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Introduction

Cross coupling reactions represent one of the most straight-
forward strategies for the construction of complex molecules.
As one important class of substrates, the transformations of
propargylic compounds are attracting more and more interest.>
In the past few decades, catalytic couplings of propargylic
alcohol derivatives with organometallic reagents have been
established as an effective and very reliable way to synthesize
functionalized alkynes®* or allenes>® either via a two-electron or
one-electron process (Fig. 1A). However, all these methods apply
propargylic alcohol derivatives with an appropriate leaving
group. In contrast, direct functionalization of the inert prop-
argylic C-H bonds would provide a straightforward and atom
economic approach. In this area, preparation of alkynes has
been realized via the Kharasch-Sosnovsky-Type reaction,”
intramolecular or intermolecular nitrene insertion,® and
coordination-directed deprotonation® (Fig. 1B). Recently Liu
et al. reported the benzylic C-H activation of 1-aryl-2-alkynes for
arylallene syntheses.'® We envisioned a strategy of 1,5-hydrogen
atom transfer'* for the generation of a propargylic radical,
which would be in rapid resonance with an allenyl radical.
Trapping with an appropriate reagent would afford alkynes or
allenes (Fig. 1C). Such a protocol for selective allene syntheses
faces three challenges: (1) the more reactive C=C bonds may
cause undesired transformations such as radical cyclization
that complicates the target reaction, (2) the selectivity issue of
propargylic radicals vs. allenyl radicals to form either alkyne”**
or allene products, and (3) a matched trapping reagent. Alle-
nenitriles could be prepared though the corresponding Wittig
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heterocycles. Based on mechanistic study, it is confirmed that this is the first example of radical-based
non-activated propargylic C—H functionalization for allene syntheses.

reaction,®* Sy2'-type substitution of the in situ generated prop-
argylic phosphates," cross coupling of propargylic sub-
strates,**** and difunctionalization of 1,3-enynes.'® Herein, we
wish to report our results on copper-catalyzed cyanation of non-
activated propargylic C-H bonds, affording di- or tri-substituted
allenenitriles bearing an attractive remote sulfonamide in
decent yields with an excellent chemo- and regio-selectivity
tolerating many synthetically versatile functionalities (Fig. 1D).

Results and discussion

We began our investigation with fluorosulfonamide”** 1a and
TMSCN***¢ in the presence of Cu(CH;CN),PF, (ref. *°) and
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Fig. 1 Catalytic functionalization of propargylic compounds.
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ligand L1 in DCE at 30 °C. To our delight, 17% yield of desired
allenenitrile 2a was obtained with 70% recovery of 1a (Table 1,
entry 1). Then, attention was focused on the solvent effect (Table
1, entries 2-8): the reaction in CH3;CN for 24 h could deliver
a much better yield of 2a of 75%, with only 12% recovery of 1a.
By extending the reaction time to 30 hours, 1a could be con-
verted completely, affording 2a in 83% yield (Table 1, entry 9),
and the formation of isomeric alkyne product 3a was not
observed. When Cu(CH;CN),BF, was used instead of Cu(CHj;-
CN),PFs, the yield of 2a dropped to 61%, with 10% recovery of
1a. This may be attributed to the stronger coordinating ability of
BF, than that of PFs,*° which led to a lower catalytic activity.
Further screening of other copper catalysts and ligands (Table 1,
entries 11-17), didn't give any better results, indicating that
Cu(CH;3CN,)PF¢ and L1 are optimal.

With the optimized conditions in hand, we set out to explore
the scope of this propargylic C-H cyanation reaction. As shown
in Fig. 2, a variety of fluorosulfonamides bearing a highly
sensitive terminal alkyne could be converted to trisubstituted
allenes exclusively in decent yields. The R group may be alkyl,
cycloalkyl, chloroalkyl, or methoxyalkyl, and 2a-2f were fur-
nished in 77-83% yields. In addition, terminal olefin and
differently substituted benzyl groups, such as halide atoms (F,
Cl, and Br), methoxy, and trifluoromethyl may be tolerated,
affording 2g-2m in 67-76% yields, and the related allyl or
benzyl cyanation products were not formed, indicating a perfect
chemoselectivity. Furthermore, important heteroaryl groups

Table 1 Optimization of the reaction conditions®
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including thiophene and pyridine are compatible, affording
heteraryl-containing products 2n and 20 in 66% and 55% yields.

Compared to the alkyl-substituted substrates, the reaction of
the substrate with R' being phenyl proceeded more smoothly,
affording 2p in 83% yield. The scope could be further expanded
to internal alkynes to prepare tetrasubstituted allenes 2q-2u in
58-82% yields after adjusting the reaction conditions slightly.
Besides, the R® group with synthetic versatile functional groups
such as acetyl, ester, cyano, nitro, and iodo groups were all
intact under the optimal mild reaction conditions (2v-2aa, 66-
76% yields). The cyanation reaction could be smoothly imple-
mented for the modification of drug molecules, providing
allenenitriles 2ab and 2ac in satisfactory yields. Finally, the
reaction may be easily scaled up to the gram-scale (2a),
demonstrating the practicality of the protocol.

Moreover, substrates lad, lae, and 1laf were prepared on
purpose to check the possibility of 1,4-, 1,6-, or even 1,7-HAT:
the reaction of 1ad was complicated (Fig. 3A); the reaction of 1ae
underwent 1,6-HAT to result in allenenitrile 2ae in 60% yield
with an excellent regioselectivity (Fig. 3B); the reaction of 1af
still gave the 1,5-HAT non-allene product 5 in a poor yield
(Fig. 3C). Thus, 1,4-HAT and 1,7-HAT do not work while 1,6-HAT
works.

Such highly functionalized allenes show great synthetic
potential (Fig. 4): 2a may undergo conjugate addition exclu-
sively under a set of mild conditions to afford nitrile 6 bearing
a tetrahydropyridine in 88% yield; 2a could also be cyclized with

TMSCN (2.0 equiv)
H Copper Catalyst (2 mol%)

;Kii: Ligand (4 mol%)
NFTs

Solvent, Ny, 30 °C, Time

CeHiz

P = CeH1a
H
NHTs NHTs
2a 3a

1a

Ph Ph

i\ N/g E\N /é <\ N/; E\N /> S\ N/g E\N /2 g\ N/g E\N /2 2\ N/E E\N /S
L1 L2 L3 B L4 B Ls

Entry Solvent Copper catalyst Ligand Time (h) Yield of 2a” (%) Recovery of 1a” (%)
1 DCE Cu(CH,CN),PFg L1 24 17 70
2 Toluene Cu(CH;CN),PFg L1 24 10 67
3 Ethyl acetate Cu(CH,CN),PF, L1 24 29 35
4 MTBE Cu(CH,CN),PF; L1 24 13 56
5 THF Cu(CH,CN),PF L1 24 13 24
6 Dioxane Cu(CH,CN),PF; L1 24 38 17
7 DMF Cu(CH;CN),PF, L1 24 44 —
8 CH,CN Cu(CH,CN),PF, L1 24 75 12
9 CH,CN Cu(CH,CN),PFg L1 30 83 —
10 CH,CN Cu(CH,CN),BF, L1 36 61 10
11 CH;CN CuCN L1 36 69 —
12 CH;CN CuOAc L1 36 66 —
13 CH;CN CuTc L1 36 61 —
14 CH,CN Cu(CH,CN),PF, L2 36 49 47
15 CH,CN Cu(CH,CN),PF, L3 36 75 7
16 CH,CN Cu(CH,CN),PF L4 36 71 5
17 CH,CN Cu(CH,CN),PF L5 36 3 67

“ All reactions were run on a 0.1 mmol scale in solvent (1 mL) at 30 °C under a nitrogen atmosphere. ” Determined by *H NMR analysis with CH;NO,

as the internal standard.
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Fig.2 Scope. “Reaction conditions: 1 (0.5 mmol), TMSCN (1.0 mmol),
Cu(CHzCN)4PFg (2 mol%), and L1 (4 mol%) in CHzCN (5 mL) at 30 °C.
bReaction on a 4.0 mmol scale. “Cu(CHsCN)4PFg (4 mol%), L1 (8 mol%).
“The product was a mixture of 2c and its isomer 2g (2c/2g = 97/3),
originated from the starting material 1c (1c/1g = 96/4). Reaction on
a 0.2 mmol scale. "Additional Cu(CH3CN)4PFg (2 mol%) and L1 (4 mol%)
were added to the reaction mixture after stirring for 36 h. 9Cu(CHs-
CN)4PFg (10 mol%), L2 (20 mol%).

the nitrile group being hydrolyzed to afford amide 7 in 53%
yield with NaOH and H,0,; NBS promoted electrophilic bro-
mocyclization** of 2a would afford stereodefined brominated
alkenenitrile (Z)-8 bearing a tetrahydropyrrole ring in 70% yield
with an excellent stereoselectivity, which has been clearly
identified by X-ray analysis. The amine functionality could also
be easily modified to afford the corresponding N-tosylbenza-
mide 9 in an excellent yield.

In addition, we found with R" being H, both reactions of 1ag
and 1ah delivered a mixture of allene 2 and alkyne 3. However,
the reactions of substrates with R being a non-H substituent,
all afforded the allenenitriles 2 exclusively (Fig. 5A). Thus, we
reasoned that the steric effect of R" is critical for the observed
regioselectivity. To unveil the mechanism, a set of experiments

© 2023 The Author(s). Published by the Royal Society of Chemistry
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A) Reaction for 1,4-HAT
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Fig. 4 Transformations of products. Reaction conditions: (i) Cs,COs
(1.0 equiv.), CH3CN, rt, 17 h. (ii) NaOH (2.0 equiv.), H,O, (4.0 equiv.),
EtOH, 80 °C, 7 h. (iii) NBS (1.2 equiv.), DCM/THF = 4/1, rt, 23 h. (iv) 3,5-
Dinitrobenzoyl chloride (1.2 equiv.), DMAP (0.1 equiv.), EtzN (1.5 equiv.),
rt, 4 h.

were conducted. Initially, BHT was employed as a radical trap-
ping reagent in the reaction of 1a: the formation of 2a was
inhibited gradually with the increase of BHT (Fig. 5B), sug-
gesting a possible radical pathway. To further confirm the
existence of any radical intermediates, the reaction of 1ag was
conducted under an oxygen atmosphere: the cyanation was
inhibited completely, and alkynone 10 was isolated in 27%
yield, which couldn't be afforded by the direct oxidation of
amine S3ag, confirming the existence of propargylic radical
intermediates® (Fig. 5C). Finally, we investigated the reaction
rate of 1a/1a-d to 2a by NMR monitoring (see the ESIT), showing
that the primary kinetic isotope effect (KIE) was 1.5 (Fig. 5D).
On the basis of these experiments, a catalytic cycle involving
radical intermediates has been proposed (Fig. 6): firstly, the
LCu" species would reduce the N-F bond of 1 to produce the
LCu"F species and the N-centered radical Int 1. Then Int 1
undergoes a radical 1,5-HAT process to generate the resonance
hybrid of propargylic/allenyl radical Int 2, and the LCu"F

Chem. Sci, 2023, 14, 9191-9196 | 9193
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Fig. 5 Regioselectivity and mechanistic studies.

species is converted to the LCu"'CN species by ligand exchange
with TMSCN. Subsequently, the allenyl radical, one of the
resonance structures of Int 2 with less steric hindrance would
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Fig. 7 Preliminary results of catalytic asymmetric propargylic C-H
cyanation.

be selectively trapped by the LCu"CN species to afford the
allenyl LCu™CN species Int 3. Reductive elimination would
deliver the desired allene 2 and regenerate the catalytically
active LCu' species.

With this approach in hand, we also attempted the enan-
tioselective reaction with different chiral bis(oxazoline) and
pyrine-oxazoline ligands. After a series of efforts (for details see
Table S6 in the ESIt), the reaction of fluorosulfonamide 1a by
using (S,S)-L15* gave (—)2a in 79% yield and —36% ee.
Furthermore, non-terminal alkyne 1r was also subjected to such
conditions, which delivered (+)-2r in 33% yield and —23% ee
(Fig. 7).

In summary, we have developed the first example of 1,5-HAT-
based propargylic C-H activation, providing a highly chemo-
and regioselective approach for the construction of alleneni-
triles, featuring great functionality compatibility. The resulting
products may be readily converted to different functionalized
heterocycles. Mechanistic studies support the catalytic cycle of
cu'/Cu™ involving a propargylic radical and allenyl radical.
Further studies on other types of 1,5-HAT based propargylic C-
H functionalization for allene syntheses and further investiga-
tions on the asymmetric version of this propargylic C-H cyan-
ation are ongoing in our laboratory.
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