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of full spin systems using
uncertainty-aware machine learning†

Jake Williams * and Eric Jonas

Accurate simulation of solution NMR spectra requires knowledge of all chemical shift and scalar coupling

parameters, traditionally accomplished by heuristic-based techniques or ab initio computational

chemistry methods. Here we present a novel machine learning technique which combines uncertainty-

aware deep learning with rapid estimates of conformational geometries to generate Full Spin System

Predictions with UnCertainty (FullSSPrUCe). We improve on previous state of the art in accuracy on

chemical shift values, predicting protons to within 0.209 ppm and carbons to within 1.213 ppm. Further,

we are able to predict all scalar coupling values, unlike previous GNN models, achieving 3JHH accuracies

between 0.838 Hz and 1.392 Hz on small experimental datasets. Our uncertainty quantification shows

a strong, useful correlation with accuracy, with the most confident predictions having significantly

reduced error, including our top-80% most confident proton shift predictions having an average error of

only 0.140 ppm. We also properly handle stereoisomerism and intelligently augment experimental data

with ab initio data through disagreement regularization to account for deficiencies in training data.
1 Introduction

Nuclear magnetic resonance (NMR) spectroscopy is a non-
destructive spectroscopic tool for the understanding and
elucidation of molecular structure. Due to the challenges in
procuring and analyzing experimental results, recent work has
focused on computational generation of spectral parameters to
help chemists. Computational results can be used to conrm
experimental analysis1 or as rapid estimations for downstream
tasks such as stereoisomer identication.2

Computational methods for generating, predicting and
understanding NMR parameters are studied and implemented
at multiple levels of theory through the use of a variety of
physics-based and machine learning techniques. Towards the
higher levels of theory are rst principle (ab initio) techniques,
which use our knowledge of physics and chemistry to compute
molecular properties. A frequently used ab initio technique is
density functional theory (DFT), which models electron densi-
ties to calculate molecular properties. Advances in DFT have
allowed it to produce high quality shi and coupling values3,4

which allows them to be used in a variety of practical applica-
tions and as a common point of comparison.1,5,6 Towards the
lower levels of theory are machine learning (ML) techniques,
which primarily use data to determine their predictions. We
explore the advancements in ML models in Section 2.
sity of Chicago, Chicago, USA. E-mail:

u

tion (ESI) available. See DOI:
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One of the major distinctions between techniques and
individual models is their use of a 2D or 3D representation of
a molecule. Molecules are commonly represented as graphs for
the purposes of instruction and modeling, and this extends to
some computational techniques. The mathematical represen-
tation of a graph, a set of vertices and the edges which connect
them, is a two dimensional structure. Molecules cannot be
described solely by their connectivity, however, as 3D properties
such as varying bond angles and lengths can greatly impact the
shape of a molecule and its resulting spectrum. This occurs due
to the relatively long acquisition period of NMR (usually
between 50 ms and up to a few second),7 allowing the device to
observe multiple conformations of the same molecule and the
spectrum to be composed of their averages.8 It is also suscep-
tible to isomeric differences,2 which are not observed in 2D
structures.

DFT (along with most ab initio techniques) uses exact atom
coordinates rather than a graph. Machine learning techniques,
on the other hand, vary greatly in their usage of 2D or 3D
structures. Those that do use 3D structures typically do so by
generating a conformer or set of conformers using DFT.9,10 DFT
is slow, oen prohibitively so, thus other methods for gener-
ating conformers may be considered, including minimizing
force elds, parallel-tempering and distance geometry tech-
niques, each with their own approximation to speed tradeoff.
ETKDG11 is one such distance geometry technique which
incorporates experimental and physical knowledge to improve
its conformer generation.

Using machine learning and the 3D structure of a molecule,
we seek to predict all chemical shi and coupling parameters,
© 2023 The Author(s). Published by the Royal Society of Chemistry

http://crossmark.crossref.org/dialog/?doi=10.1039/d3sc01930f&domain=pdf&date_stamp=2023-10-08
http://orcid.org/0000-0001-9714-1851
https://doi.org/10.1039/d3sc01930f
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
https://doi.org/10.1039/d3sc01930f
https://pubs.rsc.org/en/journals/journal/SC
https://pubs.rsc.org/en/journals/journal/SC?issueid=SC014039


Edge Article Chemical Science

O
pe

n 
A

cc
es

s 
A

rt
ic

le
. P

ub
lis

he
d 

on
 1

5 
Se

pt
em

be
r 

20
23

. D
ow

nl
oa

de
d 

on
 7

/2
6/

20
25

 3
:5

1:
41

 A
M

. 
 T

hi
s 

ar
tic

le
 is

 li
ce

ns
ed

 u
nd

er
 a

 C
re

at
iv

e 
C

om
m

on
s 

A
ttr

ib
ut

io
n 

3.
0 

U
np

or
te

d 
L

ic
en

ce
.

View Article Online
and provide a measure of uncertainty in our predictions. In this
paper, we will briey explore other machine learning based
techniques for NMR prediction to highlight our improvements.
We will then demonstrate our success across multiple predic-
tion tasks and performance metrics, before giving a detailed
explanation of our methodology.

2 Prior work

NMR parameter prediction by learning a model through data
dates back to the 1970s and the introduction of HOSE codes.12

This early work used featurization of atomic neighborhoods
with data to create nearest neighbor models for predicting
unknown spectra. Investments into larger datasets and
machine learning techniques have given rise to new methods,
such as IMPRESSION,9 which uses Kernel Ridge Regression to
predict shi and coupling values. These methods both seek to
categorize the local environment of an atom and then use well
established mathematical techniques to compare the environ-
ment to those in a dataset. However, HOSE codes are generated
from a 2D structure, while IMPRESSION requires a 3D structure
obtained via DFT as input.13

With the advancement of deep learning, other recent models
have adopted graph neural networks (GNNs) for this prediction
task. Graph neural networks operate on a graph (a set of vertices
and the edges that connect them) to predict per-vertex, per-edge,
and per-graph properties. This connects naturally to the graphical
model of a molecule and GNNs enforce relational biases14 that
should be highly advantageous in NMR prediction tasks. Some
networks, such as the model produced by Jonas and Kuhn,15 use
a 2D molecule representation to strictly t the GNN paradigm.
Others, such as the CASCADE model,10 use the full 3D structure
from DFT to better inform predictions. The 2D versus 3D repre-
sentation questions may have limited some of these applications,
as GNN models thus far have been limited solely to predicting
chemical shis, with no predictions of scalar couplings.

The further these models move from ab initio based tech-
niques, the more important it is to understand their modes of
failure. Even DFT can have major breakdowns that make it
unreliable in some domains.16 Understanding whether
a prediction can be trusted and to what degree is an important
direction of work that is rarely addressed in machine learning
tasks. Previous works have used ensembling9 or ensembling-
like15 techniques to measure the uncertainty in their predic-
tions, and we follow in a similar vein.

Our model generates Full Spin System Predictions with
UnCertainty (FullSSPrUCe), meaning it predicts both chemical
shi and scalar coupling values using a graph neural network
with a 3D structure. Further, where previous MLmethods which
use 3D structures have taken their structures from DFT, we use
distance geometries from ETKDG to make faster predictions.
Lastly, we continue the previous work done to model uncer-
tainty by providing a quantied estimate with each prediction.
Thus, our model improves on the state-of-the-art by making
more accurate predictions of full spin systems using
conformers generated with faster methods, while providing
a quantied estimate of uncertainty.
© 2023 The Author(s). Published by the Royal Society of Chemistry
3 Results

First, we compare the accuracy of our model to previous works
by examining its chemical shi and scalar coupling values on
a well-established dataset. As shown in Fig. 1, this is a straight
forward task in which we take each molecule in the dataset,
generate its conformers, and then make predictions using our
model. We then compare to the ground truth from the dataset
to produce a mean average error (MAE) across the dataset. We
compare our MAE to the other models on experimental and ab
initio results. For more details on the structure of the model (the
“FullSSPrUCe” box in Fig. 1), see Section 4.

We will then consider the impact of our uncertainty quan-
tication as a tool for sorting and selecting predictions. We
perform uncertainty quantication by showing different
portions of our model different subsets of the training data. We
can then use all sections of the model at test time and compare
their differences to estimate uncertainty, as shown in Fig. 9. As
opposed to traditional ensemble methods, such as IMPRES-
SION,9 the result is a single model, trained only once, but with
many of the benets of full ensemble techniques. We refer to
this method as bootstrapping, alluding to a similar method in
statistics. This method is explained in detail in Section 4.4.

We then look at the impact of using ETKDG for conformer
generation. We explore both the differences in performance and
time for our model. We will also consider the downstream task
of stereoisomer identication, which is enabled by the 3D
structures and inspired by DP4.2

Lastly, we consider a prediction task in which both experi-
mental and ab initio training data is available. This has tradi-
tionally been attempted using transfer learning,10 however we
introduce a new method we call disagreement regularization.
Disagreement regularization learns to predict experimental and
ab initio data simultaneously, moderating the loss function
along two channels by how similar the experimental and ab
initio ground truth values are. See Section 4.5 for details on this
loss function.
3.1 FullSSPrUCe accurately predicts shis and coupling

We compare initially to the other machine learning based
models IMPRESSION,9 CASCADE,10 and the Jonas and Kuhn
GNN.15 IMPRESSION is a kernel-based technique, which
compares the local environments of atoms based on DFT
conformers. CASCADE is a set of three GNN based models, one
for predicting ab initio values from DFT-optimized geometries
(DFTNN), one for predicting experimental values from DFT-
optimized geometries (ExpNN-d), and one for predicting
experimental values from molecular mechanics based geome-
tries (ExpNN-ff). Jonas and Kuhn's GNN uses 2D structures to
predict experimental values.

Throughout this section, each of our models is trained and
evaluated on data from the NMRShiDB.17 This is a user-
contributed database of experimental NMR shi values for
small molecules, which has been used previously to train and
evaluate machine learning models, including those to which we
are comparing our model.10,15 For our purposes, we further
Chem. Sci., 2023, 14, 10902–10913 | 10903
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Fig. 1 In the standard prediction task, we take as input the 2D representation of any small molecule (a). We then generate a set of 3D conformers
(b) which serve as input to our GNN based model (c). This allows us to generate the spin system parameters that fully determine the molecule's
spectrum (d).
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narrowed down the molecules to use to those with at most 128
atoms (including protons) and with only atoms H, C, O, N, F, S,
P and Cl, resulting in approximately 33k molecules (see ESI† for
more details). For each of these molecules, which have existing
experimental parameters, we used DFT to compute an addi-
tional set of parameters. Thus, for the NMRShiDB molecules,
we have two ways that we can train and evaluate models – on
experimental or ab initio data. Note that in both cases, the input
remains the same – a 2D representation (SMILES string, etc.) of
a molecule, from which we will use ETKDG to generate
conformers. This means that when performing an ab initio
prediction task, we are not predicting the results from the same
nal conformer that the DFT method would have. Here, models
Table 1 Comparison of chemical shift testing accuracy, as measured b
available, we compare proton (1H) and carbon (13C) predictions on both

Model Proton experimental Proto

Gerrard:IMPRESSION9 — 0.260
Guan:CASCADE10 — 0.100
GNN (Jonas and Kuhn15) 0.280 —
FullSSPrUCe 0.209 � 0.005 0.095

Fig. 2 Comparison of predicted proton (1H) and carbon (13C) shifts to tr
using models trained and evaluated on experimental and ab initio NMRS

10904 | Chem. Sci., 2023, 14, 10902–10913
trained on experimental data are evaluated on experimental
data and those trained on ab initio data are evaluated on ab
initio, and we will explore mixing these types in later sections.

In Table 1, we compare our mean average error on 1H and
13C shi prediction tasks. We train four models using the
NMRShiDB data described above, split according to shi type
(protons vs. carbons) and experimental vs. ab initio. Jonas and
Kuhn uses this same dataset, but only the experimental data.
IMPRESSION performs only ab initio prediction, having done
their own DFT calculations on molecules from the Cambridge
Structural Database,18 using adaptive sampling to obtain
a training set of 882 molecules. CASCADE does both experi-
mental and ab initio predictions, performing their own DFT
y the mean average error (MAE) in ppm, to other ML models. Where
experimental and ab initio NMRShiftDB data

n ab initio Carbon experimental Carbon ab initio

— 2.310
1.250(d), 1.430(ff) 1.260
1.430 —

� 0.002 1.218 � 0.008 1.049 � 0.013

ue labels from experimental (green) and ab initio (red) testing datasets,
hiftDB datasets, respectively. All shifts reported in ppm.

© 2023 The Author(s). Published by the Royal Society of Chemistry
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Table 2 Measurements of coupling testing accuracy, as measured by the mean average error (MAE) in Hz, for 1JCH,
2JHH,

3JHH, and
4JHH

couplings. Models trained and evaluated on ab initioNMRShiftDB data only, due to lack of availability of experimental coupling values for training

Model 1JCH
2JHH

3JHH
4JHH

Gerrard:IMPRESSION9 0.870 — — —
FullSSPrUCe 0.679 � 0.014 0.194 � 0.005 0.504 � 0.011 0.121 � 0.002
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calculations on an 8 K molecule subset of NMRShiDB, and
using a further 5 K subset of 13C experimental data that they
believe is reliable. FullSSPrUCe provides a clear and signicant
improvement over the comparison models on all four predic-
tion tasks, including 5.0% and 16.7% improvement over
CASCADE on ab initio 1H and 13C, respectively. Scatter plots of
our predictions versus the ground truth for these four tasks are
provided in Fig. 2.

In Table 2, we compare our mean average error on a subset of
scalar couplings. Here we trained and tested only on ab initio
data, because we did not have any large enough experimental
datasets. We used this ab initio trained model to examine our
performance on three small experimental datasets in Fig. 3.
Note that CASCADE and Jonas and Kuhn's GNN do not make
any coupling predictions and IMPRESSION predicted only 1JCH
coupling, where we made on average 22.0% more accurate
predictions.
Fig. 4 Proton and carbon chemical shift prediction accuracy,
measured as the rolling mean average error and rolling 95th percentile
error in ppm as quantified uncertainty increases. These plots
demonstrate the connection between the quantified uncertainty and
prediction error, allowing a user to potentially select for the top most
confident predictions and expect them to have significantly lower
error.
3.2 Uncertainty quantication allows better understanding
of predictions

Beyond improvements in accuracy, FullSSPrUCe also provides
a quantied estimate of uncertainty, pairing each prediction
with a value intended to help a user understand the expected
accuracy of a prediction (see Section 4.4). Here, we use the same
NMRShiDB data as in the previous section, including keeping
all experimental and ab initio data separate. In Fig. 4, we have
sorted each prediction on a single atom by its corresponding
uncertainty. We then plot the rolling mean average error and
the rolling 95th percentile error as uncertainty increases,
demonstrating the correlation between our uncertainty and
accuracy. Further, this connection is present in both experi-
mental and ab initio data, which is extremely useful when we
Fig. 3 Coupling prediction accuracy on previously chosen subset of coup
percentile error in Hz as quantified uncertainty increases. We observe a st
here,4,19,20 again demonstrating the usefulness of the quantified uncertai

© 2023 The Author(s). Published by the Royal Society of Chemistry
know that there are different reasons for noisy data in these two
domains (e.g. misassignments in experimental data versus
approximations in ab initio data). By comparing the experi-
mental MAEs to CASCADE, we see that our methods provide
a 3.2% improvement over ExpNN-d and 15.4% over ExpNN-ff,
the more similar model based on how we generate geometric
features. However, this ability to sort our data according to
condence can increase this performance gap if we care only
about a top percentage of predictions. Such uncertainty values
are oen used to identify, and potentially remove, likely errors.
IMPRESSION used a variance cutoff to remove molecules with
a high likelihood of incorrect labeling, demonstrating that it
ling types, measured as the rolling mean average error and rolling 95th
rong correlation, even on the three small experimental datasets shown
nty in selecting for the predictions with the best accuracy.

Chem. Sci., 2023, 14, 10902–10913 | 10905
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Table 3 Correlation between error and uncertainty quantification
value for each prediction by the given models

Dataset Parameter Correlation

NMRShiDB experimental 1H 0.496
13C 0.309

NMRShiDB ab initio 1H 0.499
13C 0.305
2JHH 0.455
3JHH 0.512
4JHH 0.487
1JCH 0.297

Bally and Rablen4 3JHH 0.375
Dashti:GISSMO19 3JHH 0.405
Kutateladze and
Mukhina20

3JHH 0.496
Fig. 5 A comparison of FullSSPrUCe performance on ab initio 3JHH
scalar couplings, as measured by mean average error in Hz, with
different numbers of ETKDG conformers used to generate features.
For reference, the performance using conformers generated from
parallel-tempering (PT) is provided, demonstrating that enough
ETKDG conformers can nearly recover PT performance, but fewer
conformers still achieve strong performance while taking less time to
generate.
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consistently removed outliers.9 Removing just 20% of the
predictions that we are least condent in, our proton and
carbon experimental mean average errors improve signicantly,
moving to 0.140 ppm and 0.981 ppm, respectively.

We repeat this procedure for the subset of scalar coupling
values we addressed earlier in Fig. 3. Recall that we only per-
formed training on ab initio data due to the lack of experimental
data. We did collect a small amount of experimental coupling
data from three sources,4,19,20 though these were used only as
additional test sets for our 3JHH accuracy. We again see the
strong correlation between increased uncertainty and increased
error. On ab initio coupling predictions, taking only the top-80%
most condent predictions improves MAE performance
between 14.4 and 47.7%. A measure of uncertainty can be
crucial in understanding and utilizing predictions. Our uncer-
tainty measure is simple to train and effective at test time in
identifying predictions' expected accuracy.

This sorted, rolling error measurement provides a useful way
to visualize the relationship between error and the uncertainty
quantication. However, we may also want a numerical esti-
mate of this relationship, so we directly measure the correlation
between the error and the uncertainty values for each model, as
reported in Table 3. We see that the correlation is meaningfully
positive for all models, including when evaluating the coupling
models on the selected small external datasets.
3.3 Examining the effects of 3D structures

Next, we will consider the effects of using the 3D structure of
a molecule as dened by an ensemble of conformers on
predictions of full spin system parameters. First, we will look at
the tradeoff between the number of conformers in the
ensemble. Then we will look at a downstream task known as
stereoisomer identication, which is enabled by the use of 3D
structures.

3.3.1 Distance geometry conformers speed up predictions
without signicant performance loss. We improved greatly on
both experimental and ab initio prediction tasks by using an
ensemble of ETKDG11 conformers to generate features for our
GNN. ETKDG draws rapid samples from an implicit distribu-
tion over conformers, so generating more samples, while
10906 | Chem. Sci., 2023, 14, 10902–10913
slower, better represents the space of conformers. Aer gener-
ating the conformers, we apply a single MMFF94 optimization
step to each, obtaining their Boltzmann weights, and use these
weights to combine the features from each conformer in the
ensemble. In Fig. 5, we plot our 3JHH coupling mean average
error as a function of the number of ETKDG conformers used to
generate the features for each model. These models were
trained using the NMRShiDB ab initio data discussed in
Section 3.1. We also include a model with features taken from
an ensemble of conformers generated using parallel-tempering.
Compared to a single, much slower DFT conformer (as used by
CASCADE and IMPRESSION), our ensembles of conformers
perform quite well, with large ensembles allowing us to surpass
previous performance. In fact, enough ETKDG conformers are
sufficient to nearly replicate performance with our own higher
quality conformer sets (PT). We also observe a tradeoff between
number of conformers and performance that appears to have an
asymptotic approach to top-end performance.

Given the similarities in performance, the main motivation
for using ETKDG is that distance geometry techniques are
faster. In Table 4, we examine the difference in time taken to
generate an ensemble of conformers across multiple methods.
We also note that each of these methods are approximately
linear in time to generate larger sets of conformers. Returning
to Fig. 5, the tradeoff between accuracy and number of
conformers can be interpreted as accuracy and time taken.
However, the tradeoff is not strictly linear here and so we could
pick a point along the curve which balances the tradeoff to
a desired level for our application. In this paper, we use 50
conformers to demonstrate the top end accuracy of our models,
but for other tasks (such as predicting datasets on the order of
tens of millions of molecules), using an ensemble with only 10
conformers may be appropriate.
© 2023 The Author(s). Published by the Royal Society of Chemistry
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Table 4 Comparison of time (single-core) taken to generate an
ensemble of conformers for each of 10 K molecules, and the time
taken for FullSSPrUCe to make full spin system predictions for each
molecule

Method
Time taken per
molecule

DFT 2 days
PT 1 h
ETKDG 0.176 s
FullSSPrUCe 0.064 s
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While ETKDG is faster than either PT or DFT, and the
conformers it generates are good enough to allow our models to
achieve similar accuracy, it is still the bottleneck operation in
the prediction pipeline, as shown in Fig. 6. This will become
even more of an issue as we investigate larger, more diverse
molecules as the time taken to generate conformers for larger
molecules scales quadratically. However, the features that get
passed to the model represent summary statistics of the set of
conformers generated. This means that lower quality and fewer
conformers matter less in general as we have shown so far.
There still may be room for molecular geometry featurization to
be sped up further, whether through other methods for gener-
ating conformers or skipping that step entirely, without losing
signicant model accuracy.

3.3.2 3D structures enable stereoisomer identication.
Stereoisomers, which have identical graph topology but
different spatial properties, and therefore different physical
properties, provide an interesting test of the usefulness of our
3D features and how they enhance our predictions. The
geometric features we generate from our conformer ensembles
allow us to make different predictions for different stereoiso-
mers of the same molecule, where features that see exclusively
graph topology cannot. These predictions are of particular
interest for their usefulness in downstream tasks, such as
stereoisomer identication using the DP4 probability function.
Fig. 6 The prediction pipeline consists of three parts: generating
ETKDG conformers, predicting shift values and predicting coupling
values. Even with a fast method such as ETKDG, generating the
conformers takes the majority of the time, and scales poorly with the
number of atoms in the molecules.

© 2023 The Author(s). Published by the Royal Society of Chemistry
For this task, we use a new dataset, specically a subset of
GDB-17.21 GDB-17 contains multiple different stereoisomers of
many of the molecules in its dataset. Using DFT, we can then
obtain separate NMR parameters for each stereoisomer. We
selected molecules using the same criteria as in Section 3.1,
resulting in a dataset with approximately 66k total molecules
(see ESI† for more details). We retrain our model for predicting
1H and 13C shis on this dataset, in the hopes that a model
which has seen only data with many stereoisomers of the same
molecules will be useful for the purpose of performing stereo-
isomer identication. We base our work on stereoisomer
identication on the work in creating the DP4 probability.2 In
the original problem set up, the experimental 1H and 13C shi
parameters are known for a molecule, but the particular
stereoisomer is unknown. The goal is to identify which of a set
of possible stereoisomers the experimental parameters were
obtained from. In the original work, Smith and Goodman
generated ab initio calculations of the parameters for each
stereoisomer, and compared them to the experimentally
derived parameters to generate a distribution over the set of
stereoisomers. Here, we take the ab initio data in GDB-17 as the
known parameters, and use our model to generate comparison
parameters for the set of possible stereoisomers to identify the
most likely candidate.

For each of 980 test molecules, we generated up to 7 other
stereoisomers (if there were enough permutations available),
for a total of 8 candidate structures. This resulted in 665 of the
molecules having 8 candidate structures, and the majority of
the remaining molecules having 4 candidate structures. We
then use FullSSPrUCe to generate predicted 1H and 13C shi
values and DP4 to assign probabilities to each candidate
structure. We are able to correctly identify the true structure
approximately 49% of the time, including 45% of the time when
a molecule has 8 candidate structures, and achieve top-2 accu-
racy on 73% of molecules (65% for 8 candidate molecules).
Further breakdowns of the results are provided in the ESI.†

Our model clearly outperforms random guesses by a signi-
cant margin, but it is not as accurate as we might have expected.
When training FullSSPrUCe on GDB-17, we cannot use all struc-
tures in the database due to its enormous size (∼166 billion
molecules), and so we may not get a representative sample when
choosing our subset to train on. In fact, we observe a degradation
in testing performance of almost twice as much error (0.162 ppm
for protons and 2.117 ppm for carbons). This work shows that our
model has the capacity to distinguish between stereoisomers
using proton and carbon shis, but needs to be trained and
tested more thoroughly before it can be consistently relied upon
for these decisions in the same manner that we use DFT.
3.4 Disagreement regularization intelligently combines
experimental and ab initio training data

Finally, we consider the task of training from experimental and
ab initio data simultaneously, and so we turn to our disagree-
ment regularization loss. This task is particularly interesting
and difficult because of the differences between experimental
and ab initio data. Note that going forward, we will leave behind
Chem. Sci., 2023, 14, 10902–10913 | 10907
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the GDB-17 data and return to using exclusively the
NMRShiDB data, for which we have both experimental and ab
initio parameters. We would like to predict experimental data as
accurately as possible, but it has a host of issues: experimental
error such as misassignments, failure to distinguish diastereo-
mers, experimental variability such as unreported solvents, and
general noisiness. Ab initio data on the other hand is perfectly
replicable and noiseless, however it has its own sources of error,
as discussed earlier. There are also differences between expense
and ease of generation of data. Experimental data can be very
difficult to obtain, especially high quality data or for rare
samples and materials. Ab initio data, though sometimes slow,
can be obtained for any substance through simulation.

These difficulties have been acknowledged in previous
works. IMPRESSION and Jonas and Kuhn each chose to work
exclusively with either ab initio or experimental data due in part
to these differences. CASCADE, on the other hand, used both to
create three models (the DFTNN, ExpNN-d and ExpNN-ff
models previous discussed). They began by training DFTNN
on 8 K molecules with ab initio assignments, then used transfer
learning to train to experimental assignments. However, it is
important to note that to train their experimental models, they
used only a 5 K molecule subset of their total training dataset,
removing the molecules where experimental data and ab initio
data disagreed beyond a certain threshold. Transfer learning
provides a way to incorporate ab initio data into the training
process, while still prioritizing experimental data, but it does
not address the issues we have discussed in experimental data.

We attempt to address the strengths and weaknesses of both
types of data through our new technique of disagreement reg-
ularization. We train jointly on both types of data, using
a model with two output channels (one for each type of data),
but that share the majority of their parameters. The loss func-
tion then prioritizes accuracy on the experimental channel, but
compares the ground truth on each channel to determine how
much to do so (see full details in Section 4.5). We evaluated this
technique by dividing NMRShiDB17 into two unique subsets.

We split the data into two subsets based on the presence of
‘small rings’ in the molecule, namely those rings with exactly 3
or 4 atoms. These rings create unique geometric and chemical
properties, and so we expect that making predictions about
NMR properties on these molecules without training data
regarding them will be difficult. However, we can easily obtain
ab initio data for these molecules to see how disagreement
Table 5 We trained four models on different subsets of NMRShiftDB d
larization. We compare their performance on 1H shifts for atoms in mole

Model

Experimental data?

Big rings Small rings

Baseline 3 3

Experimental control 3

Ab initio control 3

Disagreement (l = 5) 3

Disagreement (l = 10) 3

10908 | Chem. Sci., 2023, 14, 10902–10913
regularization helps us recover our performance. For this
experiment, we focused only on proton shi prediction.

Our results are summarized in Table 5. We begin with two
models trained strictly on experimental data: the baseline and
the experimental control. The baseline is our normal experi-
mental model, trained with experimental data from all ‘areas’ of
chemical space that we are interested in. It shows that small
ring molecules tend to be slightly more difficult to predict than
big ring molecules, averaging 0.247 ppm error, as opposed to
the big ring MAE of 0.205 ppm. The experimental control is
a model trained with only experimental big ring data, so that it
has never seen any molecules with small rings. It has a nearly
identical big ring MAE, but its small ring MAE increases
signicantly to 1.248 ppm. This demonstrates that small rings
operate as an area of chemical space that requires training data
to predict accurately. However, as we know, we cannot always
get experimental data from all areas of chemical space. Our goal
then is to construct a model which performs well on the
experimental small rings without having seen any such experi-
mental training data.

We start with a naive implementation of this, which is to add
in all of the ab initio data from the small rings that we have and
train jointly. This is referred to as the ab initio control model.
Adding in the ab initio small ring data does not impact the big
ring MAE signicantly, however it does bring the small ring
MAE back to a reasonable value at 0.283 ppm. This is still worse
than the baseline, which is to be expected given that we know ab
initio data has systematic error when evaluated on experimental
data. Therefore, training directly to ab initio data (including
models trained with only ab initio data) will not be able to
recover the baseline performance.

This brings us to our disagreement regularization models,
which we designed in the hopes of tackling these sorts of tasks.
In this case, we provide all of the ab initio data that we have, for
both big and small rings, along with the experimental big rings.
Using disagreement regularization, we are able to recover the
big ring baseline while also reducing small ring error to
0.268 ppm, a signicant improvement over the controls. We
also explored the effect of our tuning parameter, l, which
balances how much to weight between ab initio and experi-
mental loss. We nd that some values of l can improve small
ring performance beyond even the baseline, although this
comes at the cost of performance on the big rings. This tradeoff
is explored more in Fig. 7.
ata, with only the final model being trained using disagreement regu-
cules with rings of 3 or 4 atoms

Ab initio data? MAE (ppm)

Big rings Small rings Big rings Small rings

0.205 0.247
0.206 1.248

3 0.205 0.283
3 3 0.205 0.268
3 3 0.243 0.206

© 2023 The Author(s). Published by the Royal Society of Chemistry
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Fig. 7 Disagreement regularization balances the loss between ab
initio and experimental predictions through the hyperparameter l,
allowing it to learn better predictions in unseen experimental areas of
space (small rings), while also maintaining or even improving on
predictions in seen areas (big rings). Optimal performance is to not
replicate either experimental or ab initio data exactly by finding
a middle ground for l, though unfortunately the best ls for each of big
and small rings do not exactly overlap.

Edge Article Chemical Science

O
pe

n 
A

cc
es

s 
A

rt
ic

le
. P

ub
lis

he
d 

on
 1

5 
Se

pt
em

be
r 

20
23

. D
ow

nl
oa

de
d 

on
 7

/2
6/

20
25

 3
:5

1:
41

 A
M

. 
 T

hi
s 

ar
tic

le
 is

 li
ce

ns
ed

 u
nd

er
 a

 C
re

at
iv

e 
C

om
m

on
s 

A
ttr

ib
ut

io
n 

3.
0 

U
np

or
te

d 
L

ic
en

ce
.

View Article Online
4 Methods

Here we will provide more detailed explanations of our models,
including how we generate features from molecules, how those
features are transformed into predictions, and how we quantify
uncertainty in those predictions. Recall the graphical model of
a molecule, where atoms are vertices and bonds are edges.
Then, our predictions correspond to two graph properties: per-
vertex (shi) and per-edge (coupling). Different GNN layer
structures can be used to update different graph properties
towards the goal of making predictions on those properties.
Here we detail the two layer types which we can employ in
parallel or separately to generate predictions. We refer to these
layers as the message passing layers, which update only the per-
vertex features in the graph, and decode layers, which update
both the vertex and edge features using a dense N × N repre-
sentation of all possible edges in a graph. In this section, we
discuss our methodology for representing a molecule as
a graph, using our GNN layers to make predictions, and
improving predictions through better use of data and quanti-
fying uncertainty in predictions.

4.1 Featurization

Featurization is the process of converting a molecule into a set
of feature matrices that can be used for the learning task. We
begin by converting a molecule to a graph, an intuitive process
given our typical model of a molecule. We can think of each
atom as a vertex and each bond as an edge. Information about
the molecular graph, as well as its geometric structure, are
turned into relevant feature matrices in three steps.

In the rst step, we create per-vertex features using basic
properties of atoms. For each atom, we generate a tensor which
includes the atomic number, the default and total valence of the
atom, partial and formal charge of the atom, and other atom
specic properties. These properties are all obtained directly
from the RDKit22 Molecule object and the periodic table. They
© 2023 The Author(s). Published by the Royal Society of Chemistry
are collected into a tensor that we will refer to as x, which has
shape N × fv, for N atoms in the molecule and fv per-vertex
features.

In the second step, we create a set of adjacency matrices
directly from the graph. There are ve total adjacency matrices,
each of shape N × N and each symmetric. The rst has a 1
wherever two vertices have any bond between them and 0s
everywhere else. The remaining only place 1s where there is
a specic bond type between the two vertices, with one adja-
cency matrix for each of single, double, triple, and bond order
1.5. This set of adjacency matrices is collected into a tensor that
we will refer to as Gadj which has shape N × N × 5.

Finally, we create a set of per-vertex-pair properties using
geometric properties of the molecule. Specically, we examine the
distances between pairs of atoms and the angles between atoms
which share a neighbor. These properties are calculated from an
ensemble of molecular conformers that specify the 3D structure
(position of each atom) of the molecule, allowing us to easily
compute distances and angles between pairs of atoms. In exper-
imental NMR, conformational variability leads to the observation
of a weighted average of the parameters of each possible
conformer, so we aim to capture more than a single value for the
distance and angle features. We include the (Boltzmann
weighted) mean over the conformers for some features, but also
use a collection of Gaussians to parameterize the distribution over
the conformers more thoroughly. We collect these features as
Gfeat, which has a shape N × N × fe, for fe per-vertex-pair features.

Generating these conformers has thus far been the slowest
part of the prediction pipeline, but has shown promise in
increasing accuracy and provides the only features that are
capable of distinguishing stereoisomers. As a proof of concept,
we started out using an ensemble of conformers drawn from the
Boltzmann distribution through parallel tempering (PT). These
PT conformers provide us with highly accurate distances and
angles as well as an accurate sampling of the distribution of
conformers, which is important for capturing the conforma-
tional variability. However, we are aiming to do rapid predic-
tions of NMR properties, so we turn to a conformer generation
method which, while less accurate, is much faster. To that end,
we use ETKDG,11 a conformation generationmethod which uses
distance geometry and experimental torsion-angle preferences
and other basic knowledge to create conformers. We then apply
a single MMFF94 optimization step, which includes calculating
the Boltzmann weight of each conformer, and that weight can
be used for the averaging of the features from each conformer.
Through the use of the ETKDG conformers and basic molecular
properties, we are able to rapidly generate feature vectors for
each atom and each atom-pair (see ESI† for full details of
features used). These vectors are fed as the inputs x, Gadj and
Gfeat to the GNN, as shown Fig. 8.
4.2 Message passing layers

The GNN receives these three feature tensors and passes them
to its two layers types. The simplest layer type in our GNNs are
the message passing layers, which are a common method for
molecular property prediction tasks.23 These layers update only
Chem. Sci., 2023, 14, 10902–10913 | 10909
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Fig. 8 An illustration of the FullSSPrUCe model. Inputs x, Gadj and Gfeat are generated from the molecule and its conformers, and then fed into
the message passing (a) and decode (b) layers. The final outputs are used to make chemical shift (xout) and scalar coupling (Gout) predictions.
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the per-vertex properties using a simple aggregation scheme
over each vertices' neighbors. The message passing layers take
as inputs x and Gadj, and do not consider Gfeat at all. As shown in
Fig. 8, the rst step is to match the sizes of Gadj and x, which is
done using an independent set of linear layers. Then, the
message passing scheme updates the features in x through
matrix multiplication with the adjacency matrix. This is
collected back down to the correct size, where non-linearities
and normalization can be performed. The nal output, xout,
has shape N × fout, where fout can be adjusted using the initial
linear layers.

The message passing scheme can be augmented to pass
messages beyond a single step quite easily. To do so, we add
layers to Gadj which correspond to powers of Gadj. For example,
Gadj

3 allows us to pass messages between vertices connected by
three bonds. We can also add the identity matrix to Gadj to add
self-loops. All of this can be done within the context of matrix
multiplication and the stacking of our additional adjacency
matrices to create layers with multiple types of message passing
occurring simultaneously. Using this basic GNN message
passing algorithm through matrix multiplication, these layers
update per-vertex properties in a manner that can be useful for
predicting shi values, but does not incorporate geometric
properties efficiently.

4.3 Decode layers

Our second layer type, decode layers, incorporate all features
and can predict scalar coupling by alternating between updat-
ing per-vertex and per-edge properties. As shown in Fig. 8, we
now use x, Gadj and Gfeat. We start by stacking Gadj and Gfeat into
a single tensor G, which has shape N × N × (5 + fe), so that it
represents 5 + fe features for each possible edge. Each decode
10910 | Chem. Sci., 2023, 14, 10902–10913
layer proceeds in two steps by rst updating the per-vertex
properties, then updating the per-edge properties. Each
update is done using a gated recurrent unit (GRU) which takes
in the original values of the property to update (the hidden
state) and an input to use to calculate an update. It then
calculates an update and a weighting and outputs the weighted
sum of the hidden state with the update.

In the decode layers, we begin by updating per-vertex prop-
erties by using x as the hidden state and G as the input. G needs
to be reshaped, which is done using an aggregation function
over one of the N dimensions. This results in the update xout,
which is then expanded to be used as the input to the second
GRU, whose hidden state is the original G. This creates the
update Gout, which, along with xout, can then be passed through
a non-linear layer and normalization before being passed to the
next layer.

This repeated updating structure allows us to use the
geometric features more naturally by updating them progres-
sively using the relevant atomic features. Since both x and G are
updated, we can use these outputs to predict both shi and
coupling values. However, even in scenarios where we are only
predicting shis, these layers can be valuable in using the
geometric features, and so we combine the updated per-vertex
features from decode and message passing layers into a single
per-vertex tensor that is then subjected to nal layers for shi
predictions. Through this combination of layers, we can
consider atomic and interatomic features to produce full spin
system predictions.

4.4 Uncertainty quantication

While machine learning models do a great job of tting data
and making predictions, they tend to be difficult to understand,
© 2023 The Author(s). Published by the Royal Society of Chemistry
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especially when dealing with deep models. Most crucially, we
know that they will always have some error, so understanding
whether a given prediction is more or less accurate than others
can be very useful. To that end, we took efforts to quantify the
uncertainty in our predictions. We have ultimately settled on
a form of ensembling that we will refer to as bootstrapping,
since it is derived from bootstrap ensembling.24 Ensembling is
the process of generating a prediction or decision from the
results of a set (or ensemble) of individual predictors, some-
times called inducers.25 Commonly, ensembles are used
because the majority prediction or average prediction from the
set of inducers can be more accurate than any one inducer.25

Ensemble techniques can also be used to generate measures of
uncertainty in predictions based on the variance in the predic-
tions of the inducers24 or more complex measures on this set of
predictions.26 Uncertainty quantication may also be accom-
plished in deep learning through generative models for density
estimation or other Bayesian methods,27 however ensemble-
based techniques have shown promise in chemical prediction
tasks,28 including NMR-related tasks,9,29 so we base our uncer-
tainty quantication on these ideas. This ensemble based,
variance uncertainty may be somewhat restrictive, being
primarily useful for uncertainty regarding the coverage of
chemical space. However, its capacity to learn multiple “motifs”
in its separate inducers may be particularly useful in chemical
prediction tasks, where repeated functional groups are of
interest.

Our bootstrapping method, as shown in Fig. 9, creates an
ensemble of multiple FullSSPrUCe models, where each share
most of their parameters. This differs from most ensemble
methods where each inducer is trained completely separately,
sometimes with entirely different types of models.25 Ours differ
only on their nal layers (those aer the message passing and
decode layers), which are simple residual and linear layers
directly modifying xout and Gout, which we call the bootstraps. At
train time, the error for a given molecule is decided by
considering the predictions from only a subset of the boot-
straps, by taking the mean over that subset. This allows each
bootstrap to learn from a different subset of the training data
without duplicating the training of the shared parameters.

At test time, we generate our predictions using the mean of
all of the models' predictions, but we can examine their
Fig. 9 Each layer sees a different subset of the data at train time. Then,
at test time, we use the mean and standard deviation across the layers
to make predictions and quantify uncertainty.

© 2023 The Author(s). Published by the Royal Society of Chemistry
differences in predictions to quantify the uncertainty. We use
the standard deviation of the models' individual predictions as
the uncertainty in our ensembled prediction, which has proven
to correlate quite strongly with accuracy. Through our boot-
strapping method, we are provided with a quantication of the
uncertainty in a prediction, an important step towards better
understanding and using the model.
4.5 Learning jointly between experimental and ab initio

We are also interested in training for two types of data: ab initio
and experimental. Ab initio data is generated through simula-
tion, and so tends to be cheaper than experimental data to
obtain. Thus, it has been used in most previous ML prediction
tasks, where large amounts of data are needed to generate good
models. Further, experimental data tends to be noisy and is
susceptible to human error, making it more difficult to predict.
But, our goal is ultimately to predict experimental results, so we
must nd a way to use all the data we have in an intelligent way.

The naive way to use all our data would be to simply augment
our experimental training set with as much ab initio data as we
can obtain. The main issue is that ab initio data is known to
have systemic errors, and so we need to make some distinction
between ab initio and experimental. The classic ML method for
doing so is to use transfer learning, typically by pretraining
a model on ab initio data and then ‘ne-tuning’ it on the
experimental data. Guan et al. use this method with their GNN
to moderate success. However, this assumes that experimental
values are always the gold standard for our training data, which
we know they are not. Misassigned peaks, missing values, and
experimental noise can degrade this data.

Our approach seeks to learn from ab initio and experimental
data jointly, as in the naive approach, while favoring the experi-
mental values, as in the transfer learning approach, but with an
awareness of the aws experimental data presents. We do so
using a technique termed disagreement regularization, which
compares ab initio and experimental values for a given molecule
to decide how to assign the loss. Specically, we create two output
‘channels’, one which seeks to predict the ab initio values for
a molecule and one which seeks to predict experimental values.
Creating these channels is as simple as having the nal linear
layers produce a result which is N × 2 rather than N × 1 for shi
predictions. When we have only experimental or only ab initio
data for a particular atom, we simply set the loss for that value as
the loss along the appropriate channel. For the remaining values,
the loss function is then a weighted combination of the loss on
these two channels, where the weight is determined by howmuch
the ab initio and experimental ground truths agree.

How should we choose the weight between our two chan-
nels? Our observation is that when ab initio and experimental
data agree, both are likely to be good. When both are good, we
are more interested in predicting experimental values. When
the data disagree, it is most likely a result of noise or error in the
experimental data, since ab initio data is relatively noise-free
and does not suffer from human error. So, when the agree-
ment is strong, we should weight towards experimental data,
and when agreement is weak, we should weight towards ab
Chem. Sci., 2023, 14, 10902–10913 | 10911

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
https://doi.org/10.1039/d3sc01930f


Chemical Science Edge Article

O
pe

n 
A

cc
es

s 
A

rt
ic

le
. P

ub
lis

he
d 

on
 1

5 
Se

pt
em

be
r 

20
23

. D
ow

nl
oa

de
d 

on
 7

/2
6/

20
25

 3
:5

1:
41

 A
M

. 
 T

hi
s 

ar
tic

le
 is

 li
ce

ns
ed

 u
nd

er
 a

 C
re

at
iv

e 
C

om
m

on
s 

A
ttr

ib
ut

io
n 

3.
0 

U
np

or
te

d 
L

ic
en

ce
.

View Article Online
initio. This is reected in the loss function in eqn (1), where La
and Le are the losses on the ab initio and experimental channels,
respectively, fa and fe are the ab initio and experimental values
given in the data, and l is a tunable hyperparameter. We have
chosen to leave the 1 ppm offset in the denominator xed, but
future work may explore the effects of adjusting this value as
well.

L ¼ La þ l� Le

1 ppmþ kfa � fek
(1)

Our hope is that this loss function will combat problems in
both data sources. Because the two channels share inputs and
parameters up to the very nal layer, we believe that this loss
function encourages the model to learn the difference between
ab initio and experimental data to correct the systematic error in
ab initio data. By weighting down the loss when experimental
data is likely to be incorrect, as identied by its disagreement
with ab initio data, the model can ignore potentially noisy or
erroneous data. With the main goal of predicting experimental
results, our disagreement regularization loss intelligently
combines ab initio and experimental data.
5 Discussion

FullSSPrUCe is a neural network based model for full spin
system NMR parameter prediction. We built on previous graph
neural network approaches to learn shi and coupling param-
eters, while also incorporating molecular geometry to be able to
distinguish stereoisomers and improve performance. We
introduced a novel method for incorporating experimental and
ab initio in training.

As shown in Section 3.1, our model has lower errors on its
testing set than do the models to which we compared. Each
previous model has made its own different choices, and we
believe that our combination of choices has led to this improved
performance. IMPRESSION is the only non-GNN based method.
The Jonas and Kuhn GNN is the only method to use exclusively
topological information. CASCADE intentionally restricted its
dataset, particularly for experimental data, due to the potential
unreliability of NMRShiDB data, and did not train any models
exclusively on experimental data. Unlike all previous methods,
we do not draw features from a single conformer, but rather
from an ensemble of conformers, which seems to makes the
features more useful. We combine the largest amount of data
with the most consistently successful aspects of each previous
model, and as a result we have seen the best performance. This
performance is a strong step forwards, but there are remaining
areas that deserve further exploration.

One such area is solvent and temperature effects, which we
ignore because user-contributed NMRShiDB17 spectra oen do
not have solvent or temperature labels, which may contribute to
error in multiple ways. Primarily, it will increase noise through
unaccounted experimental variability. We suspect it also
contributes to a noticeable difference between error rates for
protons bonded to carbons and those bonded to other atoms.
Across models, we see much better accuracy on predictions of
10912 | Chem. Sci., 2023, 14, 10902–10913
1H shis for protons bonded to carbons, while those bonded to
nitrogens, oxygens and other heavy atoms have signicantly
higher error (full details in ESI†). This is consistent with ab
initio results, which tend to be further from experimental values
for protons not bonded to carbons. These effects can oen be
corrected by accounting for solvent and temperature,30 which
provides an interesting avenue of future work.

Recall that we use ETKDG conformers to create geometric
features of molecules as inputs to our network. We showed
a tradeoff between accuracy and number of conformers, which
serves as a proxy for time spent generating conformers. This
tradeoff is certainly not exclusive to our methods, as all
computational techniques make some trade off between theory
and time (e.g. molecular dynamics vs. distance geometry, etc.).
Even other neural network models have this trade off.10

However, since our model takes particular metrics of the
distribution of properties across conformers, we believe that we
could improve on the tradeoff by calculating these metrics
directly, leveraging machine learning techniques rather than
generating a set of conformers to measure the metrics. We
would also like to improve on the stereoisomer identication
task that relies on these conformers. Whether this improvement
is through faster, more accurate geometry features or better
training of molecules with stereoisomers, we believe that we can
achieve DFT level accuracy in this task.

Our disagreement regularization tool should also continue
to be developed, as it provides us with an interesting method for
combining experimental and ab initio data. We believe that the
inclusion of the full ab initio dataset allows the model to learn
the differences between ab initio and experimental values, and
thus correct its small ring predictions accordingly. The noise-
less ab initio data may also allow us to correct errors in experi-
mental data, especially misassignments of spectra to their
correct atoms, allowing us to surpass our baseline in some
cases. However, the effects of certain hyperparameters present
some unusual results and need further study to be fully
understood.

6 Conclusion

Through the use of graph neural networks, we are able to
predict per-vertex and per-edge properties corresponding to
NMR parameters, specically chemical shi and scalar
coupling values, respectively. We achieve state of the art
performance on experimental and ab initio prediction tasks, as
well as providing a novel method for training on both datasets.
Through the incorporation of molecular geometry, we are able
to be useful for downstream tasks such as stereoisomer iden-
tication. Lastly, our uncertainty measure allows us to be
much more condent in the accuracy of a large subset of our
predictions, while ltering out those that are likely to have
large error.

Data availability

Code is available on GitHub at https://github.com/thejonaslab/
fullsspruce-public.
© 2023 The Author(s). Published by the Royal Society of Chemistry
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