mode. (b) Time evolution on D0 (green arrow) corresponds to bending
of the SO2 molecule. (c) In an ion-trap MQB simulator, the initial state

is prepared by displacing the ion position by �a= ffiffiffi
2

p
with a laser–ion

interaction (blue arrow). (d) Time evolution of the simulator (green
arrow) happens under a laser-induced spin-motion interaction that

causes the effective potentials to be shifted by �a=
ffiffiffi
2

p
in the j±i basis

(purple arrows).
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Ĥ
0
SO2

¼
�
ħubn̂�

ffiffiffi
2

p
ħubaQ̂þ DE

	
j0ih0j þ ħubn̂j1ih1j; (7)

which corresponds to eqn (4) with u1= ub, c
ð0;0Þ
1 ¼ ffiffiffi

2
p

ħuba, and
all other coefficients equal to zero. In this representation, the
corresponding dipole operator is m̂′ = , because the jD0i elec-
tronic state corresponds to the initial qubit state j0i.

For experimental implementation, Ĥ 0
SO2 can be transformed

into a more convenient, but equivalent, form (even though eqn
(7) is already in the general form suitable for MQB simulation).
First, we remove the constant term DE on j0i, which is the initial
excitation energy of the wavefunction from S0 to D0; doing so
leads to a constant frequency shi of the entire spectrum, which
© 2023 The Author(s). Published by the Royal Society of Chemistry
can be restored by adding DE/ħ to the frequencies aer the
spectrum is predicted. Next, we transform the Hamiltonian into
a form that is symmetric about Q = 0. In Ĥ 0

SO2, the minimum of

the D0 potential energy surface is at Q ¼ ffiffiffi
2

p
a and that of the

reference state is at Q = 0. These minima can be made
symmetric in a displaced coordinate system obtained using the
displacement operator D̂(−a/2) = e−a(â†+â)/2. Finally, the two
Hadamard gates can be incorporated into the time evolution.
Altogether, this gives

Ĥ 00
SO2

¼ R̂HD̂ð�a=2ÞĤ 0
SO2

D̂
†ð�a=2ÞR̂H

¼ ħubn̂þ ħubaffiffiffi
2

p bsxQ̂:
(8)

which is a Jaynes–Cummings-type interaction that we imple-
ment experimentally below. As a result of the Hadamard
transformation, jD0i and jrefi are now j+i and j−i (Fig. 3d),

where j�i ¼ ðj0i � j1iÞ= ffiffiffi
2

p
.

The overall circuit for this simulation is shown in Fig. 4a.
The initialisation consists of a Â(0)init = D̂(−a/2) operator, which
displaces the initial vibrational ground state into the same
displaced coordinates as the Hamiltonian. The time evolution
consists of the unitary e�iĤ

00
SO2t=ħ. The measurement of the real

part of a(t) proceeds directly from the qubit state, using the
operator ŝ(0,ref)z = ŝz. As before, the imaginary part requires the
additional R̂x(−p/2) gate.
3. Experimental quantum simulation

We experimentally demonstrate the one-mode SO2 simulation
using a trapped-ion MQB quantum simulator.38 Our system
connes a single 171Yb+ ion in a linear Paul trap, and we encode
a qubit in the ion's 2S1/2 hyperne ground-state manifold, j0ih
jF = 0, mF = 0i and j1i h jF = 1, mF = 0i. The ion's vibration in
the transverse x direction encodes the molecular vibration.

The key tool for manipulating the qubit and motional
wavepacket of the ion is a pair of Raman laser beams. As
detailed in Sec. 5, a bichromatic laser pulse can apply a state-
dependent displacement force (SDF) to the ion, described in
the interaction picture by the Hamiltonian

ĤI
SDF = ħUSŝx(â

† ei(dt+4) + h.c.), (9)

where the three adjustable parameters are the motional side-
band interaction strength US, the detuning of the bichromatic
components d, and the motional phase 4. In the Schrödinger
picture, this Hamiltonian takes the time-independent form

ĤSDF ¼ ħdn̂þ
ffiffiffi
2

p
ħUSbsx

�
cosð4ÞQ̂þ sinð4ÞP̂

	
; (10)

where P̂ is the conjugate momentum of Q̂. This equation is
identical to eqn (8) when 4 = 0, d = ub and US = uba/2. In
practice, these values need to be scaled from molecular
frequencies to experimental frequencies by a constant scaling
factor F whose value depends on the type of MQB simulator.24

The experimental pulse sequence, Fig. 4b, describes the four
stages of the simulation protocol: (i) cooling, (ii) initialisation,
(iii) time evolution, and (iv) measurement.
Chem. Sci., 2023, 14, 9439–9451 | 9443
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Fig. 4 Experimental time-domain simulation of the single-mode SO2 vibronic spectrum. (a) Quantum circuit diagram for the simulation to
extract the real and imaginary components of a(t), using one qubit and one bosonic mode. (b) Experimental pulse sequence implementing the
quantum circuit. (c and d) Simulations and measurements of a(t). “Theory + noise” indicates a simulation accounting for known sources of noise.
(e) Comparison of the Fourier transformed data from (c) and (d) with theoretical predictions. Dots indicate peakmaxima. Inset: comparison of the
spectroscopically observed spectrum at 320 K (ref. 23) with frequencies shifted to give ED0

= 0 and the ion-trap experiment. The decreasing peak
spacing in the SO2 spectrum is caused by a weak anharmonicity that is neglected in the single-mode model.
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Cooling prepares the ion in the ground state, from which
further operations can be executed. First, Doppler cooling and
sideband cooling are used to cool the motional degree of
freedom as close as possible to the ground state (we obtained �n
z 0.05). Second, optical pumping on the internal electronic
state is used to prepare the qubit state j0i. For details, see Sec. 5.

Initialising the SO2 simulation requires preparing the state
j0i 5 j−a/2i, where the rst ket refers to the qubit and the
second to the displaced motional ground state. In the three-
pulse initialisation sequence, the rst R̂y(p/2) pulse rotates the
qubit to the j+i state while the second R̂y(−p/2) pulse returns
the qubit to the j0i state. Between the two rotations, ĤSDF is
applied on resonance (d = 0, 4 = −p/2) for 0.093 ms, imple-
menting the operation j+i 5 j0i / j+i 5 j−a/2i with a/2 =

0.858. The overall sequence produces the desired j0i 5 j−a/2i.
For details, see Sec. 5.

Time evolution is accomplished using ĤSDF ¼ FĤ 00
SO2 with 4

= 0. We use the scaling factor F = 1.37 × 10−10 to convert
molecular timescales and frequencies (fs, THz) to trapped-ion
timescales and frequencies (ms, kHz). Doing so gives d = Fub

= 2p× 1.705 kHz andUS= Fuba/2= 2p× 1.463 kHz. To obtain
the time trace of a(t), we measure its value at 200 different times
t by repeating the experiment with the duration of unitary
evolution under ĤSDF varying between 0 and 2 ms, corre-
sponding to molecular durations of up to 274 fs.
9444 | Chem. Sci., 2023, 14, 9439–9451
The nal step in the simulation is the measurement of a(t),
which is carried out by measuring the qubit in the computa-
tional basis (for details, see Sec. 5). Reading out the imaginary
part of a(t) requires the additional R̂x(−p/2) gate on the qubit
following the displacement in the initialisation step.

The full experimental sequence above is repeated 500 times
for each duration t of the simulated time evolution in order to
converge the measurement observables.

Fig. 4c–e shows the agreement between our experimental
results and theoretical predictions. The predicted and
measured a(t) are shown in Fig. 4c and d. The theoretical curve
is calculated as shown by the circuit in Fig. 4a, using eqn (8) for
the time evolution. To give a non-zero linewidth in the theo-
retical spectrum, the predicted a(t) was multiplied by an expo-
nential decay of 6 ms (corresponding to 822 fs at the molecular
timescale). Fig. 4e shows the agreement between the predicted
and measured spectra, i.e., the Fourier transforms of the theo-
retical and experimental a(t).

Despite the good overall agreement between theory and
experiment, there are minor differences between the two, most
of which can be explained by the presence of noise in the
trapped-ion simulator. Points of difference include a dri in the
a(t) signal with simulation time, discrepancies in peak heights,
and asymmetric lineshapes. Most of the discrepancies can be
accounted for by adding a model of experimental noise to our
© 2023 The Author(s). Published by the Royal Society of Chemistry
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theory. This simulation includes a linear frequency dri with
the Hamiltonian Ĥ

fit
SO2

¼ Ĥ 00
SO2 þ ddn̂t and uses an initial

thermal state with an average motional state population �n. The
evolution of the density operator r̂ obeys the master equation

vbr
vt

¼ � i

ħ

h
Ĥ

fit

SO2
; briþ �ghD½â†� þ 2

sd
D½n̂�

�br; (11)

where D½L̂�br ¼ L̂brL̂† � 1
2
fL̂†L̂; brg is a Lindblad superoperator

acting on r̂ for the jump operator L̂. The dissipation is described
by a motional heating rate gh and a pure motional dephasing
lifetime sd. The noise parameters are tted to the measured a(t)
using non-linear least squares, giving dd = 2p × 52 Hz ms−1, �n
= 0.061, gh = 43 s−1 and sd = 110 ms. This yields an effective
motional coherence time of 33 ms, in agreement with the
experimentally measured value (see Sec. 5). The simulation that
includes noise agrees better with the experiment, accounting
for the signal dri in a(t) using the frequency dri (Fig. 4c and
d), as well as linewidths and peak heights using �n, gh and sd
(Fig. 4e).

4. Discussion

Our approach has two types of advantages over existing
proposals for the quantum simulation of spectroscopy: those
which result from our theoretical framing of the simulation,
and those that come from our choice of experimental platform.

The advantages of our theoretical framework stem from
framing molecular spectroscopy in the time domain. Our work
mirrors the development of classical computing methods in the
time domain, which greatly simplied the calculation of spectra
for high-dimensional systems without the need to resolve
eigenvalues.29,30 In the time domain, spectroscopy is an initial-
value problem, rather than an eigenvalue problem where the
number of solutions grows exponentially with system size. This
reframing leads to two distinct advantages over competing
proposals for the analog quantum simulation of spectroscopy:
scalability and generality.

The scalability of our approach stems from the exponentially
reduced number of measurements needed to predict the spec-
trum. In frequency-domain approaches, the number of eigen-
values (i.e., peaks) grows exponentially with the number of
modes (i.e., with molecule size), each of which needs to be
sampled to determine its intensity. Even if the number of
eigenvalues is truncated on an ad hoc basis, the number of
signicant eigenvalues grows rapidly. For example, the tech-
nique employed by Shen et al.19 involves a sequence of laser
pulses to project the population of each multimode motional
state jn1, n2, ., nNi onto the qubit state population; if each
mode occupation is truncated at nmax, the computational cost
scales exponentially as nmax

N. By contrast, in time-domain
approaches such as ours, the number of measurements
required is independent of system size. Instead, the number of
measurements is determined by the desired frequency range
and resolution of the spectrum, which are the inverses of the
time step and the total simulation time, respectively. Perfect
spectral resolution is not necessary for characterising a spec-
trum, since measured spectra of even modestly sized molecules
© 2023 The Author(s). Published by the Royal Society of Chemistry
have broad features of overlapping peaks, especially when
environmental effects, strong coupling, and limited measure-
ment resolution are considered. Therefore, the cost of a time-
domain simulation is determined by experimentally relevant
parameters (spectral range and resolution), rather than the size
of the underlying Hamiltonian.

As for generality, our method can be used to predict the
spectroscopy of any chemical system due to the fully general
relationship between s(u) and F ½aðtÞ� shown in eqn (2). The
observable we measure, a(t) = hm†(0)m(t)i,28,30 is dened without
an eigenstate expansion and can, in principle, be efficiently
measured on any quantum simulator, including those simu-
lating open quantum systems, vibronic couplings, nonlinear-
ities, or non-Condon effects.

The simulation of open quantum system is the most striking
example of the generality of the time-domain approach. Intro-
ducing controlled noise into a simulation allows an MQB
simulator to simulate environmental effects such as peak
broadening24 with the same number of measurements of a(t). By
contrast, frequency-domain approaches typically fail on open
systems, which no longer have discrete eigenstates that can be
measured one by one. Furthermore, in the time-domain
approach, initial conditions can likewise include mixed states
such as thermal states, allowing simulations of spectroscopy of
molecules at nite temperature without additional experi-
mental resources. By contrast, doing so in the frequency
domain requires multiple experiments16 or doubling the simu-
lator size.17

The generality of our approach also extends to the ability to
include vibronic couplings (eqn (4), n s m) and non-Condon
effects. Vibronic coupling is ubiquitous in UV-visible spectros-
copy, and, in the time domain, any approach able to simulate
dynamics with vibronic coupling24 can also predict the spec-
trum. In contrast, all frequency-domain analog simulation
approaches use Duschinsky transformations to prepare the
initial state in the vibrational basis of the nal electronic
state.16,17,19,21,22 This is a powerful technique for energetically
separated electronic states, but cannot describe vibronic
coupling. In addition, our approach has the potential to simu-
late non-Condon effects (the dependence of m̂ on nuclear
coordinates) with no additional experimental resources. In
comparison, non-Condon effects require multiple simulations
for current frequency-domain approaches.22

Turning to the advantages of our experimental demonstration,
the use of MQB simulators offers a signicant reduction in
required quantum resources over digital quantum simulation
approaches. Both analog MQB and digital simulations of
dynamics—either of which could be used for our time-domain
simulation of spectroscopy—require resources that scale linearly
with system size;24 however, the resource cost per mode is
considerably higher in digital approaches, where many qubits
would be needed to adequately represent a single vibrational
mode. For example, our demonstration of SO2 with a single
trapped ion is equivalent to a digital encoding with at least 6
qubits (assuming 32 Fock states per mode). MQB simulation also
comes with a time advantage, since the harmonicmotion native to
an MQB simulator would require many gates to implement
Chem. Sci., 2023, 14, 9439–9451 | 9445
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digitally. Finally, the relative frequencies of qudit and bosonic
levels on a trapped-ion MQB simulator lead to relative electronic
and vibrational noise strengths that are similar to those in
molecules, which can be exploited for simulating open quantum
systems and which would not be the case for digital simulation,
where all qubits are ordinarily assumed to experience comparable
noise.

Our experimental results demonstrate the availability of the
essential MQB building blocks in existing trapped-ion tech-
nology. Our demonstration is a proof of principle, and further
work is necessary to reach a scale where it could outperform
classical computers by simulating larger, more complicated
molecules. Indeed, eqn (6) captures the absorption of a single
displaced harmonic oscillator, and can be solved analytically.28

Nevertheless, we see a clear path towards integrating compli-
cated, non-linear vibronic-coupling Hamiltonians into analog
spectroscopy simulations of molecules large enough to be
intractable on classical computers. All of the necessary
components for a more general, QVC simulation24 have already
been demonstrated in trapped-ion systems, including those
with qudits and more vibrational modes. In particular, our
approach can incorporate more modes using an additional
Fig. 5 Fourier transforms of different components of the autocorre-
lation function a(t), using the D0 photoelectron spectrum of SO2 as an
example.37 (a) Fourier transforms of the real and imaginary compo-
nents of a(t) and their sum. (b) Fourier transforms of real and imaginary
components of a(t) simulated with a frequency shift of 3= 2p× 30 THz
and with frequencies corrected by −3.

9446 | Chem. Sci., 2023, 14, 9439–9451
Raman interaction for every mode, which can be efficiently
implemented with the same experimental setup by interleaving
different interactions using trotterisation,24,39 an established
technique in trapped ions.40 Furthermore, higher-order terms
in the vibronic-coupling Hamiltonian—responsible for anhar-
monicities and nonlinearities that are particularly difficult to
simulate classically—can be incorporated into both the simu-
lated Hamiltonian and the initial state preparation using
techniques such as motional squeezing and mode-mixing19,36,41

or using ancillary ions.42 In addition, more electronic states
could be simulated using recent experimental advances in
trapped-ion qudits.43,44

As in any analog simulation—quantum or classical—the
absence of error correction means that excessive noise can lead
to inadequate results. However, our demonstration shows that,
despite the lack of error correction, existing trapped-ion tech-
nology can provide remarkable agreement with theoretical
predictions. Moreover, our analysis of experimental noise
sources shows that most of the imperfections in our simulation
can be accounted for, making it clear which experimental
improvements are necessary if greater accuracy is desired.
When simulating larger molecules or those open to the envi-
ronment—where classical chemical simulations struggle the
most—the presence of noise in the simulator becomes a feature
that can be controlled. For instance, the inset in Fig. 4e shows
that our simulation gives narrower peaks than are measured in
a high-precision spectroscopic experiment at 320 K, meaning
that we would have to inject additional noise to fully reproduce
the spectroscopic observations.

Our method's most likely path to quantum advantage is by
simulating a combination of effects that make classical simu-
lation challenging, including vibronic coupling and a nite-
temperature bath. We previously outlined24 the favourable
resource scaling that our approach can achieve for such
systems. For example, a full-dimensional quadratic vibronic
coupling model of pyrazine is a challenging system for classical
computers.45 It involves 24 modes and two electronic states,
meaning that our technique could simulate its spectrum with 8
trapped ions.24 For comparison, previous ion-trap experiments
have controlled interactions of as many as 20 ions,46 putting our
example within existing experimental feasibility.

Overall, our approach shows the remarkable advantages—both
theoretical and experimental—of using the time-domain repre-
sentation of spectroscopy in analog quantum simulation. By using
a one-to-one mapping between simulated molecular vibrations
and bosonic modes in a quantum simulator, our scheme provides
an exponential improvement in resource requirements compared
to existing quantum methods using frequency-domain simula-
tions. In addition, it straightforwardly generalises to simulations
of more complicated chemical systems or those open to the
environment. Our proof-of-principle demonstration of the
simplest example of our approach showcases all of the necessary
experimental building blocks, giving us condence that foresee-
able developments in quantum technology will allow larger
simulations of molecular spectroscopy to occur in the near term,
including of molecules that could not be simulated on any clas-
sical computer.
© 2023 The Author(s). Published by the Royal Society of Chemistry
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5. Methods
5.1 Hamiltonian for SO2

We selected SO2 for our proof-of-principle demonstration
because it is well described by the Hamiltonian in eqn (6). This
Hamiltonian includes several simplications to the physics of
SO2, all of which could be relaxed in a more detailed model.
First, the model assumes equal frequency ub = 2p × 12.44 THz
for both electronic states, although the ground electronic state
has a slightly higher vibrational frequency of 2p × 15.55 THz.37

Second, it neglects higher-lying electronic states (and vibronic
couplings to them) due to their large energetic separation from
S0 and D0. Finally, only the bending mode is included because
the displacements between S0 and D0 are small along the other
two vibrational modes, the symmetric and asymmetric
stretches, being a = −0.026 and a = 0, respectively.37
5.2 Numerical methods

Time evolution for all theoretical simulations was simulated
using the master equation solver in QuTiP.47 Curve tting was
performed with the Levenberg–Marquardt algorithm in SciPy.48

All Fourier transforms were calculated using the Fourier–Padé
approximation (FPA). Unlike a discrete Fourier transform (DFT),
the FPA nds coefficients of continuous rational functions that
approximate the Fourier transform from discrete data. Relative
to DFT, it has a faster convergence for features of a spectrum
generated from a nite-length time series.49 To avoid poles due
to the rational function expansion, a(t) was multiplied by
a frequency shi eiqt with q = 2p × 8 kHz before the Fourier
transform, which was later corrected by shiing the spectrum
by −q. Testing values of q in the range 2p × 7–9 kHz showed no
change in the spectrum, indicating no poles or spurious peaks.
5.3 Ion trap characteristics

The motional mode frequencies of our ion-trap MQB simulator
are {ux, uy, uz} = 2p × {1.31, 1.45, 0.5} MHz. Using Ramsey-type
measurements, we nd native (uncorrected) coherence times of
T*
2 ¼ 8:7 s for the qubit and an effective 35 ms for the transverse

motional mode along x. We measured a motional mode
rethermalisation (heating) rate of 0.2 quanta s−1 in the absence of
laser light.
Fig. 6 Calibration of symmetric frequency detuning. (a) Pulse
sequence for calibrating the symmetric detuning d with respect to the
motional sidebands. (b) At resonance, the spin states move in straight
trajectories and return to the origin, leading to final qubit state j0i. (c) In
the presence of a frequency offset ds 0 during the first SDF pulse, the
spin states j+i and j−i follow a circular trajectory, completing one loop
in time t = 2p/d. For a pulse time s < 2p/d, the spin states will be
displaced by a small amount from the origin. The phase offset of fM =

p for the second SDF pulse again displaces along a similar trajectory,
but with the centre of a circle displaced due to the first pulse. The
residual displacement along the imaginary axis results in measuring
significant population in the j1i state. (d) The resonance condition is
found by sweeping the offset detuning and observing where the
population measurement is closest to 0. This data was collected by
repeating the pulse sequence 300 times with an SDF pulse time of 300
ms. The error bars correspond to uncertainty due to quantum
projection noise.
5.4 Coherent operations

The qubit states and motional modes are manipulated by
stimulated Raman transitions driven by a 355 nm pulsed
laser.50,51 Two separately controllable 355 nm laser beams are
focused on the ion's location; they form an orthogonal geometry
such that only the x and y transverse modes of motion can be
driven. The applied laser light is controlled using acousto-optic
modulators (AOM), driven by radio-frequency (RF) signals.
Changing the RF signal amplitude, frequency and phase allows
the tuning of US, d and 4 in eqn (9), respectively. These
parameters are controlled using RF signal generators as part of
the experiment control system.52
© 2023 The Author(s). Published by the Royal Society of Chemistry
5.5 Cooling and qubit state preparation

A laser, red-detuned from the 2S1/2 / 2P1/2 transition near
369.5 nm, is used to Doppler cool the motional modes to
a thermal state. The Doppler-cooled ion temperature is further
reduced with pulsed resolved-sideband cooling.53,54 The qubit
state is prepared by optically pumping to j0i with a beam
resonant with the 2S1/2 / 2P1/2 transition. The 2P1/2 state has
a non-zero probability of decaying which results in population
in 2D3/2 and 2F7/2 states; this leaves the ion state off-resonant
from the Doppler cooling laser. Therefore, additional light
elds at 935 nm and 760 nm are used to depopulate these states
and return the ion to the cooling cycle.55,56
5.6 SDF interaction

Using a two-tone RF signal to drive one of the 355 nm laser
beams, a bichromatic light eld is generated, which can
simultaneously drive the red and blue motional sideband
transitions adjacent to the qubit resonance. This bichromatic
Chem. Sci., 2023, 14, 9439–9451 | 9447
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light creates the state-dependent force described by ĤSDF, which
acts in the ŝx eigenbasis of the qubit.57 Through a prior rotation
of the internal qubit state into the eigenbasis, the SDF enacts
a coherent displacement of the motional wavepacket in
a particular direction in phase space.58 For details of the cali-
bration procedure, see Appendix B.
5.7 Measurement

The qubit state is measured using state-dependent uorescence,
induced by a laser beam resonant with the 2S1/2j1i/ 2P1/2jF = 0i
transition.55,59 The j0i state is off-resonant from the detection
beam by roughly 2p × 14.75 GHz and only scatters an average of
0.1 photon counts during a detection window. Measurement of
the j1i state produces 16.7 photon counts. Using a threshold of 4
counts we are able to infer the qubit state with a detection error of
1.2%.56
Appendices
A. Simulation of positive-frequency spectra

The most general approach to measure a(t) with an MQB
simulator requires two experiments at each time t: one to
measure Re a(t), and another to measure Im a(t). However, the
total number of measurements can be halved by exploiting the
hermiticity of a(t) to only measure Re a(t).

The autocorrelation is a complex, Hermitian function,
meaning a(t)= a*(−t) and thus Re a(t)= Re a(−t) is even and Im
a(t) = −Im a(−t) is odd. The Fourier transform maintains parity
and multiplies odd functions by i. Thus, F ½Re aðtÞ� is real and
even, F ½i Im aðtÞ� is real and odd, and the spectrum F ½aðtÞ� is
the sum of the two, as shown in Fig. 5a. If all features of the
spectrum appeared at strictly positive frequencies, it would
mean that F ½Re aðtÞ� ¼ F ½i Im aðtÞ� for u > 0, and the two
components would cancel for u < 0. Therefore, only one of the
two would be necessary to produce the spectrum.
Fig. 7 Bichromatic phase calibration. (a) The pulse sequence used to
calibrate the phase of the bichromatic field fS with respect to the
carrier phase fC = 0 set by the first p/2 pulse. (b) An example of the
sine wave traced out by a full cycle of fS. The phase is varied and the
operation of the SDF on its eigenstate ŝx is indicated by measurement
of the qubit state having a near-zero population in j1i. In this case, the
phases fR and fB are set to 1.59 radians. The pulse sequence was
repeated 100 times for each phase setting.
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In cases where features of the spectrum (i.e., peaks and their
linewidths) appear at u# 0, we can introduce a frequency shi 3

such that all features appear at u + 3 > 0. This corresponds to
subtracting a constant frequency term from the reference state,
or

Ĥ
0
3 ¼ Ĥ

0 � ħ3jrefihrefj: (A1)

Fig. 5b shows the spectrum and its components when
a frequency shi 3 is applied. Aer the Fourier transform, the
correct frequencies are restored by subtracting 3, i.e., translating
the spectrum by 3 in frequency. Because the real and imaginary
components are equal to F ½aðtÞ�=2 for u > −3, experimental
measurement of Re a(t) is sufficient to obtain the spectrum.

Choosing 3 requires an estimate of the frequency and line-
width of the lowest-frequency peak in the spectrum. For some of
Hamiltonians, such as QVC Hamiltonians with weak vibronic
coupling near Q = 0, the lowest frequency can be estimated as
the zero-point energy of the lowest excited electronic state. The
linewidth can be estimated from the noise conditions of the
simulator using previous experimental measurements. In the
absence of a good estimate of the lowest frequency or its line-
width, low-resolution experiments (i.e., with a short propaga-
tion time) can be used to increase 3 until all features of the
spectrum are well separated from u = 0.
B. Experimental calibration

Operations with the trapped ion's degrees of freedom are driven
by coherent laser interactions, and in this appendix we describe
how the relevant laser parameters were calibrated.

In our experiment, three main laser interactions are used:
carrier, and red- and blue-sideband transitions. Their Hamil-
tonians in the interaction picture are

Ĥ
I

C ¼ ħ
U

2


bsþ eifC þ h:c:
�
; (B1)

Ĥ
I

R ¼ ħ
hU

2


bsþâ e�iðdt�fRÞ þ h:c:
�
; (B2)

Ĥ
I

B ¼ ħ
hU

2


bsþâ
† e�iðdtþfBÞ þ h:c:

�
; (B3)

where the Rabi frequency U quanties the coupling strength
between the qubit states and the applied laser light, and ŝ± =

(ŝx H iŝy)/2. The light–ion interaction imprints a phase rela-
tionship, which can be controlled by the parameter fC, allowing
for qubit state rotations around the x or y axis of the Bloch
sphere. The sideband interactions in both eqn (B2) and (B3) are
similar to the carrier interaction, but they also contain the
bosonic ladder operators â and â† for a single motional mode.
Their interaction strength is scaled by the Lamb–Dicke

parameter h ¼ 2p
l

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ħ=2mux

p
¼ 0:084, where l is the laser

wavelength and m is the ion's mass. h is included in eqn (9) via
the sideband Rabi frequency US = hU/2. Similar to the carrier
interaction, the sideband interactions have associated phases
© 2023 The Author(s). Published by the Royal Society of Chemistry
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Fig. 8 Calibrating the duration of the bichromatic pulses. (a) The pulse
sequence used to calibrate the displacement operation. Longer SDF
pulses create larger displacements D̂(b). The displacement distance
can be inferred from fitting the time evolution of a blue-sideband-
driven population to eqn (B5). Examples in (b)–(d) correspond to
applying D̂(b) for t = 0.05, 0.15 and 0.4 ms with US = 2p × 0.850 kHz.
Each data point is an average of 200 repetitions.
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fR and fB. The detuning d is a symmetric frequency offset from
resonant motional sidebands.

Simultaneously driving the red and blue sidebands imple-
ments a bichromatic pulse described by

Ĥ
I

SB ¼ Ĥ
I

R þ Ĥ
I

B ¼ ħUS


bsþ eifS þ h:c:
�

â† eiðdtþfMÞ þ h:c:

�
;

(B4)

which depends on the spin phase fS = (fR + fB)/2 and the
motional phase fM = (fB − fR)/2. Experimentally, fS and fM

can have an arbitrary, constant offset, and they are adjusted so
that eqn (B4) has equivalent phase relationships to eqn (9). The
bichromatic pulse is used to both initialise the ion's motional
wavepacket into a displaced coherent state and to drive the
simulated molecular time evolution. In the following, we
describe how the physical parameters that make up the
bichromatic elds are calibrated, namely their frequencies,
amplitudes, phases, and durations.

Laser frequencies are calibrated as described in Fig. 6, allowing
the control of the detuning d in eqn (B4). The sequence consists of
two SDF pulses of equal duration, with a p phase shi between
them.58 If the bichromatic elds are resonant with the motional
sidebands, the spin and motion are disentangled aer the SDF
evolutions (see Fig. 6b). However, in the presence of motional
frequency offsets, the spin and motion remain entangled (see
© 2023 The Author(s). Published by the Royal Society of Chemistry
Fig. 6c), leading to measurements of a partially mixed qubit state.
Static frequency offsets are therefore calibrated by symmetrically
varying the bichromatic elds' frequencies and measuring qubit
population in the ŝz basis. Using this method, we are able to
calibrate the frequencies of the bichromatic elds to within 50 Hz.
Furthermore, calibrations of the motional frequency are sched-
uled every 5 minutes to mitigate the effects of dri.

The amplitudes of the two tones of the bichromatic eld,
corresponding to the red and blue sidebands, are calibrated
independently. An imbalance leads to an unwanted AC-Stark
shi affecting the qubit frequency and residual coupling
between the qubit state and the bosonic modes. We calibrate
the amplitudes by measuring their Rabi frequencies from Rabi
oscillations. The Rabi frequencies are equalised by adjusting
the respective RF signal's amplitude. In practice, we nd
a difference of <3% between Rabi frequencies of two tones and
negligible variation on the timescale of an experiment.

We use the pulse sequence depicted in Fig. 7a to calibrate the
phases of the bichromatic elds such that the displacement
operator enacted by the SDF interaction acts in the ŝx eigen-
basis of the qubit. In the calibration, we set fR = fB and vary
them simultaneously. We nd the phase for which the spin
state is unchanged, indicating that the overall operation is
acting on the ŝx eigenbasis.

Once the frequency, amplitude, and phase are calibrated
with sufficient precision, the duration of the pulse can be cali-
brated to set the displacement to the desired value. The pulse
sequence for the calibration is shown in Fig. 8a. The magnitude
jbj of the displacement operator D̂(b) is determined by the Rabi
frequency and the SDF pulse duration; for simplicity, we do not
change the Rabi frequency and instead adjust only the pulse
duration. Aer the displacement operation, the magnitude is
estimated by observing the change in qubit state population
aer driving a blue-sideband transition.60 The resulting spin
probability follows

Pj1iðtÞ ¼ 1

2

 
1� e�zt�n

XN
k¼0

nk

k!
cosðUktÞ

!
; (B5)

where Uk ¼ e�h
2=2hULk1ðh2Þ

ffiffiffiffiffiffiffiffiffiffiffi
k þ 1

p
is the Rabi frequency of the

blue sideband for Fock state k, Lk
1(x) is the Laguerre polynomial

in x of order k, and the tting parameter z introduces amplitude
damping that might be present due to motional state deco-
herence. The observed oscillations are tted to extract jbj (see
Fig. 8b–d), allowing the bichromatic elds' duration to be varied
to correct the displacement magnitude.
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