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A Pd-catalyzed highly selective three-component
protocol for trisubstituted allenesy

Can Li,?® Zhengnan Zhou® and Shengming Ma (& *2¢

Herein we report the first example of a Pd-catalyzed highly selective three-component reaction of alkynyl-

1,4-diol dicarbonates, organoboronic acids, and malonate anions for the efficient synthesis of trisubstituted
2,3-allenyl malonates not readily available by the known protocols. The reaction demonstrates an excellent
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regio- and chemo-selectivity for both the oxidative addition referring to the two C-O bonds and the

subsequent coupling with the nucleophile with a remarkable functional group compatibility. A series of
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Introduction

Allenes have attracted significant attention® in the fields of
natural products,” modern organic synthesis,>* medicinal
chemistry,” and materials science,® and thus, much attention
has been paid to the development of new methodologies for
the syntheses of allenes from readily available starting chem-
icals.” Among them, a two-component reaction between
readily available alkynes with an appropriate propargylic
leaving group and organometallic reagents has been devel-
oped as a straightforward method for the syntheses of allenes®
(Scheme 1a). We envisioned a new concept of Pd-catalyzed
reaction of readily available 2-alkynyl-1,4-diol dicarbonate
with an organometallic reagent and a nucleophile for allene
synthesis (Scheme 1b). As we know the Pd-catalyzed reaction of
2-alkynyl-1,4-diol dicarbonate with organometallic reagents
would afford the double coupling products, 1,3-dienes C.°
Thus, the challenges of this strategy are (1) the regioselectivity
of the oxidative additions of the two different C-O bonds in the
dicarbonate; (2) the selectivity issue for the formation of
different allenes A-1 or A-2, alkynes B-1 or B-2, or 1,3-conju-
gated dienes C-1 or C-2 (Scheme 1b). Herein, we report our
realization of the first example of a Pd-catalyzed three-
component reaction of 2-alkynyl-1,4-diol dicarbonates with
organoboronic acids and malonates, affording trisubstituted
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control experiments confirm a unigue mechanism involving B-O elimination forming alka-1,2,3-triene
and the subsequent insertion of its terminal C=C bond into the Ar—Pd bond.

allenes 4 (ref. 10 and 11) exclusively, enjoying an excellent
regio- and chemo-selectivity with an unprecedented mecha-
nism (Scheme 1c). Such A-1-type allenyl malonates have been
demonstrated as highly versatile building blocks for natural
allene product synthesis*® and are traditionally prepared via
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Scheme 1 Approaches to trisubstituted allenes.
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the transition metal catalyzed reactions of 2,3-allenol deriva-
tives with malonates.”*** Although the precursors for 2,4-
disubstituted 2,3-allenol derivatives, 2,3-allenols, are conve-
niently available viag allenation of the propargyl alcohol (ATA)
with aldehydes*'® (Scheme 1d), the current method is highly
efficient and diverse due to the readily availability of the three
starting materials and irreplaceable due to the inaccessibility
of D-type allenols via the ATA reaction.

Results and discussion

At the outset, we examined the reaction of 2-alkynyl-1,4-diol
dicarbonate 1a, phenylboronic acid 2a, and dimethyl malo-
nate 3a in the presence of [Pd(allyl)Cl],, SPhos (L1),** and K,CO;
(Table 1, entry 1) at room temperature in THF for 22 h. To our
delight, the allene product 4aaa was obtained albeit in only 36%
yield with 56% yield of an unexpected by-product, 2,3-allenyl
methyl ether 5aa. Other allenes A-2, alkynes B-1 and B-2, or
conjugated dienes C-1 and C-2 were not detected, indicating

Table 1 Optimization of the reaction conditions®
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exclusive chemo- and regio-selectivity. It is quite surprising to
note that the oxidative addition occurred with the sterically
more crowded secondary C-O bond. The study on the ligand
effect indicated that although L2 or L3 led to a better yield for
allene product 4aaa, a small amount of dicarbonate 1a was also
recovered (Table 1, entries 2 and 3). No reaction occurred with
bulkier ligand L4 (Table 1, entry 4). Since Gorlos-Phos
(L5-HBF,) and LB-Phos (L6-HBF,)"” were fully ineffective for
this reaction (Table 1, entries 5 and 6), L1 was applied for
further screening. The base was proven to be essential (Table 1,
entry 7) and slightly increasing the loading of K,CO; would
improve the yield of 4aaa to 41% (Table 1, entry 8). By running
the reaction at 50 °C, the yield of 4aaa could be improved to 77%
together with 15% of 2,3-allenyl methyl ether 5aa (Table 1,
entries 9-11). Solvent screening led to the observation that DCE
was the best furnishing product 4aaa in 88% yield (Table 1,
entries 12-16). A reaction with 1.0 mmol furnished a slightly
better result with 4aaa being isolated in 91% yield (Table 1,
entry 17).

Ph

OCO,Me PhB(OH), [Pd(allyl)Cl], (2.5 mol%) Vi CO,Me
2a, 1.0 equiv Ligand (12 mol%) 2Np aaan o
2NP” NN_ocoMe + CO,Me KoCO3 (1.5 equiv) ﬂ:ﬂ ,Me
Solvent, Temp., 22 h Ph
1a, 0.2 mmol CO,Me Vi
2-Np = 2-naphthyl 3a, 1.5 equiv 2-Np  5aa —OMe

undetected produqts: ,
Ph MeO,C._CO,Me !

MeO,C

COMe ! oy
2-Np—§; PN

i2Np_ Ph Ph
2N N \_3: 2-Np/_§’:

PH : Me0,C” >CO,Me Ph ! Pr P
A2 : B-1 B-2 X c2

allene : alkynes : dienes
Entry Ligand Solvent Temp. Yield of 4aaa/1a recovered/yield of 5aa” %
1 L1 THF r.t. 36/0/56
2 L2 THF r.t. 49/10/24
3 L3 THF r.t. 48/23/12
4 L4 THF r.t. 0/71/0
5 L5-HBF, THF r.t. 0/90/0
6 L5-HBF, THF r.t. 0/84/0
7¢ L1 THF r.t. 0/99/0
8? L1 THF L.t 41/0/53
o4 L1 THF 30 °C 46/0/49
107 L1 THF 40 °C 64/0/26
11¢ L1 THF 50 °C 77/0/15
129¢ L1 DCE 50 °C 88/0/0
13%¢ L1 Toluene 50 °C 32/0/53
14%¢ L1 EtOAc 50 °C 83/0/4
15%¢ L1 CH;CN 50 °C 69/0/0
16%¢ L1 1,4- Dioxane 50 °C 80/0/0
17%ef L1 DC 50 °C 94 (91)5/0/0

OMe
MeO PCy, MeO' PtBu, PCy, PCyz
prZ PCy, iPr- iPr iPr- iPr iPr: iPr MeO.
MeO. OMe Me,N NMe,
SPhos CPhos Bret[Phos tBuBrettPhos Gorlos-Phos LB-Phos
L4 LS L6

Reactlon conditions: 1a (0 2 mmol), 2a (1.0 equiv.), 3a (1.5 equiv.), [Pd(allyl)Cl] (2.5 mol%), ligand (12 mol%) and base in solvent unless otherwise
noted. ” Determlned by "H NMR analys1s of the crude product using CH,Br, as the internal standard. © The reaction was run in the absence of
K,CO;. 4 2.0 equiv. of K,CO; were used. ¢ The reaction was run for 24 h. /' The reaction was carried out on a 1 mmol scale. ¢ Isolated yield.
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After establishing the optimal conditions, we turned to substrates 1 bearing either electron-poor (1c-1f) or electron-rich
investigate the scope of 2-alkynyl-1,4-diol dicarbonates 1 (1g-1h) aryl groups (R') generating the corresponding allene
(Table 2). The reaction could be applied to a wide range of products 4 in 67-88% yields. Interestingly, ortho-fluoro (1i) and

Table 2 The scope studies®

[Pd(ally)Cl]; (2.5 mol%)

QeO:Me Sphos (12 mol%) R?
phos (12 mol% _
+ RZB(OH), + H-Nuy ———— =<_
R! Q OCOMe (OH), K2CO3 (2.0 equiv) Rr Nu
2 DCE (0.1 M), 50 °C, 24 h
1 2 3,60r8 4,70r9
Ph "‘,—b Ph X=H, 4baa, 80% L L
= CO,Me Jr‘"‘i’_ = COMe  X=Cl,  4caa, 81% ':'(_<C02Me ':§_<002Me
2-Ng = o ° X=CN, 4daa, 81%
CO,Me ;@ *‘\, CO,Me  X=CFs,  4eaa, 77% o) COzMe F CO,Me
4 " ”e X = CO,Me, 4faa, 71% L
aaa < ¢ - o o
. X X=0Bn, 4gaa, 88%
1 mmol scale: 91% 4haa, 67% 4iaa, 79%
10 mmol scale: 3.4834 g, 90% CCDC: 2202991 »ore » 1970
Ph Ph ph Ph Ph
= CO,Me com /—-:§_<COzMe = CO,Me —. COMe
2Me n-C7H1s \%(—/)7
CO,Me CoMe COzMe COMe CO,Me
=
4jaa, 76% 4laa, 59% 4maa, 50% 4naa, 63%
Ph O

Me |
Me F CO,Et
CO,M — FoaMe COM CO,M
anld ,Me — Me — 2Me _ - COyMe
and ¢ N ond e CoMe /T 2

CO,Me

CO,Me

4aba, 64%"

F
— CO,Me
ot Q

CO,Me
4aha, 76%
Ph
= CO,Me
2»Npﬁ CO,Me
e

4aab, 87%"

Ph
= SO,Ph

2-Np
SO,Ph

7aaa, 46%

unsuccessful results:
Ph /_//
wd "

9aab, 16%
with 44% recovery of 1a

CO,Me
CO,Me
NC
4dca, 84% 4ada, 74%
Cl OAc
= CO,Me aal CO,Me
2-Np/_ :gc:? 2-Np/_
CO,Me CO,Me
4aia, 75% 4aja, 83%°
ph — o CO,Me
= CO,Et /S 2
2-Npﬁ co,et  2Np COzMe
Bn

4aac, 82%"

Ph
/=.:<_ Bn
2-Np N\B
n

9aaa, 70%

not observed
with 89% recovery of 1a

A

4aad, 90%"

Ph

_=<_ Bn
N\
Bn

Cl 9caa, 62%

X N o)
2-Np

not observed
with 67% recovery of 1a

CO,Me

4aea, 78%°

CF3

= CO,Me
2-Np/_
CO,Me
4aka, 57%°
Ph
= CO,Et
ond ZQ—@{B
\

\
4aae, 55%" 3

Ph

_='<_ Bn
N\
Bn

NC 9daa, 59%

not observed
with 65% recovery of 1a

4afa, 85%7

Vo CO,Me

2-Np

CO,Me

4ala, 78%', d.r. = 1:1

Ph
= CO,Et

2-Npﬁ CO,Et
NHAC

4aaf, 52%"

Ph

_Zﬁ_ Bn
N\
Bn

BnO 9gaa, 65%

Ph /_//
2-N pﬁ :<~ N,
Me
not observed

with 70% recovery of 1a

CO,Me

4aga, 90%°

Ph
— CO,Et
CO,Et
.

NC  4dag, 84%"

Ph
/=- /Bn
n-CsHys N
Bn
9laa, 42%

Ph
*-:Q; Bn
2-Npﬁ N
H

not observed
with 100% recovery of 1a

“ Unless otherwise indicated, the reaction was performed with 1 mmol of 1, 1.0 equiv. of 2, 1.5 equiv. of 3, 6 or 8, 2.5 mol% of [Pd(allyl)Cl],, 12 mol%
of SPhos, and 2.0 equiv. of K,CO; in DCE (0.1 M) at 50 °C for 24 h. Yields of isolated products are given. ? 5 mol% of [Pd(allyl)Cl], and 24 mol% of
SPhos were used. The reaction was run for 48 h. © 3.5 mol% of [Pd(allyl)Cl], and 15 mol% of SPhos were used. The reaction was run for 36 h.
3.5 mol% of [Pd(allyl)Cl],, 15 mol% of SPhos, and 2.0 equiv. of 3a were used. The reaction was run for 36 h. ¢ The reaction was run for 36 h.
/3.5 mol% of [Pd(allyl)Cl], and 15 mol% of SPhos were used. The reaction was run for 48 h. ¢ 2.0 equiv. of Cs,CO, were used instead of K,CO;.
The reaction was run for 48 h. ” The reaction was performed with 1 mmol of 1, 1.0 equiv. of 2a, 2 equiv. of 3, 3.5 mol% of [Pd(allyl)CI],,
15 mol% of SPhos, and 2.0 equiv. of Cs,CO; in DCE (0.1 M) at 50 °C for 48 h.
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meta-fluoro (1j) substituted substrates were accommodated to
afford the multi-functionalized allene products 4iaa and 4jaa.
Delightedly, commercial drug adapalene derived 2-alkynyl-1,4-
diol dicarbonate 1k could also afford the desired allene 4kaa
in an excellent yield. Moreover, R' may also be an alkyl group
(4laa-4naa). Next, the substrate scope of the organoboronic acid
2 was studied. Obviously, the electronic nature of the organo-
boronic acids has a limited impact on the reactivity affording
the allene products 4aba-4aka in up to 90% yields. Bioactive
molecules, such as ibuprofen and estrone, modified organo-
boronic acids could also be applied, delivering products 4ala
and 4ama in moderate yields. The practicality was demon-
strated by the gram scale reaction of 1a with 2a and 3a affording
3.5 g of product 4aaa in 90% yield under 50 °C for 24 h. The
structure of 4aaa was further confirmed by single-crystal X-ray
diffraction.'®

With 2-substituted malonates 3, K,CO; should be replaced
with Cs,CO; for complete transformation obviously due to the
steric effect. Methyl, benzyl, allyl and 2,3-allenyl groups may be
introduced into the 2-position of malonates to prepare allenes
4aab-4aac, 1,6-vinylallene 4aad, and bisallene 4aae in moderate
to excellent yields. The protocol also works for 2-acet-
amidomalonate 3f and 2-fluoromalonate 3g. Besides, bis(phe-
nylsulfonyl)methane 6a and dibenzylamine 8a* could also serve
as suitable nucleophiles to deliver the desired products 7 and 9
in moderate to high yields (42-73%). Diallylamine 8b could
provide the desired product 9aab in 16% yield with 44%
recovery of 1a. Other amines such as tetrahydroisoquinoline,
morpholine, pyrrolidine, N-allylmethylamine and benzylamine
were also studied; however, no corresponding allenyl amine
products were obtained.

To demonstrate the synthetic potential of this methodology,
synthetic transformations of 4caa have been demonstrated
(Scheme 2): firstly, Krapcho decarboxylation was achieved,
affording 4,5-allenoate 10 in 73% yield;* reduction of 10 with
LiAlH, formed 4,5-allenol 11 in 74% yield; 4,5-allenoic acid 12
could be yielded by its treatment with LiOH; next, Weinreb
amide 13 could be obtained in high yield by using N,0-dime-
thylhydroxylamine hydrochloride; gold(i)-catalyzed butyr-
olactone (E)-14 in 96% yield with an exclusive E-selectivity.**

To gain insight into the mechanism, a couple of control
experiments were performed (Scheme 3): at first, the reaction of
2-alkynyl-1,4-diol dicarbonate 1a with 1 equiv. of phenylboronic
acid 2a under the standard conditions for 24 h afforded 2,3-
allenyl methyl ether 5aa in 81% yield (Scheme 3(a)); by

LiCI (3 equiv.)
H,0 (4 equiv.)
DMSO, 180°C, 1h

CO,Me

:{h_<
cl 4caa cl

:<—\ __LiAlH, (2equiv.) _ :<—¥
COMe THF,0°Ctort, 530

10, 73% yield 11, 74% yield

LiOH (1.5 equiv.)
EtOH/H,0 = 1:1
90°C, 150

Ph DMAP (11 mol%) Ph 0.0
=" EDC+HCI (1.3 equiv.) Au(PPh3)CI (5 mol%) \
Me MeONHMe+HCI (1.3 equiv. AgOTS (5 mol%)
N NEt; (1.3 equiv.) COzH CHCl5, rt, 16.5h
S oMe
o 13,97%yield DCM,0°Ctort, Sh 12, 92% yield (E)-14, 96% yield

Scheme 2 Synthetic applications.
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Scheme 3 Mechanistic studies.

increasing the loading of 2a to 2 equiv., the conjugated diene 16
was obtained in 36% yield (E/Z = 1.25:1) together with 60%
yield of allenylic ether 5aa (Scheme 3(b)); a control experiment
showed that only 4% yield (E/Z = 1:1) of conjugated diene 16
was formed when 2 equiv. of 2a were applied under the stan-
dard reaction conditions together with allenylic malonate 4aaa
being formed in 90% yield (Scheme 3(c)); interestingly, when 1a
was treated with phenylboronic acid 2a (1 equiv.) for 3 h, ether
5aa was already formed in 79% NMR yield. The subsequent
addition of malonate 3a (1.5 equiv.) led to the formation of ether

© 2023 The Author(s). Published by the Royal Society of Chemistry
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5aa in 73% yield, exclusively (Scheme 3(d)); when the reaction of
2-alkynyl-1,4-diol dicarbonate 1a and malonate 3a was con-
ducted in the absence of phenylboronic acid 2a, no products
were observed with complete recovery of 1a, indicating the
importance of phenylboronic acid for the transformation
(Scheme 3(e)). Furthermore, the reaction of ether 5aa with 1.5
equiv. of 3a under the standard conditions failed to afford the
product 4aaa, indicating that 2,3-allenyl methyl ether 5aa is
certainly not the intermediate for the formation of 4aaa
(Scheme 3(f)). We then deliberately prepared the envisioned
intermediate, methyl 2,3-allenyl carbonate 15. Its reaction
under the standard conditions afforded 6% yield of 1,3-enyne
17 with 81% recovery (Scheme 3(g)); the reaction of allenylic
carbonate 15 with malonate 3a under the standard conditions
in 24 h afforded 4aaa in a lower yield of 62% without the
formation of 1,3-enyne 17 or allenylic ether 5aa, as compared
with the three-component reaction (Scheme 3(h)). The reaction
of 1a in the presence of phenylboronic acid 2a and malonate 3a
was also monitored and the formation of 15 was not observed
during the whole reaction time (Scheme 3(i)). These experi-
ments (Scheme 3(g)-(i)) indicated that 15 is not the interme-
diate product for the formation of either 4aaa or ether 5aa under
the current reaction conditions.

Based on these experimental mechanistic studies, we
proposed a plausible mechanism as shown in Scheme 4:
initially, the oxidative addition occurred unexpectedly with the
sterically more crowded secondary C-O bond exclusively to
afford the allenyl palladium species Int-I rather than its
regioisomer Int-I’, most probably due to the steric effect in these
two intermediates. Int-I would undergo transmetalation exclu-
sively with boronic acid 2a to generate the intermediate Int-II.
Int-II would prefer B-O elimination over reductive elimination,
affording 1,2,3-butatriene-coordinated palladium intermediate
Int-III. Reductive elimination could be ruled out by the moni-
toring experiment showing that the formation of 15 was not
observed during the whole reaction time. Subsequently, highly
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Scheme 4 Proposed mechanism.
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regioselective insertion of the terminal C=C bond of the 1,2,3-
butatriene into Ph-PdL,OMe formed methylene-m-allyl Pd
species Int-IV. After deprotonation of malonate 3a and nucleo-
philic attack, product allene 4aaa was afforded and the cata-
Iytically active Pd(0) species was regenerated, finishing the
catalytic cycle. In the absence of malonate, reductive elimina-
tion would afford the methyl ether 5aa.

Conclusions

In conclusion, a novel protocol to synthesize trisubstituted
allenes from 2-alkynyl-1,4-diol dicarbonate with organoboronic
acid and malonate has been developed. The method utilizes
readily available coupling partners, affording trisubstituted
double functionalized allenes in an excellent regio- and chemo-
selectivity while enjoying a broad substrate scope and step-
economy. It should be noted that such 2,2,4-trisubstituted
allenyl malonates require lengthy steps via known protocols
(see Scheme S17). A unique mechanism involving B-O elimina-
tion forming 1,2,3-alkatrienes has been proposed. This reaction
provides a new entity for the syntheses of multiple substituted
allenes. Further studies, including the asymmetric version of
this reaction, are being conducted in our laboratory.
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