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s of chemical-scale specificity in
DNA motifs†

Yi-Tsao Chen, a Haw Yang b and Jhih-Wei Chu *ac

In gene transcription, certain sequences of double-stranded (ds)DNA play a vital role in nucleosome

positioning and expression initiation. That dsDNA is deformed to various extents in these processes leads

us to ask: Could the genomic DNA also have sequence specificity in its chemical-scale mechanical

properties? We approach this question using statistical machine learning to determine the rigidity

between DNA chemical moieties. What emerges for the polyA, polyG, TpA, and CpG sequences studied

here is a unique trigram that contains the quantitative mechanical strengths between bases and along

the backbone. In a way, such a sequence-dependent trigram could be viewed as a DNA mechanical

code. Interestingly, we discover a compensatory competition between the axial base-stacking

interaction and the transverse base-pairing interaction, and such a reciprocal relationship constitutes the

most discriminating feature of the mechanical code. Our results also provide chemical-scale

understanding for experimental observables. For example, the long polyA persistence length is shown to

have strong base stacking while its complement (polyAc) exhibits high backbone rigidity. The mechanical

code concept enables a direct reading of the physical interactions encoded in the sequence which, with

further development, is expected to shed new light on DNA allostery and DNA-binding drugs.
1 Introduction

The genome contains cues for regulating gene expression, and
the sequence-dependent stiffness of DNA1 has been recognized
as an essential property mediating such actions as nucleosome
positioning,2–4 initiation control,5–7 and expression
modulation,8–10 to name a few. Gene-regulation signals usually
consist of a short stretch of double-stranded DNA (dsDNA) of
dened pattern and deformation of such DNA segments was
shown to be essential in these processes.11–14 Down to the
chemical moiety level, various structural studies have reported
complex patterns of DNA sequence dependence in base pairing
geometries, ribose puckering, and backbone conformations
that affect the manner by which regulatory proteins bind to
DNA.15–18 These observations suggest that there may be
a fundamental connection between the DNA sequence
patterning and the larger-scale mechanical response;1 yet, how
these are related to chemical-scale stiffness remains elusive to
articulate. Knowledge of the connections linking chemical
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moieties to DNA mechanical response could facilitate new
experimental designs and improve interpretation of functional
genomics, provide new insights for the machinery in DNA-
interacting proteins,19 and accelerate the development of
DNA-binding drugs,20,21 for example.

To resolve such connection that crosses several time- and
length-scales, here we use the recently developed structure-
mechanics statistical learning framework22 and graph-theory
analysis23 to quantify dsDNA rigidity within and between
chemical moieties. It is found that each of the regulatory DNA
sequences studied exhibits a distinct base-to-backbone che-
momechanical linkage that can be likened to rigidity nger-
prints. They serve as a unique and quantiable dsDNA
mechanical coupling presentation, and provide an intuitive
understanding for experimental observations. This nding thus
suggests an interesting new way of appreciating how local
genetic information on the chemical moiety level is transmitted
to inuencing the large-scale biological function: mechanisti-
cally, sequence-specic information propagates not only by
means of cognizant DNA-binding proteins but also throughout
the DNA chain by physical-force based mechanical coupling. As
each rigidity ngerprint is unique and context sensitive, in
a sense, the rigidity ngerprint could be also viewed as
a mechanical code.

In this rst study on the mechanical code, we focus on four
hallmark sequence motifs in transcription regulation (Fig. 1a):
polyA, polyG, TpA, and CpG. The homopolymeric polyA (5–20
base pair (bp) A-tract24–27 of poly(dA:dT)) has unusual behaviors
Chem. Sci., 2023, 14, 10155–10166 | 10155
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Fig. 1 Nucleic acid mechanics in transcription regulation. (a) The 21-bp dsDNA studied in this work includes polyA, polyG, TpA, and CpG. At base
p, the base-pairing rigidity due to hydrogen bonding (hb) is khbp . Next to khbp in the reference strand is (kstp ,k

RP
p ), the rigidity of base stacking (st) and

ribose-phosphate backbone (RP) toward the 3′-end, and (kstp−1,k
RP
p−1) toward the 5′-end. Similarly, the complementary strand has (kstp ,k

RP
p )c and

(kstp−1,k
RP
p−1)

c. The (kstp−1,k
RP
p−1)/(k

st
p ,k

RP
p ) − khbp − (kstp−1,k

RP
p−1)

c/(kstp ,k
RP
p )c mechanical code is shown in polyA and TpA for illustration. (b) The inter-moiety

rigidity of base pairing, base stacking, and backbone, a trigram, is statistically learned from all-atomMD data. (c) Themechanical code reduced to
a single element around a base pair by virtue of symmetry in the transcription regulatory sequences studied here. The bar length indicates the
relative magnitude of base-pairing (green), base-stacking (red), and backbone (purple) rigidity, and the mean rigidity khb, kst, and kRP as the
average of khbp , kstp , and kRPp in each sequence are used to set the bar lengths. Notice that the mechanical code represented as the coupling
spectrum around a base pair has symmetry with respect to the middle horizontal line in homopolymeric sequences and to the vertical line in
ambigram systems.
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and plays important roles in nucleosome positioning,28–32

whereas polyG serves as a model for the G-rich repressor
segment of a promoter.33,34 TpA is part of the TATA box for the
initiation control of transcription and has axially alternating
repeats of ambigram symmetry.35–37 The CpG sequence is
involved in mammal gene expression and in epigenetic
regulation.38–40

Our strategy can be understood as follows. To ensure that the
chemical identities are expressively included, all-atom MD
simulations of 21-bp polyA, polyG, TpA, and CpG sequences are
performed in explicit water for 5 ms production runs. The
atomistic MD data are used to evaluate the computational
mechanical properties for quantitative comparison with exper-
iments as detailed in the ESI.† The same MD data are also
coarse-grained to mesoscale by statistical learning to compute
the elastic parameters in the heavy-atom elastic network model
(haENM) of dsDNA. This approach has been established to have
specic elastic constants up to the nearest-neighbor moieties
while the harmonic potentials between heavy atoms of a greater
separation would have zero or negligible values through the
statistical learning.22 Prediction of dsDNA thermal stability
from sequence was also based on the parameters between the
10156 | Chem. Sci., 2023, 14, 10155–10166
nearest neighbors.41 As such, analysis at the heavy-atom level
allows quantication of rigidity between chemical moieties.

Our determination of haENM spring constants achieves self-
consistency by going beyond a simple inversion of the covari-
ance matrix,42 and is used to inform the holistic chemical-scale
rigidity for mechanistic understanding of sequence specicity.
On the other hand, conventional methods mostly focused on
the rigid planes of bases and base pairs by their helical
coordinates.43–45 Mechanical properties extracted using the
collective variables dened that way, however, tend to scramble
the chemically informative inter-molecular interactions. The
chemical mechanism for such property as high twist exibility
or negative tilt–shi correlation is thus difficult to deduce and
articulate. Alternatively, structure-mechanics statistical
learning with haENM offers a way to resolve the inter-atomic
couplings in DNA dynamics. For example, the sequence-
dependent choreography of backbone and base movements
was noticed,18 and it would be valuable to be able to trace the
molecular origin. Furthermore, the interplay of the base pairing
interaction with the base stacking interaction in giving rise to
sequence specicity is mostly elusive.
© 2023 The Author(s). Published by the Royal Society of Chemistry

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
https://doi.org/10.1039/d3sc01671d


Edge Article Chemical Science

O
pe

n 
A

cc
es

s 
A

rt
ic

le
. P

ub
lis

he
d 

on
 2

9 
A

ug
us

t 2
02

3.
 D

ow
nl

oa
de

d 
on

 1
2/

29
/2

02
4 

2:
47

:4
3 

PM
. 

 T
hi

s 
ar

tic
le

 is
 li

ce
ns

ed
 u

nd
er

 a
 C

re
at

iv
e 

C
om

m
on

s 
A

ttr
ib

ut
io

n 
3.

0 
U

np
or

te
d 

L
ic

en
ce

.
View Article Online
We follow the previously established compartmentalization
scheme to dissect molecular rigidity in chemical terms.22 These
intertwining haENM springs could be visually informative when
superimposed onto the dsDNA 3D structure (Fig. 2); however,
they are still local to the mesoscale. This is where the tech-
niques and concepts developed in the graph theory community
come in. The graph-theory analysis detailed in the ESI† is used
to quantitatively winnow the insignicant and at the same time
concatenate the strongly coupled, regardless of the physical
scale of the connections on which it operates—a cross-scale
analysis. More specically for this application, we generalize
the graph-theory analysis framework initially developed for
proteins23 and apply it to analyze the strengths of base-pairing
hydrogen bonding (hb), base stacking (st), and ribose-
phosphate backbone (RP) for the transcription regulatory
sequences. What emerges is coupling pathways that thread
through all scales and that are composed mostly of hb, st, and
RP interactions (see Fig. 1b for an illustration of the various
terms used in constructing the mechanical code). The rigidity is
in the unit of kcal mol−1 Å−2, and the specic values of the hb,
st, and RP categories form a trigram and constitute the
mechanical code.

For each of the regulatory sequence motifs studied here, by
virtue of symmetry, the mechanical code can be further reduced
to a single element as the mean rigidity between chemical
moieties around a base pair (Fig. 1c). Notice that the dinucle-
otide units in polyA and in its complement polyAc (cf. Fig. 1b)
are composed of different bases. TpA, on the other hand, has
axially alternating TpA(AT) and TpA(TA) dinucleotide sequences
Fig. 2 Quantification of inter-moiety rigidity in nucleic acids by structure
of computing the haENM (heavy-atom elastic network model) spring
assembly of rigidity graphs. The superscript m in kmij denotes the inter-mo
the nth window, Km

n , is constructed with the list of spring constants, {kmij
analysis of �Km and all Km

n 's is then conducted to identify the statistically pro
coupled atom pairs {a–b}m from �Km. The other details are in the Materia

© 2023 The Author(s). Published by the Royal Society of Chemistry
of ambigram symmetry (the same nomenclature is applied to
the dsDNA of G–C pairing). Therefore, the mechanical codes
shown as the coupling spectra around a base pair in Fig. 1c
exhibit symmetry with respect to the base-pairing plane (middle
horizontal line) for homopolymeric sequences but along the
complementarity interface (vertical line) in ambigram systems.
These variations provide a visual example for context-sensitive
signals of inter-moiety coupling as well an intuitive under-
standing of the relative mechanical strengths of these
sequences. For example, the strong axial coupling in polyA
indicates low bendability, while the very weak base-stacking and
backbone rigidity at TpA(TA) suggest a higher chance of having
kinks.
2 Materials and methods

The haENM spring constants are statistically learned from the 5
ms production run of all-atomMD trajectory. On this time-scale,
dsDNA structural uctuations were shown to exhibit convergent
values,46 fromwhich our results indicate that robust mechanical
signals can be extracted with statistical signicance. Since
a non-hydrogen atom could be either in the phosphodiester
bond (P), ribose (R), or base (B), a spring kmij is categorized as
m = hb (base pairing), st (base stacking), BR (base–ribose
linkage), or RP (ribose–phosphate backbone), Fig. 2a. Other
harmonic potentials are mostly intra-moiety interactions that
have very high spring constants and insignicant sequence
dependence. Therefore, we focus on the hb, st, BR, and RP
categories, and the rigidity graph of each is the heavy-atom
-mechanics statistical learning with graph-theory analysis. (a) Flowchart
constants from the production run all-atom MD trajectory and the
iety rigidity that it belongs to, m= hb, st, BR, or RP. The rigidity graph of
}n, and the mean rigidity graph �Km is the average of all Km

n 's. Spectral
minent modes of the mean graph. (b) Spotting the list of most strongly
ls and methods section.

Chem. Sci., 2023, 14, 10155–10166 | 10157
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nodes with their elastic parameters as edge weights for
capturing the mechanical signals during dynamics. In the
following, the other details of our graph-theory analysis for
structure-mechanics statistical learning are discussed.

2.1 All-atom MD simulations

Nucleic Acid Builder47 is used to construct the B-form all-atom
model of 21 bases for transcription regulatory sequences.
Each system is solvated in a dodecahedron box of explicit water
with at least 10 Å between any nucleic acid atom and box edges.
K+ and Cl− ions are added for charge neutrality and 0.15 M ionic
strength. The AMBER BSC1 force eld48 is employed to compute
the potential energy and the GROMACS soware49 is used for
MD simulations. The cut-off radius for van der Waals interac-
tions and real-space particle-mesh Ewald terms of electro-
statics50 is 12 Å with a switching function effective at 10 Å.
During the all-atom MD simulations, all bond lengths involving
hydrogen are constrained via LINCS.51 Aer initial minimiza-
tion and 12 ns equilibration period, the production run of 5 ms
is conducted at constant temperature (310 K) and pressure
(1.013 bar) via the Langevin thermostat and the Parrinello–
Rahman barostat.52 A snapshot is saved every 100 ps for
learning haENM spring constants and other properties.

2.2 Calculation of persistence length from dsDNA dynamics

Persistence length is dened by viewing dsDNA as a linear curve
with tangent vectors along the contour length. The helical axis
of each atomistic conguration sampled in the MD simulations
of dsDNA is computed by curves+53 for determining the contour
length and the tangent vectors. The Fourier mode amplitudes of
the bending deformation are then evaluated, and their vari-
ances in the trajectory are used to calculate persistence length
Lp.54 Other details are reported in the ESI.†

For the 21-bp transcription regulatory sequences, the
persistence length calculated from the 5 ms all-atom MD
trajectory is polyA Lp= 71.8± 3.7 nm, polyG Lp= 49.1± 2.5 nm,
TpA Lp = 53.3± 5.7 nm, and CpG Lp = 66.5± 2.6 nm. PolyA and
CpG appear to be stiffer with a longer Lp whereas polyG and TpA
are more exible. TpA and polyG have Lp values around the
51 nm result based on a generic sequence measured with
atomic force microscopy (AFM).12 The TpA Lp being slightly
longer than that of polyG was also observed in cyclization
experiments.55 PolyA having ultra high bending rigidity is in
agreement with gel electrophoresis studies,24,25 and the Lp value
in our calculation (71.8 nm) is quantitatively close to the result
of a knowledge-based model.56 The calculated CpG Lp (66.5 nm)
is also similar to the result based on AFM.57 This value is only
slightly lower than the polyA Lp, reecting the role of CpG
sequences in enhancing the bending rigidity of long dsDNA
sequences.58

2.3 Construction of rigidity graphs from dsDNA dynamics

The mechanical coupling network of each DNA sequence is
represented by haENM with the kij's as edge weights, Fig. 2a.
Here, i and j are the number indices of atoms. All heavy-atom
pairs with the averaged distances within the 4.7 Å cutoff22 are
10158 | Chem. Sci., 2023, 14, 10155–10166
connected by a spring in the haENM. The difficulty of modeling
nucleic acids by ENM59 is tackled here by structure-mechanics
statistical learning. ENM is widely used in modeling protein
systems,60,61 and our approach can also be adopted to under-
stand the very complicated structural dynamics.62,63 From the
all-atom trajectory data, the calculated variances for this list of
inter-atomic distances, hdlij2iAA's, are used to statistically learn
the kij values by the self-consistent iteration of k(n+1)ij = k(n)ij + h(1/
hdlij2i(n)NMA − 1/hdlij2iAA); hdlij2i(n)NMA is the variance predicted by
normal mode analysis (NMA) of haENM, (n) is the iterative step,
and h is a numerical learning factor which is kept constant.
Since the springs between dsDNA heavy atoms are inter-
connected, the self-consistent iteration is to tackle the coupled
statistics of different mechanical interactions.

With haENM giving a harmonic approximation, force-eld
anharmonicity and long-term dynamics would cause the kij
values to vary. As an effective way for examining edge weight
variation, the 5 ms all-atom MD trajectory is split into over-
lapping 500 ns windows,23 and the set of haENM parameters of
each window n, {kij}n, is calculated by the aforementioned
structure-mechanics statistical learning as indicated in Fig. 2a.
In a graph-theory representation of the n-th haENM, {kij}n is the
off-diagonals of the square matrix Kn with the dimension of
non-hydrogen atom sites, and the diagonal degrees of which are
the sum over off-diagonals, Fig. 2a. Since each spring is cate-
gorized as m = hb, st, BR, or RP, {kmij }n and Km

n are the set of
elastic parameters and rigidity graph, respectively, of category
m. Other details are reported in the ESI.†

2.4 Identication of prominent patterns in rigidity graphs—
the strongly coupled atom pairs

For each m = hb, st, BR, or RP, spectral decomposition of the
mean rigidity graph averaged over Km

n 's gives

Km ¼ P

a

lma n
m
a ðnm

a ÞT that denes the mean-modes as

nma eigenvectors and lma eigenvalues, Fig. 2a. For nma , the mean-
mode content in each window is calculated as
rmna=maxbjnmnb$nma j with the Km

n eigenvectors of the window. The
averaged mean-mode content across the production run,
hrma i, is the persistence metric of mean-mode a in the
mechanical compartment.23 Statistical outliers of the
lma distribution that also have high mean-mode contents (hrma i >
0.8) are then identied as the prominent modes of the mean
rigidity graph, Fig. S1–S10.† Next, the set of high weight atoms
in the prominent modes, {i}m, is used to identify the list of most
strongly coupled atom pairs, {a–b}m, Fig. 2b. Spring constants of
atom pairs in the {a–b}m list are statistical outliers that repre-
sent the prominent couplings in �Km.

Here, a and b are the names of the strongly coupled atoms
(mechanical hotspots). For example, the {a–b}hb lists of
mechanical hotspots in the base pairing of polyA and polyG are
expected to be related to the hydrogen bonds and are indeed
identied to be {C2–O2, N1–N3, N6–O4} and {N2–O2, N1–N3,
O6–N4}, which are consistent with the donor–acceptor notion in
base pairing and serve as a validation that the above scheme of
identifying prominent patterns in the rigidity graph can indeed
capture the salient features of nucleic acid dynamics. The
© 2023 The Author(s). Published by the Royal Society of Chemistry
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mechanical hotspots of the other inter-moiety rigidity of m= st,
BR, or RP, though, are very difficult to expect a priori and can
provide unprecedented insights as discussed later. For the
inter-moiety rigidity in different sequences, the detailed statis-
tics for identifying {a–b}m are described in the ESI and the
results are shown in Fig. S11–S14.†

2.5 Quantication of the rigidity between chemical moieties

Compartmentalization of the haENM springs (kmij 's) into m =

hb, st, BR, or RP provides a way to quantify the rigidity between
base, ribose, and backbone moieties. As listed in Fig. 3a, the
inter-moiety rigidity at base p, kmp , is computed from the
kmij values in which the i and j atoms are in either of the two
interacting moieties. To focus on the statistically prominent
restraints, the kmij values of atom pairs in the {a–b}m list of very
strongly coupled mechanical hotspots are averaged to deter-
mine kmp . For instance, since the {a–b}

hb of polyA is {C2–O2, N1–
N3, N6–O4} (Fig. 3b), khbp is the averaged strength of the three
base pairing hydrogen bonds. The {a–b}m list is identied
according to the procedure delineated earlier (cf. Fig. 2).
Regarding the axial coupling of base stacking and ribose–
phosphate backbone, rigidity at base p is based on the kstij and
Fig. 3 The inter-moiety rigidity of m = hb, st, or RP is calculated from
haENM spring constants ({kmij }) that are determined by structure-
mechanics statistical learning with an all-atom MD trajectory. The {a-
b}m list of strongly coupled atom pairs (mechanical hotspots) is iden-
tified by the graph-theory analysis of {kmij }, ESI.† (a) Mathematical
definition of inter-moiety rigidity. The rigidity of inter-moietym at base
p is kmp . For an atom pair in the {a–b}m list, kma–b is the averaged strength
over all bases. Averaging the kmp values of all bases gives km, the mean
inter-moiety rigidity. (b) Schematic representation of kmp , k

m
a–b, and km

using m = hb in polyA as an example.

© 2023 The Author(s). Published by the Royal Society of Chemistry
kRPij springs between the categorial atoms of p and p + 1 bases.
Averaging over the springs in {a–b}st and {a–b}RP thus gives the
base-stacking rigidity kstp and backbone rigidity kRPp , respectively.
As each base p has two sides of axial stacking, the 3′-side rigidity
of base stacking is kstp whereas the 5′-side value is kstp−1.

The mean inter-moiety rigidity, km (m = hb, BR, st, or RP), is
the average of the kmp values over bases, Fig. 3a. To understand
the inter-atom couplings of inter-moiety rigidity, the strengths
of atom pairs in {a–b}m are averaged over the bases as the kma–
b values. For example, given the {a–b}hb list of mechanical
hotspots in polyA base pairing, {C2–O2, N1–N3, N6–O4},
khbp reports their averaged hydrogen bonding strength at base p,
while khbC2–O2, khbN1–N3, and khbN6–O4 are the specic inter-atom
strengths in the base pairing, Fig. 3b. Based on the canonical
B-form structure of dsDNA, which is well maintained in the all-
atom MD simulations of the transcription regulatory sequences
studied here, proximity of atom pairs to grooves64 is employed
to indicate their relative positions in the double helix. In the
base pairing of polyA, the minor-groove side, middle, and
major-groove side hydrogen bonding strengths are khbC2–O2, k

hb
N1–

N3, and khbN6–O4, respectively, Fig. 3b.
3 Results and discussion

With the haENM spring constants quantied by structure-
mechanics statistical learning, the proles of inter-moiety
rigidity are cross-compared to reveal the mechanical
patterning in the DNA sequence motifs of transcription regu-
lation. To understand the molecular origin, we look into the khba–
b, k

st
a–b, and kRPa–b values of mechanical hotspots (atom names

a and b) in khbp , kstp , and kRPp , respectively (cf. Fig. 3). The inter-
moiety rigidity of each category is the average of the excep-
tionally strong spring constants, and the atoms that they
connect are dened as mechanical hotspots, Fig. 3 and ESI.†
The base-to-backbone chemomechanical linkage and their
inter-atom coupling strengths are shown to provide an intuitive
understanding for many experimental observables, including
the persistence length and a variety of structural properties.
3.1 Compensatory competition between base pairing
(transverse) and base stacking (axial)

The khbp -versus-p curve of polyG is about 1.8 times higher than
that of polyA as one would expect for G–C pairing being
stronger, Fig. 4a. The weaker A–T pairing, however, has much
stronger rigidity in base stacking. The kstp –k

hb
p plots of polyA and

polyG and those of polyAc and polyGc illustrate their negative
correlation in Fig. 4b. Plotting the 3′-side stacking rigidity
kstp−1 with khbp gives a similar result, Fig. S15.† Even when
considering the kstp values in one of the dsDNA systems without
referencing to those of another chain, the detailed analysis as
reported in the ESI text and Fig. S18–S21† illustrates the specic
competition between the base-stacking interaction and the
base-pairing interaction. To understand this reciprocal rela-
tionship, we examine the inter-atom coupling strengths of the
mechanical hotspots in kstp and khbp , i.e., the ksta–b and khba–b values
(cf. Fig. 3).
Chem. Sci., 2023, 14, 10155–10166 | 10159
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Fig. 4 Base-pairing rigidity and base-stacking rigidity in the tran-
scription regulatory sequences studied here. (a) khbp and kstp along the
sequence index p. Terminal bases are not included to discard the
fraying effects.65 The shorthand notation hb is for base pairing
hydrogen bonding and st is for base stacking. Top: The profiles of
polyA and polyG. Bottom: The profiles of TpA and CpG. (b) The kstp–
khbp plots of polyA, polyAc, polyG, and polyGc (left) and of TpA(AT),
TpA(TA), CpG(GC) and CpG(CG) (right). The linear best fit of kstp to khbp is
shown for each group of (polyA, polyG), (polyAc, polyGc), (TpA(AT),
CpG(GC)), and (TpA(TA), CpG(CG)).
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Regarding the specic strength of hydrogen bonding, the
weaker A–T pairing has the property of khbN6–O4 at the major-
groove side [ khbC2–O2 at the minor-groove side, while the
stronger G–C pairing has the opposite trend of khbO6–N4 at the
major-groove side < khbN2–O2 at the minor-groove side, Fig. 5. A–T
and G–C base pairing thus have distinct relative strengths in
hydrogen bonding between the minor-groove side and the
major-groove side. A–T and G–C base pairing exhibiting oppo-
site relative strengths over groove sides was not noticed previ-
ously to the best of our knowledge. Furthermore, the
mechanical coupling of base stacking is also similarly
patterned. Fig. 5 shows that the polyA mechanical hotspots of
kstp lean over the major-groove side while those in polyG bias
toward the minor-groove side. The mechanical hotspots of base
stacking are thus consistent with the groove-side imbalance in
base pairing, and the negative correlation of kstp (axial) with
10160 | Chem. Sci., 2023, 14, 10155–10166
khbp (transverse, cf. Fig. 1b) indicates compensatory competition
between the axial base-stacking interaction with the transverse
base-pairing interaction.

The base-stacking mechanical hotspots leaning toward the
groove side of the stronger base-pairing hydrogen bonding,
though, is not apparent in polyAc and polyGc of the smaller
bases, Fig. 5. The strand-specic base-stacking rigidity can be
seen in the distinctively higher kstp values in polyA than those in
polyAc. The much lower values of kstp in polyG and polyGc,
however, are nearly identical under the stronger base pairing,
Fig. 4a.

The nding of compensatory competition between the
transverse base pairing interaction and the axial base stacking
interaction provides mechanistic insight for the sequence
specicity observed in experimental DNA structures, such as the
higher structural exibility around the GG dinucleotide,66,67

which can be understood as the base stacking being weaker due
to the stronger base pairing, similar to the case of low base-
stacking rigidity in polyG. On the other side of the same coin,
this mechanism explains the observation of AA and TT having
maximal base overlaps in experimental structures,68 which gives
rise to the stronger axial coupling in polyA. Our approach thus
identies a common molecular origin for a variety of sequence-
dependent exibilities observed in different structural analysis.
As discussed in the ESI text with Movies S1 and S2,† base-
stacking rigidity negatively correlating with base-pairing
strength shows specic structural dynamics in the all-atom
MD trajectories, including the wider distributions of slide and
shi in polyG (Fig. S16†). Another prominent mechanical
property due to the compensatory competition between base
pairing and base stacking as reported earlier is the base-
stacking hotspots leaning toward the major-groove side in
polyA but not in polyAc, and with such difference in the axial
couplings of the base pair, a large mean propeller twist of
−11.8° is observed in the all-atomMD trajectory, Fig. S17.† This
unique structural feature was also observed in the X-ray struc-
tures of polyA,68–70 and our analysis of inter-moiety rigidity
provides the previously unknown chemical basis. With the
nearly identical and much weaker base stacking in polyG and
polyGc, a signicantly smaller propeller twist (−3.4°) is observed
instead, Fig. S17.†
3.2 Axially alternating rigidity of base stacking in ambigram
sequences

The two strands in TpA and in CpG have identical, axially
alternating sequences, and showcase how the chemical-scale
mechanical mechanisms—the groove side-dependent strength
of base pairing and the compensatory competition between the
transverse base-pairing interaction and the axial base-stacking
interaction—manifest under the ambigram symmetry. The
khbp -versus-p curves of base pairing in TpA and CpG display at
proles of robust mechanical signals, Fig. 4a. A–T pairing in
TpA and G–C pairing in CpG also exhibit distinct relative
strengths between the minor-groove side hydrogen bonding
and the major-groove side interaction (Fig. S12†), and this
difference between the two types of complementarity is
© 2023 The Author(s). Published by the Royal Society of Chemistry
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Fig. 5 The strengths of inter-atom couplings in base-pairing rigidity and in base-stacking rigidity of polyA (left) and polyG (right), i.e., their khba–
b and ksta–b values. For base-pairing rigidity, the khba–b values of atom pairs in the {a–b}hb list of mechanical hotspots are displayed around the green
dotted lines. For the {a–b}st list of base-stacking rigidity, the 5′-side atoms are in blue and 3′-side atoms are in magenta.
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consistently observed as in the homopolymeric systems (Fig. 5).
Furthermore, A–T pairing in TpA is weaker than that in polyA,
Fig. 4a. This result is consistent with the NMR analysis showing
that the strength of A–T base pairing depends on the axially-
stacked neighbors.71 Our result shows that such behavior is
also observed in G–C base pairing, and CpG khbp being notice-
ably higher than that in polyG is opposite to the ambigram-
versus-homopolymeric comparison of A–T pairing, Fig. 4a.

With the two strands having the same sequence, the base-
stacking mechanical coupling is specically patterned in the
structure of TpA and CpG. In both dsDNA, the base-stacking
mechanical hotspots leaning over the groove side of the
stronger base-pairing hydrogen bond is observed at the purine–
pyrimidine dinucleotide of both strands but not at the pyrimi-
dine–purine unit (Fig. S12†). The two strands in TpA indeed
display identical kstp -versus-p proles with drastic ups and downs
in Fig. 4a, indicating that TpA(AT) has much stronger base
stacking than TpA(TA) does. With mechanical hotspots of the
dinucleotide unit and its complement having the same bias, the
kstp of TpA(AT) is even higher than that of polyA, Fig. 4a.
However, the groove side-specic interactions under ambigram
symmetry lead to poor base stacking at TpA(TA) (Fig. S12†) and
its kstp is ∼3 times lower, Fig. 4a. Drastic difference in base-
stacking rigidity between the axially alternating dinucleotide
units is a unique property of TpA. The kstp of CpG has a similar
up-and-down prole, but the difference between CpG(GC) and
CpG(CG) in kstp is much milder under the stronger base pairing,
Fig. 4a. The compensatory competition between the axial base-
stacking interaction with the transverse base-pairing interac-
tion in terms of the negative correlation of kstp with khbp is also
observed based on the stronger base stacking of CpG(GC) and
TpA(AT), Fig. 4b.

CpG has a unique property that the base-stacking mechan-
ical hotspots leaning over the minor-groove side is also
observed at the smaller cytosine in addition to guanine
(Fig. S12†). In the other dsDNA sequences of TpA, polyA, and
© 2023 The Author(s). Published by the Royal Society of Chemistry
polyG studied here, on the contrary, only the mechanical
coupling of the purine base is patterned in this manner. As
such, the rigidity of both base stacking and base pairing in CpG
are higher than those in polyG. This behavior is exceptional
because the mechanical coupling exhibits negative correlation
between the base-stacking rigidity and the base-pairing strength
in the other cases. As discussed in the following, CpG also has
a peculiar mechanical property in the backbone rigidity.

With base-pairing and base-stacking rigidity showing
specic sequence patterning, how would mechanical coupling
in backbone exhibit different behaviors is analyzed next. As
discussed in the ESI text with Movies S3 and S4,† backbone
structural dynamics in all-atom MD trajectories seem to relate
to base-mediated interactions. The rigidity of the base-to-ribose
linkage indeed shows intricate connection, Fig. S22.† In the
following, we focus on the rigidity of the ribose—phosphate
backbone, kRPp , which reveals the specic property in each
sequence, especially the relative population of backbone
conformation in the BI or BII state.
3.3 Backbone polymorphism is linked to base-mediated
mechanical couplings

The phosphodiester backbone of dsDNA is an important
protein binding site. The kRPp -versus-p proles in Fig. 6a illus-
trate that this moiety indeed has sequence-specic rigidity
patterns for molecular recognition. A common behavior is the
positive correlation of backbone rigidity kRPp with base-stacking
rigidity kstp , and the DNA sequence motifs studied here exhibit
various extents of correlation, bottom panel in Fig. 6a.

To analyze if an alternative backbone conformation is
involved, mechanical hotspots in the {a–b}RP list of kRPp provide
key information. For the exceptionally high kRPp values in polyAc

(Fig. 6a), mechanical hotspots that deliver the very high kRPa–
b values signal the BI state of the dsDNA conformation, which is
dened by the 3 and z backbone dihedral angles,72 Fig. 6b.
Chem. Sci., 2023, 14, 10155–10166 | 10161
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Fig. 6 Rigidity of ribose-phosphate (RP) backbone has positive correlation with the base-stacking rigidity. (a) The kRPp -versus-p profiles of polyA,
polyAc, polyG, polyGc, TpA, and CpG (top). The kRPp –kstp plot for the transcription regulatory sequences (bottom). Grey lines are their linear best
fits. (b) Illustration of backbone conformation in polyAc at BI state (left) and in CpG(GC) at BII state (right). The mechanical hotspots in {a–b}RP

(magenta) and {a–b}st (red) are listed. BI and BII states are defined by the difference between 3 and z dihedral angles of the backbone. All rigidities
are in kcal mol−1 Å−2. (c) The probability density distribution of 3–z in the 5 ms all-atom MD trajectory of the DNA sequence motifs.
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Indeed, the high backbone rigidity of polyAc is found to have an
3–z distribution of ultra-high BI state population in the all-atom
MD trajectory, Fig. 6c. The higher BI-state population in T-rich
dsDNA was also noticed in NMR analysis and X-ray struc-
tures,73,74 but the mechanical origin was unclear. The signi-
cantly lower kRPp values of backbone rigidity in polyA, on the
other hand, indicates a noticeable BII-state population, which is
typical behavior of B-form dsDNA.75 The backbone mechanical
hotspots in the two polyA strands are thus different atom pairs,
Fig. S14.† The above results exemplify that the peculiar struc-
tural features in dsDNA would exhibit specic chemical-scale
mechanical properties, which can be captured by our quanti-
cation of inter-moiety rigidity.

The backbone conformation revealing specic mechanical
hotspots is also seen in TpA. TpA(AT) with the much higher
backbone rigidity is similar to polyAc in terms of the mechanical
hotspots (Fig. S14†) and the high BI-state population (Fig. 6c).
TpA(TA) that has lower backbone rigidity instead has the polyA-
like mechanical hotspots and a similar BII-state population.
Recall that the base-stacking rigidity of TpA(AT) is also much
stronger than that of TpA(TA) (cf. Fig. 4a). Overall, backbone
conformation around thymine being more populated in the BI
state correlates with the higher backbone rigidity and the
stronger base stacking in polyAc and in TpA(AT). The other non-
thymine cases that have a similar BII-state population and lower
backbone rigidity include polyG, polyGc, and CpG(CG) (Fig. 6c),
and they have identical mechanical hotspots (Fig. S14†). This
result further illustrates that consistent mechanical signals can
be captured for the specic backbone conformation.
10162 | Chem. Sci., 2023, 14, 10155–10166
Another peculiar behavior in backbone rigidity is observed in
CpG. Both the kstp and kRPp values of CpG(GC) are higher than
those of CpG(CG) and polyG, Fig. 6a. It turns out that CpG(GC)
has backbone mechanical hotspots signaling the BII-state
conformation, Fig. 6b, and has a signicantly higher BII-state
population than the other cases, Fig. 6c. This feature of the
backbone conformation around the GC dinucleotide was
noticed in crystal structures and NMR signals,76 but the
connection to chemical-scale mechanical properties was not
recognized. The backbone conformation around CpG guanine
being more populated in the BII state is shown here to correlate
with the higher rigidity of backbone coupling and base
stacking.

The chemical-scale mechanical picture revealed from the
analysis of the inter-moiety rigidities in dsDNA is the groove
side-specic strength of base pairing (Fig. 5), the compensatory
competition between the transverse base-pairing interaction
and the axial base-stacking interaction (Fig. 4b), and the back-
bone rigidity kRPp correlating with the base-stacking rigidity
kstp (Fig. 6a). To test the sensitivity of these behaviors to molec-
ular mechanical energetics, a different force eld (OL15)77 with
the renements dedicated to the structurally important
torsional angles in DNA is used to conduct all-atom MD simu-
lations for the rigidity-graph analysis. Despite the different
representations of intra-molecular interactions, similar values
of chemical-scale rigidities are obtained for the DNA systems of
different sequences. The compensatory competition between
the axial base-stacking interaction and the transverse base-
pairing interaction as well as the positive correlation of
© 2023 The Author(s). Published by the Royal Society of Chemistry
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Fig. 7 Mechanical code as the trigram of base-to-backbone rigidity. Top: A–T and C–G base pairing (transverse) has distinct relative strength
between the major-groove side hydrogen bonding and the minor-groove side hydrogen bonding. Mechanical codes of the transcription
regulatory sequences indicate compensatory competition between the axial base-stacking interaction and the transverse base-pairing inter-
action, as well as positive correlation of the backbone rigidity with the base-stacking strength (both axial). Middle: Biological functions of the
transcription regulatory sequences. The persistence length Lp calculated from the all-atom MD of each system is listed. Bottom: The trigram of
base-to-backbone rigidity for polyA, polyG, TpA, and CpG in terms of the khb, kst and kRP values in kcal mol−1 Å−2. The peculiar behaviors of
different systems are specified. These properties show that while a larger-scale material property such as persistence lengthmay be similar, each
dsDNA has a unique mechanical code.
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backbone rigidity and base-stacking rigidity are consistently
observed. The OL15 slopes in khbp –kstp and kRPp –kstp plots (Fig. S23
and S24†) are also quantitatively similar to those presented
here. The robust mechanistic behaviors of chemical-scale
rigidities may not be surprising since these force elds were
developed with common objectives of reproducing the available
data on DNA structures. To understand such diverse sequence-
specic behaviors in genomic regulation, including the force-
eld dependence of structural dynamics, the framework devel-
oped here for quantifying the inter-moiety rigidities provides
a way to learn about the chemical-scale mechanical origin.
3.4 Mechanical code as the trigram of base-to-backbone
rigidity

The aforementioned results can be summarized by the mean
rigidity between chemical moieties, i.e., averaging the kmp of
bases to km (cf. Fig. 3 and S25†). The base-to-backbone inter-
moiety rigidity as the value of khb, kst, and kRP appears as
© 2023 The Author(s). Published by the Royal Society of Chemistry
a unique trigram in each of the polyA, polyG, TpA, and CpG
sequences, and could be viewed as a mechanical code, Fig. 7.
This property provides the missing information of chemical-
scale mechanics for experimental observables on a larger
scale such as persistence length that tend to have limited
sensitivity to sequence variation.78–82 Our quantitative analysis
of inter-moiety rigidity as presented above demonstrates that
the chemical-scale mechanical properties indeed have
sequence-sensitive behaviors.

Since the processes measured in experiments are composed
of changes in inter-moiety distances, mechanical code can
facilitate the development of mechanistic understanding.
Taking the bending of dsDNA as an example, the atomic
structure of the double helix (cf. Fig. 1b) suggests that the inter-
moiety distances along the axial directions are likely perturbed
to greater extents. Inter-base distances were indeed shown to
have higher relevance to persistence length, while the inter-
atom distances of base pairing and backbone have lower but
Chem. Sci., 2023, 14, 10155–10166 | 10163
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still signicant inuence on Lp.22 Therefore, despite the lower
khb in transverse base pairing, ultra-long Lp can be achieved in
polyA through high kst and high kRP (Fig. 7). The large bending
resistance11–13 to wrap around histone proteins was shown to
lead to the high occurrence of the polyA sequence in nucleo-
some depletion regions where the transcription starts in the
chromosome.28–32 As a contrasting case, one may also ask: Why
does polyG have signicantly lower Lp than polyA despite the
stronger base-pairing interaction? This property is related to the
high structural exibility observed in the G-rich repressor
segment of a promoter33,34 and is shown here to associate with
the low kst and low kRP of polyG.

CpG having a rather long Lp closer to the value of polyA is
illustrated here to arrive from a different trigram with high khb

and high kRP, Fig. 7. CpG islands play key roles in the initiation
of mammal gene expression.38–40 This result is a rst illustration
that the different trigrams of base-to-backbone rigidity would
have similar mechanical properties on a larger scale. Another
example is the similarly short Lp values of TpA and polyG
exhibiting different mechanical codes, Fig. 7. For gene expres-
sion in eukaryotic and archaeal cells, the key function of
binding RNA polymerase II is enabled by the TATA box upper
stream of the transcription initiation site.

For base-pair geometries such as propeller twist, slide, and
shi that are discussed earlier, our quantication of base-to-
backbone inter-moiety rigidity offers a useful platform for
analysis since specically patterned mechanical coupling can
be identied for the different behaviors in structural properties.
For example, CpG dsDNA displaying polymorphism as the BI or
BII state74 and polyAc showing an ultra-high BI-state pop-
ulation73 are shown to exhibit specic mechanical properties in
backbone, and the strength of which correlates with the base-
stacking rigidity. The sequence-specic mechanical codes
summarized in Fig. 7 also suggest that TpA would have kinkable
behaviors as observed in single-molecule experiments13 and in
X-ray structures.43

4 Conclusion

For the DNA sequence motifs involved in various regulatory
processes of transcription, we ask: Could there be a mechanical
code in them that illustrates the sequence-dependent properties of
deformation akin to the form of the genetic code? This question is
addressed in this article by quantifying the rigidity between base,
ribose, and backbone moieties, and collating those that are
statistically signicant. Our results show that indeed each
sequence motif has a unique trigram of base-to-backbone rigidity
which could be taken as a form ofmechanical code. An immediate
consequence of note is that while different dsDNA sequences may
exhibit indistinguishable macroscopic mechanical bendability,
they are fully resolvable on the mechanical-code level. The pre-
dicted rigidity differences reect the relative structural exibilities
at the chemical-moiety level, which can potentially be veried
using such experimental approaches as X-ray structural biology43

and NMR spectroscopy.73,83

These results also imply DNA sequence-dependent mechanical
signal transduction—DNA mechanical allostery84–86—where local
10164 | Chem. Sci., 2023, 14, 10155–10166
mechanical deformation in dsDNAmay impact on gene-regulation
actions at remote sites. Under this premise, it follows, it would be
of great interest to understand the elements thatmake up the DNA
mechanical code as well as the basic principles of constructing it.
Since the DNA mechanical code is based on physical interactions,
we expect such an understanding to be generalizable beyond the
sequences studied here. For example, in addition to the conven-
tional wisdom that G–C is the stronger base pairing compared to
A–T, the two types of complementarity are shown here to have
opposite relative strengths between the minor-groove side
hydrogen bonding and the major-groove side interaction. The
mechanical coupling of base stacking is also shown to pattern in
a similar way as the imbalance in base-pairing interactions (cf.
Fig. 1b). These behaviors, in combination with the negative
correlation between kstp and khbp values (Fig. 4b) indicate compen-
satory competition between the axial base-stacking interaction
with the transverse base-pairing interaction, which is the most
discriminating feature of themechanical code. Another prominent
property is the positive correlation of backbone kRPp with
kstp (Fig. 6b). The mechanistic understanding of mechanical codes
also provides an intuitive physical picture for the specic struc-
tural features seen in experiments, including such base-pairing
geometries as propeller twist68–70 and the relative BI or BII state
population of the backbone,73,74 because it claries how different
structural behaviors result from the mechanical properties at the
chemical moiety level.

The dsDNA sequence–structure–dynamics–function rela-
tionship is one of the guiding principles that have helped
dening the eld as it continues to evolve. Along this line of
thinking, however, it remains unclear as to how DNA functional
mechanics could be understood using notions from biochem-
istry, structural biology, or bioinformatics. The mechanical
code concept described here represents the rst step outside of,
yet complementing, the current paradigm and provides a fresh
new way of thinking about this relationship. Thus, in addition
to systematic studies to fully decipher the mechanical code,
immediate possibilities to further explore this concept include
DNA allostery, protein–DNA interactions, and DNA binding
drugs. Beyond application to biological systems, one may
envision the chemical principles of mechanical-code construc-
tion to be potentially very useful in advancing smart biomimetic
devices, for example, by DNA origami.
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