

Cite this: *Chem. Sci.*, 2023, **14**, 9191

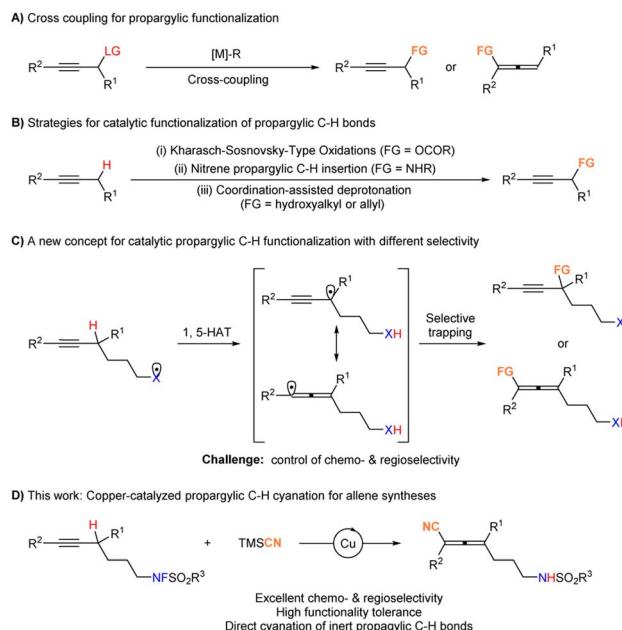
All publication charges for this article have been paid for by the Royal Society of Chemistry

Received 22nd March 2023

Accepted 8th August 2023

DOI: 10.1039/d3sc01501g

rsc.li/chemical-science


Introduction

Cross coupling reactions represent one of the most straightforward strategies for the construction of complex molecules.¹ As one important class of substrates, the transformations of propargylic compounds are attracting more and more interest.² In the past few decades, catalytic couplings of propargylic alcohol derivatives with organometallic reagents have been established as an effective and very reliable way to synthesize functionalized alkynes^{3,4} or allenes^{5,6} either *via* a two-electron or one-electron process (Fig. 1A). However, all these methods apply propargylic alcohol derivatives with an appropriate leaving group. In contrast, direct functionalization of the inert propargylic C–H bonds would provide a straightforward and atom economic approach. In this area, preparation of alkynes has been realized *via* the Kharasch–Sosnovsky-Type reaction,⁷ intramolecular or intermolecular nitrene insertion,⁸ and coordination-directed deprotonation⁹ (Fig. 1B). Recently Liu *et al.* reported the benzylic C–H activation of 1-aryl-2-alkynes for arylallene syntheses.¹⁰ We envisioned a strategy of 1,5-hydrogen atom transfer¹¹ for the generation of a propargylic radical, which would be in rapid resonance with an allenyl radical. Trapping with an appropriate reagent would afford alkynes or allenes (Fig. 1C). Such a protocol for selective allene syntheses faces three challenges: (1) the more reactive C≡C bonds may cause undesired transformations such as radical cyclization that complicates the target reaction, (2) the selectivity issue of propargylic radicals *vs.* allenyl radicals to form either alkyne^{7,12} or allene products, and (3) a matched trapping reagent. Allenenitriles could be prepared through the corresponding Wittig

reaction,¹³ S_N2'-type substitution of the *in situ* generated propargylic phosphates,¹⁴ cross coupling of propargylic substrates,^{6,15} and difunctionalization of 1,3-enynes.¹⁶ Herein, we wish to report our results on copper-catalyzed cyanation of non-activated propargylic C–H bonds, affording di- or tri-substituted allenenitriles bearing an attractive remote sulfonamide in decent yields with an excellent chemo- and regio-selectivity tolerating many synthetically versatile functionalities (Fig. 1D).

Results and discussion

We began our investigation with fluorosulfonamide^{17,18} **1a** and TMSCN^{15b,16} in the presence of Cu(CH₃CN)₄PF₆ (ref. ¹⁹) and

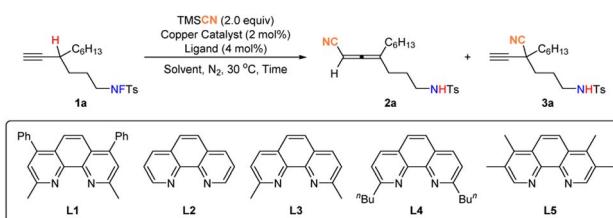
Laboratory of Molecular Recognition and Synthesis, Department of Chemistry Zhejiang University Hangzhou, Zhejiang 310027, P. R. China. E-mail: masm@zjuc.ac.cn

† Electronic supplementary information (ESI) available. CCDC 2172810. For ESI and crystallographic data in CIF or other electronic format see DOI: <https://doi.org/10.1039/d3sc01501g>

‡ These authors contributed equally: Junjie Fan, Yaqi Shi, and Yankai Huang.

ligand **L1** in DCE at 30 °C. To our delight, 17% yield of desired allenenitrile **2a** was obtained with 70% recovery of **1a** (Table 1, entry 1). Then, attention was focused on the solvent effect (Table 1, entries 2–8): the reaction in CH₃CN for 24 h could deliver a much better yield of **2a** of 75%, with only 12% recovery of **1a**. By extending the reaction time to 30 hours, **1a** could be converted completely, affording **2a** in 83% yield (Table 1, entry 9), and the formation of isomeric alkyne product **3a** was not observed. When Cu(CH₃CN)₄BF₄ was used instead of Cu(CH₃CN)₄PF₆, the yield of **2a** dropped to 61%, with 10% recovery of **1a**. This may be attributed to the stronger coordinating ability of BF₄[−] than that of PF₆[−],²⁰ which led to a lower catalytic activity. Further screening of other copper catalysts and ligands (Table 1, entries 11–17), didn't give any better results, indicating that Cu(CH₃CN)₄PF₆ and **L1** are optimal.

With the optimized conditions in hand, we set out to explore the scope of this propargylic C–H cyanation reaction. As shown in Fig. 2, a variety of fluorosulfonamides bearing a highly sensitive terminal alkyne could be converted to trisubstituted allenes exclusively in decent yields. The R¹ group may be alkyl, cycloalkyl, chloroalkyl, or methoxyalkyl, and **2a**–**2f** were furnished in 77–83% yields. In addition, terminal olefin and differently substituted benzyl groups, such as halide atoms (F, Cl, and Br), methoxy, and trifluoromethyl may be tolerated, affording **2g**–**2m** in 67–76% yields, and the related allyl or benzyl cyanation products were not formed, indicating a perfect chemoselectivity. Furthermore, important heteroaryl groups


including thiophene and pyridine are compatible, affording heteraryl-containing products **2n** and **2o** in 66% and 55% yields.

Compared to the alkyl-substituted substrates, the reaction of the substrate with R¹ being phenyl proceeded more smoothly, affording **2p** in 83% yield. The scope could be further expanded to internal alkynes to prepare tetrasubstituted allenes **2q**–**2u** in 58–82% yields after adjusting the reaction conditions slightly. Besides, the R³ group with synthetic versatile functional groups such as acetyl, ester, cyano, nitro, and iodo groups were all intact under the optimal mild reaction conditions (**2v**–**2aa**, 66–76% yields). The cyanation reaction could be smoothly implemented for the modification of drug molecules, providing allenenitriles **2ab** and **2ac** in satisfactory yields. Finally, the reaction may be easily scaled up to the gram-scale (**2a**), demonstrating the practicality of the protocol.

Moreover, substrates **1ad**, **1ae**, and **1af** were prepared on purpose to check the possibility of 1,4-, 1,6-, or even 1,7-HAT: the reaction of **1ad** was complicated (Fig. 3A); the reaction of **1ae** underwent 1,6-HAT to result in allenenitrile **2ae** in 60% yield with an excellent regioselectivity (Fig. 3B); the reaction of **1af** still gave the 1,5-HAT non-allene product **5** in a poor yield (Fig. 3C). Thus, 1,4-HAT and 1,7-HAT do not work while 1,6-HAT works.

Such highly functionalized allenes show great synthetic potential (Fig. 4): **2a** may undergo conjugate addition exclusively under a set of mild conditions to afford nitrile **6** bearing a tetrahydropyridine in 88% yield; **2a** could also be cyclized with

Table 1 Optimization of the reaction conditions^a

Entry	Solvent	Copper catalyst	Ligand	Time (h)	Yield of 2a ^b (%)	Recovery of 1a ^b (%)
1	DCE	Cu(CH ₃ CN) ₄ PF ₆	L1	24	17	70
2	Toluene	Cu(CH ₃ CN) ₄ PF ₆	L1	24	10	67
3	Ethyl acetate	Cu(CH ₃ CN) ₄ PF ₆	L1	24	29	35
4	MTBE	Cu(CH ₃ CN) ₄ PF ₆	L1	24	13	56
5	THF	Cu(CH ₃ CN) ₄ PF ₆	L1	24	13	24
6	Dioxane	Cu(CH ₃ CN) ₄ PF ₆	L1	24	38	17
7	DMF	Cu(CH ₃ CN) ₄ PF ₆	L1	24	44	—
8	CH ₃ CN	Cu(CH ₃ CN) ₄ PF ₆	L1	24	75	12
9	CH ₃ CN	Cu(CH ₃ CN) ₄ PF ₆	L1	30	83	—
10	CH ₃ CN	Cu(CH ₃ CN) ₄ BF ₄	L1	36	61	10
11	CH ₃ CN	CuCN	L1	36	69	—
12	CH ₃ CN	CuOAc	L1	36	66	—
13	CH ₃ CN	CuTc	L1	36	61	—
14	CH ₃ CN	Cu(CH ₃ CN) ₄ PF ₆	L2	36	49	47
15	CH ₃ CN	Cu(CH ₃ CN) ₄ PF ₆	L3	36	75	7
16	CH ₃ CN	Cu(CH ₃ CN) ₄ PF ₆	L4	36	71	5
17	CH ₃ CN	Cu(CH ₃ CN) ₄ PF ₆	L5	36	3	67

^a All reactions were run on a 0.1 mmol scale in solvent (1 mL) at 30 °C under a nitrogen atmosphere. ^b Determined by ¹H NMR analysis with CH₃NO₂ as the internal standard.

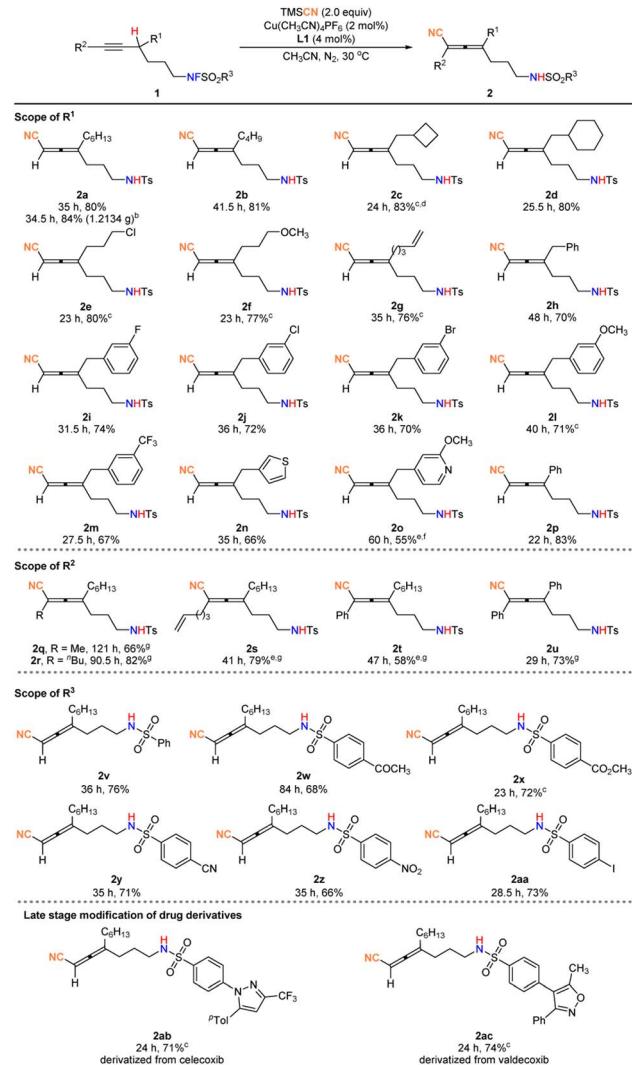


Fig. 2 Scope. ^aReaction conditions: 1 (0.5 mmol), TMSCN (1.0 mmol), Cu(CH₃CN)₄PF₆ (2 mol%), and L1 (4 mol%) in CH₃CN (5 mL) at 30 °C. ^bReaction on a 4.0 mmol scale. ^cCu(CH₃CN)₄PF₆ (4 mol%), L1 (8 mol%). ^dThe product was a mixture of 2c and its isomer 2g (2c/2g = 97/3), originated from the starting material 1c (1c/1g = 96/4). ^eReaction on a 0.2 mmol scale. ^fAdditional Cu(CH₃CN)₄PF₆ (2 mol%) and L1 (4 mol%) were added to the reaction mixture after stirring for 36 h. ^gCu(CH₃CN)₄PF₆ (10 mol%), L2 (20 mol%).

the nitrile group being hydrolyzed to afford amide 7 in 53% yield with NaOH and H₂O₂; NBS promoted electrophilic bromocyclization²¹ of 2a would afford stereodefined brominated alknenenitrile (Z)-8 bearing a tetrahydropyrrole ring in 70% yield with an excellent stereoselectivity, which has been clearly identified by X-ray analysis. The amine functionality could also be easily modified to afford the corresponding *N*-tosylbenzamide 9 in an excellent yield.

In addition, we found with R¹ being H, both reactions of 1a and 1ah delivered a mixture of allene 2 and alkyne 3. However, the reactions of substrates with R¹ being a non-H substituent, all afforded the allenenitriles 2 exclusively (Fig. 5A). Thus, we reasoned that the steric effect of R¹ is critical for the observed regioselectivity. To unveil the mechanism, a set of experiments

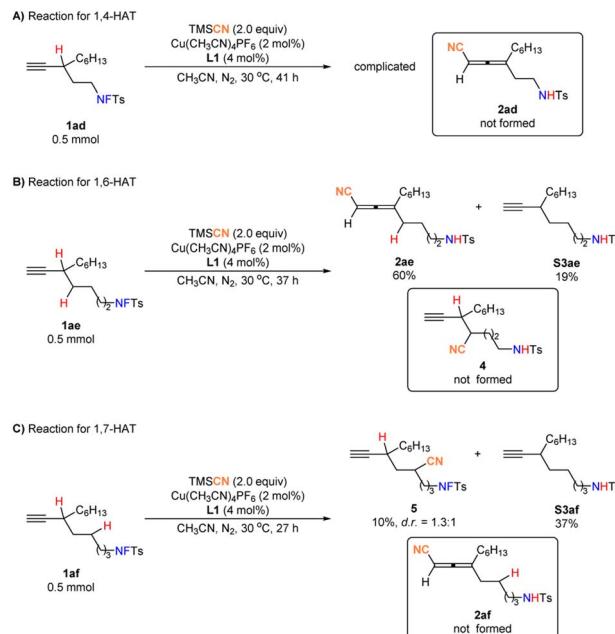


Fig. 3 The reactions for 1,n-HAT ($n \neq 5$).

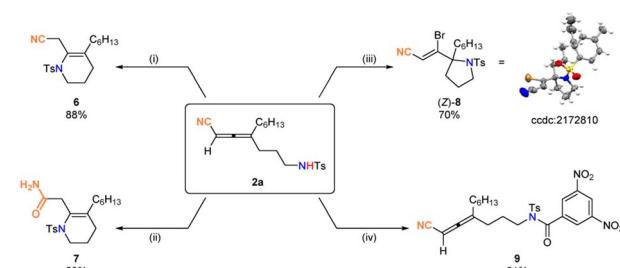


Fig. 4 Transformations of products. Reaction conditions: (i) Cs₂CO₃ (1.0 equiv.), CH₃CN, rt, 17 h. (ii) NaOH (2.0 equiv.), H₂O₂ (4.0 equiv.), EtOH, 80 °C, 7 h. (iii) NBS (1.2 equiv.), DCM/THF = 4/1, rt, 23 h. (iv) 3,5-Dinitrobenzoyl chloride (1.2 equiv.), DMAP (0.1 equiv.), Et₃N (1.5 equiv.), rt, 4 h.

were conducted. Initially, BHT was employed as a radical trapping reagent in the reaction of 1a: the formation of 2a was inhibited gradually with the increase of BHT (Fig. 5B), suggesting a possible radical pathway. To further confirm the existence of any radical intermediates, the reaction of 1ag was conducted under an oxygen atmosphere: the cyanation was inhibited completely, and alkynone 10 was isolated in 27% yield, which couldn't be afforded by the direct oxidation of amine S3ag, confirming the existence of propargylic radical intermediates²² (Fig. 5C). Finally, we investigated the reaction rate of 1a/1a-d to 2a by NMR monitoring (see the ESI†), showing that the primary kinetic isotope effect (KIE) was 1.5 (Fig. 5D).

On the basis of these experiments, a catalytic cycle involving radical intermediates has been proposed (Fig. 6): firstly, the LCu^I species would reduce the N-F bond of 1 to produce the LCu^{II}F species and the *N*-centered radical Int 1. Then Int 1 undergoes a radical 1,5-HAT process to generate the resonance hybrid of propargylic/allenyl radical Int 2, and the LCu^{II}F

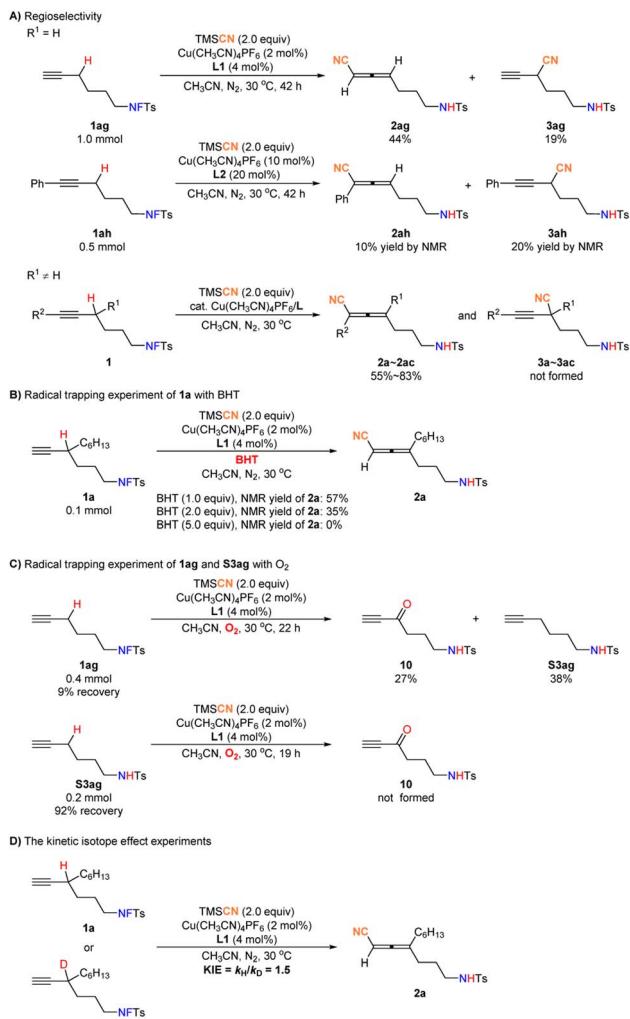


Fig. 5 Regioselectivity and mechanistic studies.

species is converted to the $\text{LCu}^{\text{II}}\text{CN}$ species by ligand exchange with TMSCN. Subsequently, the allenyl radical, one of the resonance structures of **Int 2** with less steric hindrance would

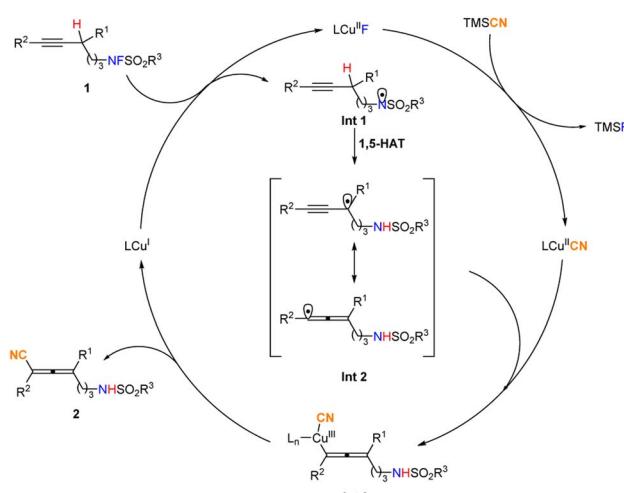


Fig. 6 Proposed mechanism.

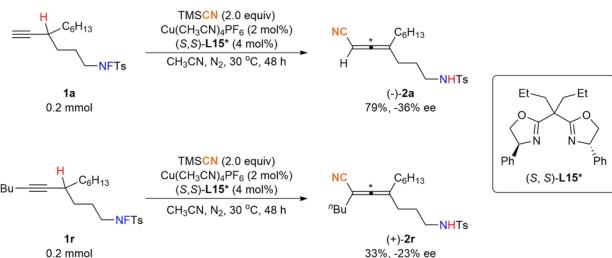


Fig. 7 Preliminary results of catalytic asymmetric propargylic C-H cyanation.

be selectively trapped by the $\text{LCu}^{\text{II}}\text{CN}$ species to afford the allenyl $\text{LCu}^{\text{III}}\text{CN}$ species **Int 3**. Reductive elimination would deliver the desired allene **2** and regenerate the catalytically active LCu^{I} species.

With this approach in hand, we also attempted the enantioselective reaction with different chiral bis(oxazoline) and pyrine-oxazoline ligands. After a series of efforts (for details see Table S6 in the ESI†), the reaction of fluorosulfonamide **1a** by using *(S,S)*-**L15*** gave *(-)*-**2a** in 79% yield and -36% ee. Furthermore, non-terminal alkyne **1r** was also subjected to such conditions, which delivered *(+)*-**2r** in 33% yield and -23% ee (Fig. 7).

In summary, we have developed the first example of 1,5-HAT-based propargylic C-H activation, providing a highly chemo- and regioselective approach for the construction of allenenitriles, featuring great functionality compatibility. The resulting products may be readily converted to different functionalized heterocycles. Mechanistic studies support the catalytic cycle of $\text{Cu}^{\text{I}}/\text{Cu}^{\text{III}}$ involving a propargylic radical and allenyl radical. Further studies on other types of 1,5-HAT based propargylic C-H functionalization for allene syntheses and further investigations on the asymmetric version of this propargylic C-H cyanation are ongoing in our laboratory.

Data availability

All detailed procedures, characterization data, and spectra are available in the ESI.†

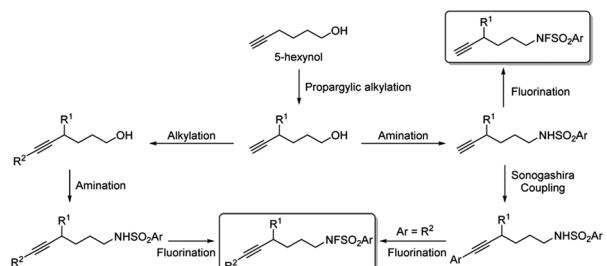
Author contributions

S. M., X. W. and D. Z. designed the experiments. D. Z., J. F., Y. S and Y. H performed the experiments. D. Z. and S. M. wrote the manuscript. D. Z., C. F. and S. M. checked the experimental data.

Conflicts of interest

The authors declare no competing interests.

Acknowledgements


Financial support from the National Key R&D Program of China (2021YFA1500100) is greatly appreciated. Shengming Ma is

a Qiu Shi Adjunct Professor at Zhejiang University. We also thank Qian Zhang in our group for reproducing the results of **2c**, **2j**, and **2r** presented in Fig. 2.

Notes and references

- 1 (a) M. Kumada, *Pure Appl. Chem.*, 1980, **52**, 669; (b) N. Miyaura and A. Suzuki, *Chem. Rev.*, 1995, **95**, 2457; (c) R. Chinchilla and C. Nájera, *Chem. Rev.*, 2007, **107**, 874; (d) A. Suzuki, *Angew. Chem., Int. Ed.*, 2011, **50**, 6722; (e) R. Jana, T. P. Pathak and M. S. Sigman, *Chem. Rev.*, 2011, **111**, 1417; (f) C. Liu, H. Zhang, W. Shi and A. Lei, *Chem. Rev.*, 2011, **111**, 1780; (g) P. Ruiz-Castillo and S. L. Buchwald, *Chem. Rev.*, 2016, **116**, 12564; (h) A. Biffis, P. Centomo, A. Del Zotto and M. Zecca, *Chem. Rev.*, 2018, **118**, 2249; (i) Q. Yang, Y. Zhao and D. Ma, *Org. Process Res. Dev.*, 2022, **26**, 1690.
- 2 (a) J. Tsuji and T. Mandai, *Angew. Chem., Int. Ed. Engl.*, 1995, **34**, 2589; (b) S. Ma, *Eur. J. Org. Chem.*, 2004, **2004**, 1175; (c) C.-H. Ding and X.-L. Hou, *Chem. Rev.*, 2011, **111**, 1914; (d) L. Guo, X. Duan and Y. Liang, *Acc. Chem. Res.*, 2011, **44**, 111; (e) X.-Z. Shu, D. Shu, C. M. Schienebeck and W. Tang, *Chem. Soc. Rev.*, 2012, **41**, 7698; (f) D.-Y. Zhang and X.-P. Hu, *Tetrahedron Lett.*, 2015, **56**, 283; (g) R. Roy and S. Saha, *RSC Adv.*, 2018, **8**, 31129; (h) C. Q. O'Briain and P. J. Guiy, *J. Org. Chem.*, 2020, **85**, 10321; (i) X.-R. Song, R. Yang and Q. Xiao, *Adv. Synth. Catal.*, 2021, **363**, 852.
- 3 For selected reviews, see: (a) N. Ljungdahl and N. Kann, *Angew. Chem., Int. Ed.*, 2009, **48**, 642; (b) Y. Miyake, S. Uemura and Y. Nishibayashi, *ChemCatChem*, 2009, **1**, 342; (c) Y. Nishibayashi, *Synthesis*, 2012, **44**, 489; (d) H. Tsuji and M. Kawatsura, *Asian J. Org. Chem.*, 2020, **9**, 1924.
- 4 For recent examples, see: (a) A. J. Oelke, J. Sun and G. C. Fu, *J. Am. Chem. Soc.*, 2012, **134**, 2966; (b) X. Huang, S. Wu, W. Wu, P. Li, C. Fu and S. Ma, *Nat. Commun.*, 2016, **7**, 12382; (c) K. Zhang, L.-Q. Lu, S. Yao, J.-R. Chen, D.-Q. Shi and W.-J. Xiao, *J. Am. Chem. Soc.*, 2017, **139**, 12847; (d) A. Shemet and E. M. Carreira, *Org. Lett.*, 2017, **19**, 5529; (e) K. Watanabe, Y. Miyazaki, M. Okubo, B. Zhou, H. Tsuji and M. Kawatsura, *Org. Lett.*, 2018, **20**, 5448; (f) F.-D. Lu, D. Liu, L. Zhu, L.-Q. Lu, Q. Yang, Q.-Q. Zhou, Y. Wei, Y. Lan and W.-J. Xiao, *J. Am. Chem. Soc.*, 2019, **141**, 6167; (g) Z.-J. Zhang, L. Zhang, R.-L. Geng, J. Song, X.-H. Chen and L.-Z. Gong, *Angew. Chem., Int. Ed.*, 2019, **58**, 12190; (h) L. Peng, Z. He, X. Xu and C. Guo, *Angew. Chem., Int. Ed.*, 2020, **59**, 14270; (i) S. Liu, Y. Tanabe, S. Kuriyama and Y. Nishibayashi, *Angew. Chem., Int. Ed.*, 2021, **60**, 11231.
- 5 For a review, see: S. Du, A.-X. Zhou, R. Yang, X.-R. Song and Q. Xiao, *Org. Chem. Front.*, 2021, **8**, 6760.
- 6 For selected recent examples, see: (a) Y. Wang, W. Zhang and S. Ma, *J. Am. Chem. Soc.*, 2013, **135**, 11517; (b) S. Wu, X. Huang, W. Wu, P. Li, C. Fu and S. Ma, *Nat. Commun.*, 2015, **6**, 7946; (c) S. N. Kessler and J.-E. Bäckvall, *Angew. Chem., Int. Ed.*, 2016, **55**, 3734; (d) J. Ruchti and E. M. Carreira, *Org. Lett.*, 2016, **18**, 2174; (e) Q. Lu, S. Grefsiés, F. J. R. Klauck and F. Glorius, *Angew. Chem., Int. Ed.*, 2017, **56**, 6660; (f) I. Scheipers, C. Mück-Lichtenfeld and A. Studer, *Angew. Chem., Int. Ed.*, 2019, **58**, 6545; (g) W.-F. Zheng, W. Zhang, C. Huang, P. Wu, H. Qian, L. Wang, Y.-L. Guo and S. Ma, *Nat. Catal.*, 2019, **2**, 997; (h) H. Wang, H. Luo, Z.-M. Zhang, W.-F. Zheng, Y. Yin, H. Qian, J. Zhang and S. Ma, *J. Am. Chem. Soc.*, 2020, **142**, 9763; (i) Q. Liu, J. Zheng, X. Zhang and S. Ma, *Nat. Commun.*, 2022, **13**, 3302; (j) H. Wang, H. Qian, J. Zhang and S. Ma, *J. Am. Chem. Soc.*, 2022, **144**, 12619.
- 7 (a) H. Kropf, R. Schröder and R. Fölsing, *Synthesis*, 1977, 894; (b) L. X. Alvarez, M. L. Christ and A. B. Sorokin, *Appl. Catal.*, **A**, 2007, 325, 303.
- 8 (a) R. D. Grigg, J. W. Rigoli, S. D. Pearce and J. M. Schomaker, *Org. Lett.*, 2012, **14**, 280; (b) H. Lu, C. Li, H. Jiang, C. L. Lizardi and X. P. Zhang, *Angew. Chem., Int. Ed.*, 2014, **53**, 7028; (c) M. Ju, E. E. Zerull, J. M. Roberts, M. Huang, I. A. Guzei and J. M. Schomaker, *J. Am. Chem. Soc.*, 2020, **142**, 12930; (d) Z. Liu, Z.-Y. Qin, L. Zhu, S. V. Athavale, A. Sengupta, Z.-J. Jia, M. Garcia-Borrás, K. N. Houk and F. H. Arnold, *J. Am. Chem. Soc.*, 2022, **144**, 80.
- 9 (a) T. Li and L. Zhang, *J. Am. Chem. Soc.*, 2018, **140**, 17439; (b) Y. Wang, J. Zhu, A. C. Durham, H. Lindberg and Y.-M. Wang, *J. Am. Chem. Soc.*, 2019, **141**, 19594; (c) J. Zhu, Y. Wang, A. D. Charlack and Y.-M. Wang, *J. Am. Chem. Soc.*, 2022, **144**, 15480.
- 10 R. Lu, T. Yang, X. Chen, W. Fan, P. Chen, Z. Lin and G. Liu, *J. Am. Chem. Soc.*, 2021, **143**, 14451.
- 11 J. J. Li, in *Name Reactions*, Springer, Cham, 2021, pp. 259–261.
- 12 Y. Deng, R. Lu, P. Chen and G. Liu, *Chem. Commun.*, 2023, **59**, 4656.
- 13 For selected reports, see: (a) Y. Kita, Y. Tsuzuki, S. Kitagaki and S. Akai, *Chem. Pharm. Bull.*, 1994, **42**, 233; (b) Y.-F. Ao, D.-X. Wang, L. Zhao and M.-X. Wang, *J. Org. Chem.*, 2014, **79**, 3103.
- 14 For a selected report, see: R. Yoneda, N. Inagaki, S. Harusawa and T. Kurihara, *Chem. Pharm. Bull.*, 1992, **40**, 21.
- 15 For selected reports, see: (a) Y. Tsuji, M. Taniguchi, T. Yasuda, T. Kawamura and Y. Obora, *Org. Lett.*, 2000, **2**, 2635; (b) F.-D. Lu, Z.-C. Shu, G.-F. He, J.-C. Bai, L.-Q. Lu and W.-J. Xiao, *Org. Chem. Front.*, 2022, **9**, 5259.
- 16 For selected reports, see: (a) F. Wang, D. Wang, Y. Zhou, L. Liang, R. Lu, P. Chen, Z. Lin and G. Liu, *Angew. Chem., Int. Ed.*, 2018, **57**, 7140; (b) X. Zhu, W. Deng, M.-F. Chiou, C. Ye, W. Jian, Y. Zeng, Y. Jiao, L. Ge, Y. Li, X. Zhang and H. Bao, *J. Am. Chem. Soc.*, 2019, **141**, 548; (c) Y. Zeng, M.-F. Chiou, X. Zhu, J. Cao, D. Lv, W. Jian, Y. Li, X. Zhang and H. Bao, *J. Am. Chem. Soc.*, 2020, **142**, 18014; (d) Y. Song, C. Fu and S. Ma, *ACS Catal.*, 2021, **11**, 10007; (e) Y. Zhao, J.-L. Wang, Z. Zhang, X.-S. Li, Z.-J. Niu and X.-Y. Liu, *J. Org. Chem.*, 2021, **86**, 18056; (f) Y. Chen, J. Wang and Y. Lu, *Chem. Sci.*, 2021, **12**, 11316.
- 17 For a seminal report using fluorosulfonamide, see: B. J. Groendyke, D. I. AbuSalim and S. P. Cook, *J. Am. Chem. Soc.*, 2016, **138**, 12771.
- 18 The substrates used in this study are prepared according to the following scheme:

19 (a) Z. Li, Q. Wang and J. Zhu, *Angew. Chem., Int. Ed.*, 2018, **57**, 13288; (b) H. Zhang, Y. Zhou, P. Tian and C. Jiang, *Org. Lett.*, 2019, **21**, 1921; (c) Z. Yin, Y. Zhang, S. Zhang and X.-F. Wu, *Adv. Synth. Catal.*, 2019, **361**, 5478; (d) Z. Zhang, L. M. Stateman and D. A. Nagib, *Chem. Sci.*, 2019, **10**, 1207; (e) A. Modak, E. N. Pinter and P. S. Cook, *J. Am. Chem. Soc.*, 2019, **141**, 18405; (f) Z. Liu, H. Xiao, B. Zhang,

H. Shen, L. Zhu and C. Li, *Angew. Chem., Int. Ed.*, 2019, **58**, 2510; (g) Z.-H. Zhang, X.-Y. Dong, X.-Y. Du, Q.-S. Gu, Z.-L. Li and X.-Y. Liu, *Nat. Commun.*, 2019, **10**, 5689; (h) S. Shi, P. Zhang, C. Luo, S. Zhuo, Y. Zhang, G. Tang and Y. Zhao, *Org. Lett.*, 2020, **22**, 1760; (i) Y.-C. Wang, Z.-Y. Qin, Y.-L. Huang, Y.-M. Hou, R.-X. Jin, C. Li and X.-S. Wang, *Org. Lett.*, 2020, **22**, 4006; (j) Q.-Q. Min, J.-W. Yang, M.-J. Pang, G.-Z. Ao and F. Liu, *Org. Chem. Front.*, 2021, **8**, 249.

20 R. Díaz-Torres and S. Álvarez, *Dalton Trans.*, 2011, **40**, 10742.
 21 (a) Z. Shi, Z. Yu and S. Ma, *Tetrahedron*, 1999, **55**, 12137; (b) C. Jonasson, A. Horváth and J. E. Bäckvall, *J. Am. Chem. Soc.*, 2000, **122**, 9600; (c) N. Wang, B. Chen and S. Ma, *Adv. Synth. Catal.*, 2014, **356**, 485.
 22 (a) C. Pérollier and A. B. Sorokin, *Chem. Commun.*, 2002, **2002**, 1548; (b) C. C. Black and A. E. V. Gorden, *Tetrahedron Lett.*, 2018, **59**, 803.

