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se of confined water films from
a classical density functional theory perspective†

Daniel Borgis, *ab Damien Laage,b Luc Bellonic and Guillaume Jeanmairet de

We re-examine the problem of the dielectric response of highly polar liquids such as water in confinement

between two walls using simple two-variable density functional theory involving number and polarisation

densities. In the longitudinal polarisation case where a perturbing field is applied perpendicularly to the

walls, we show that the notion of the local dielectric constant, although ill-defined at a microscopic

level, makes sense when coarse-graining over the typical size of a particle is introduced. The approach

makes it possible to study the effective dielectric response of thin liquid films of various thicknesses in

connection with the recent experiments of Fumagalli et al., [Science, 2018, 360, 1339–1342], and to

discuss the notion of the interfacial dielectric constant. We argue that the observed properties as

a function of slab dimensions, in particular the very low dielectric constants of the order of 2–3

measured for thin slabs of ∼1 nm thickness do not highlight any special properties of water but can be

recovered for a generic polar solvent having similar particle size and the same high dielectric constant.

Regarding the transverse polarisation case where the perturbing field is parallel to the walls, the

associated effective dielectric constant as a function of slab dimensions reaches bulk-like values at much

shorter widths than in the longitudinal case. In both cases, we find an oscillatory behaviour for slab

thicknesses in the one nanometer range due to packing effects.
1 Introduction

The dielectric constant is a macroscopic concept that relates the
linear response of the polarisation vector to the Maxwell electric
eld.1 The derivation of the dielectric constant of bulk uids
from statistical mechanics principles has a long history starting
from the early studies of Debye, Onsager and Kirkwood,2–4 with
major advances leading to its modern formulation in the
1970s.5–8 The extension to inhomogeneous liquids and the
necessary conditions to dene a local, space-dependent
dielectric constant 3(r) were given by Nienhuis and Deutch5 and
re-examined thirty years later by Ballenegger and Hansen.9 Such
a clear denition is crucial for the implicit solvent models used,
e.g., in biomolecular simulations to represent the aqueous
surrounding medium or for deriving effective electrostatic
interaction models based on space-dependent dielectric
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constants.10 That question led to a number of early studies
trying to characterise 3(r) in the vicinity of biomolecules or
membranes usingmolecular dynamics (MD) simulations.10–12 In
2005, Ballenegger and Hansen presented the rst MD simula-
tions of a model polar solvent in connement between two
repulsive walls in order to dene a local 3(z) rigorously using
either linear response or a small perturbing electric eld.13 For
a perturbation perpendicular to the walls, they were led to
conclude that such 3(z) is ill-dened and “is not a useful
quantity near the walls”. This pioneering work has initiated
a number of subsequent MD studies of water in connement or
at interfaces using a realistic atomistic representation of both
the solvent and the conning surfaces.14–19 This interest was
revived recently by the experimental studies of Fumagalli et al.20

who reported local capacitance measurements for water
conned between two atomically at walls separated by various
distances down to 1 nanometer. Their experiments were inter-
preted as revealing “the presence of an interfacial layer with
vanishingly small polarisation”, that translates into an “anom-
alously low dielectric constant of conned water”. Historically,
the question of the nature of the hydration layer close to an
electried interface goes back to the early theories of Helmholtz
and Stern and has plagued the theory of electric double layers
for electrolytes at charged interfaces.21 Already almost a century
ago, by analysing surface capacitance data, Stern demonstrated
that a thin interfacial layer exists at a solid–water interface with
a dielectric constant much reduced compared to that of bulk
Chem. Sci., 2023, 14, 11141–11150 | 11141
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water.22 To our knowledge, there is no clear consensus yet on
the precise microscopic denition of this Stern layer and on the
value of the dielectric constant that should be attributed to it. A
proposed experimental reference for aqueous solutions under
ambient conditions is 3x 7 instead of 3 x 80 for the bulk,21 an
already small value in the absence of extreme connement.

The dielectric properties of interfacial and conned water
have been the subject of many recent simulation studies,
including, e.g., ref. 18, 19 and 23–34. However, as already
stressed in the early work of ref. 13, the convergence of conned
water dielectric properties by MD simulations is very difficult to
achieve. Recent developments have been devoted to more effi-
cient methods to compute the dielectric constant34 or to
analytical theoretical approaches based on dielectric
continuum theory (DCT)35 or a nonlocal eld theoretical
approach.36 Different explanations have been proposed for the
observed reduction in the perpendicular dielectric constant of
conned water.20 These include a dielectrically ‘dead’ interfacial
water layer caused by orientational constraints imposed by the
interface,20,28,29 the disruption of the water hydrogen-bond
network at the interface,33 a dielectric boundary effect,35 and an
excluded volume effect.19,37

Classical density functional theory (DFT) is a well-founded,
efficient theoretical approach to describe atomic and molecular
uids at interfaces or in connement; see, e.g., ref. 38–44. In
this article, we re-examine the problem of the dielectric
response of highly polar liquids such as water in connement
between two walls using a two-variable density functional
theory, in terms of number and polarisation densities, that we
have derived and used previously for either a generic dipolar
uid45,46 or for water.47,48 It is a simplied version of the full
molecular density functional theory (MDFT) formalism that
three of us have been developing for a number of years.49–52 This
simplicity (combined with accuracy as will be seen) makes it
possible rst to sort out the important physical variables,
secondly to derive analytical solutions and/or to provide
instantaneous numerical solutions that are exempted from the
statistical noise inherent to molecular simulations, for as many
physical situations as desired. We note that a connected DFT
approach was recently applied to the study of polarisation
uctuations in conned water; the coupling of number and
polarisation densities was not considered explicitly, however,
with an abrupt number density prole introduced as input.37

Our goal is three-fold: (1) to reproduce at a much simpler level
and to re-examine previous MD results concerning the deni-
tion of a local (ill-dened) longitudinal dielectric constant close
to a wall or in connement and to extend this denition to that
of a (well-dened) locally coarse-grained dielectric constant. (2)
To contribute to the understanding of the experiments of
Fumagalli et al. and of the notion of an “anomalously low
dielectric constant” of water in connement. (3) More generally
to provide a theoretical foundation for describing quantita-
tively, at a fully molecular level, surface-induced solvent struc-
tures, as a consequence of the coupling between solvent density
and solvent polarisation, in a form that can be incorporated into
commonly used mean eld dielectric theories.10
11142 | Chem. Sci., 2023, 14, 11141–11150
The outline of the paper is as follows. Section 2 introduces
our two-variable, number and polarisation density free energy
functional. It is applied in Section 3 to themicroscopic structure
and longitudinal dielectric response of a model Stockmayer
uid, having the same bulk dielectric constant as water at
a similar density, in one-dimensional connement between two
graphene-like surfaces. The response is studied as a function of
slab thickness from less than a nanometer to micrometers.
Section 4 extends the study to a dipolar representation of SPC/E
water and to the transverse response in addition to the longi-
tudinal one. Section 5 concludes.

2 Free-energy functional for a dipolar
liquid

Before discussing a more complete model of water later on, and
in order to distinguish generic dielectric properties from the
specic water properties emerging from its special H-bond
structure, we start with an ersatz of water, namely a Stockmayer
uid composed of Lennard-Jones (LJ) particles embedding
a permanent dipole m, whose density and dielectric constant
at ambient temperature are similar to those of water. We
take the parameters from the early studies of Pollock and
Alder:53 sLJ = 3.024 Å, 3LJ = 1.87 kJ mol−1, m = 1.835 D, r =

0.0289 Å−3 or, in dimensionless units,
T* ¼ kBT=3LJ ¼ 1:35; r* ¼ rsLJ

3 ¼ 0:8; m* ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2=3LJsLJ3

p
¼ 2. These parameters yield a dielectric constant 3 = 80. They
also correspond to a state point considered by Ballenegger and
Hansen when studying the dielectric properties of the closely
related dipolar-so-sphere model in connement.13 As shown
in ref. 45–48 and 54, such a dipolar liquid subjected to an
external potential can be described accurately by a grand-
potential functional depending on the local number density n(r)
and local polarisation density P(r). This functional is deter-
mined by the chemical potential of the bulk uid at density n0.
It can be decomposed into density and polarisation terms,
F ¼ F n þ F P, with the density term given by

F n½n� ¼ kBT

ð
dr

�
nðrÞln

�
nðrÞ
n0

�
� nðrÞ þ n0

�
þ
ð
drnðrÞV0ðrÞ

�kBT

2

ð
dr1dr2Dnðr1Þcsðr12ÞDnðr2Þ þ F B½nðrÞ�

(1)

where Dn(r)= n(r)− n0. V0(r) represents the external LJ potential
exerted at point r. F B½nðrÞ� is the so called bridge functional,
that we take here as a hard-sphere (HS) bridge functional based
on fundamental measure theory,55–57 using the Kierlik-Rosin-
berg scalar version58,59 and a reference HS diameter dened
conventionally as dHS = sLJ(1 + 0.298T*)/(1 + 0.3316T* +
0.001048T*2).60 The polarization part of the functional reads

F P½n;P� ¼ kBT

ð
drnðrÞ

�
ln

�
L �1ðUðrÞÞ

sinhðL �1ðUðrÞÞ
�
þ UðrÞL �1ðUðrÞÞ

�

�
ð
drPðrÞ$E0ðrÞ �

ð
dr1Pðr1Þ$Eexcðr1Þ

(2)
© 2023 The Author(s). Published by the Royal Society of Chemistry
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with U(r) = P(r)/mn(r) and P(r) = jP(r)j. The rst term represents
the ideal free energy for an ensemble of non-interacting dipoles
subjected to an external electric eld; there L denotes the
Langevin function and L �1 its inverse. E0(r) is the external
electric eld at point r. The excess electric eld Eexc(r1) is
dened using

Eexcðr1Þ ¼ 1

2

kBT

m2

ð
dr2 cDðr12ÞPðr2Þ½
þcDðr12Þð3r̂12ðPðr12Þ$r̂12Þ � Pðr2ÞÞ� (3)

where r̂12 = r12/r12. In eqn (1) and (3), cS(r), cD(r), and cD(r)
represent the spherical and dipolar spherical-invariant projec-
tions of the angular-dependent direct correlation function of
the bulk liquid at density n0. These functions are inputs in the
theory and are obtained from a preliminary simulation of the
bulk uid. See ref. 45 and 48 for their behaviour in direct and
Fourier space.

The equilibrium number density and polarisation density
are obtained by minimisation of the functional with respect to
both n(r) and P(r). Minimisation of F P with respect to P(r) for
a given n(r) gives

PðrÞ ¼ mnðrÞL ðbmjE0ðrÞ þ EexcðrÞjÞ (4)

This accounts for dipolar saturation at high local electric
elds. It does so at a fully microscopic level compared to the
coarse-grained dipolar Poisson approach of Berthoumieux
et al.61 For small external elds, the ideal free energy in eqn (2)
can be developed at the dominant order of polarisation

Fid
P ½n;P� ¼

1

2

ð
dr

PðrÞ2
adnðrÞ (5)

where ad = m2/3kBT is the orientational polarizability of
a permanent dipole in a eld. In that case, minimisation yields
a linear relation between P(r) and E0(r), with indeed a nonlocal
response function.
Fig. 1 One-dimensional direct correlation functions for the Stock-
mayer fluid model described in the text, entered in eqn (7) and (8).
3 Confinement in a one-dimensional
slit pore

In order to mimic the experimental setup in ref. 20, as well as to
follow the simulation conditions of Ballenegger and Hansen,13

we consider amodel of a one-dimensional slit pore composed of
2 graphene-like plates in the x–y-plane separated by a distance h
along z. As in ref. 13, the external potential V0(z) exerted by the
two walls results from the x–y integration of a 3D-Lennard-Jones
potential. It is of the 9–3 type, with parameters pertinent to
carbon–water interactions

V0ðzÞ ¼ 4p

3
3w

"
sw

9

15z9
þ sw

9

15ðh� zÞ9 �
sw

3

2z3
� sw

3

2ðh� zÞ3
#

(6)

with sw = 3.9 Å and 3w = 2.6 kJ mol−1. An external electric eld
E0(z) is applied along the perpendicular z-direction. For such
a 1D-geometry, the polarisation eld is so-called longitudinal
(i.e., aligned with the electric eld in q-space), and the two direct
correlation functions cD(q), cD(q) (zeroth- and second-order
© 2023 The Author(s). Published by the Royal Society of Chemistry
Hankel transforms of cD(r) and cD(r), respectively) reduce in q-
space to a single longitudinal function cL(q) = cD(q) + 2cD(q).48

The two components of the functional F ¼ F n þ F P of eqn
(1)–(3) can be written per surface area in the form

F n½n� ¼ kBT

ð
dz

�
nðzÞln

�
nðzÞ
n0

�
� nðzÞ þ n0

�
þ
ð
dznðzÞV0ðzÞ

�kBT

2

ð
dz1dz2Dnðz1ÞcSðz12ÞDnðz2Þ þ F B½nðzÞ�

(7)

F P½n;P� ¼ kBT

ð
dznðzÞ

�
ln

�
L �1ðUðzÞÞ

sinhðL �1ðUðzÞÞ
�
þ UðzÞL �1ðUðzÞÞ

�

�
ð
dzPðzÞE0ðzÞ � 1

6ad

ð
dz1dz2cLðz12ÞPðz1ÞPzðz2Þ

(8)

cS(z) and cL(z) are dened here as the inverse 1D Fourier
transforms of the 3D functions cS(q) and cL(q). They are plotted
in Fig. 1. It should be noted that both are of a short range and
vanish beyond r x 6 Å. This might be surprising for the
polarisation–polarisation contribution cL(z) since dipole–dipole
interactions are a priori long-range. It is a well-known fact,
however, that for a longitudinal polarisation eld, the long-
range 1/r3 part of the dipolar tensor disappears, and the
Maxwell eld is rigorously dened using the local relation E(r)=
E0(r) − 4pP(r). In other words the dielectric displacement is
equal to the external eld, D(r) = E0(r).

For a small perturbing eld E0(z) and when n(z) is provided
independently through the minimisation of eqn (7) only (which
amounts to neglecting the n–P coupling appearing in the ideal
term of eqn (8)), the quadratic form of eqn (5) can be used,
turning the minimisation in P(z) into a linear algebra problem
that can be solved through matrix inversion. In this linear
regime, the nonlocal response can be written in terms of the
susceptibility c0(z1, z2)

Pðz1Þ ¼
ð
dz2c0ðz1; z2ÞadE0ðz2Þ (9)

with

c0ðz1; z2Þ ¼ nðz1Þdðz12Þ þ hLðz1; z2Þ
3

nðz1Þnðz2Þ (10)
Chem. Sci., 2023, 14, 11141–11150 | 11143
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Fig. 2 Top: Reduced density n*(z) = n(z)sLJ
3 for a slab of width h = 50

Å (16.5sLJ). Bottom: Local response function f(z) = 4pP(z)/E0.
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where the longitudinal, inhomogeneous pair distribution
function hL(z1, z2) relates to the bulk direct correlation function
cL(z12) through an inhomogeneous Ornstein-Zernike (OZ) rela-
tion. See the ESI† for details. For a constant electric eld E0(z)h
E0, the integration of the second variable can be performed and
a local response function can be dened as

f ðzÞ ¼ 4pPðzÞ=E0 ¼ 1� 1

3tðzÞ (11)

where 3t(z) stands for a local longitudinal dielectric constant
and formally

f ðz1Þ ¼ 4padnðz1Þ
�
1þ

ð
dz2

hLðz1; z2Þ
3

nðz2Þ
�

(12)

Variants of this formula can be readily found in the liter-
ature,9 It explains how a local dielectric constant can be
dened even though the dielectric response function itself,
given by c0 or hL, is intrinsically non-local.62 It is seen that the
inhomogeneous uid density n(z) enters at two places; the rst
one indicates that the local response function should be zero
where there is no particle, n(z1) = 0. The second one excludes
the nonlocal contribution to the polarisation response coming
from a region where the density is zero, n(z2) = 0. This
nonlocal cut-off effect on the polarisation response near the
boundaries was pointed out recently by Olivieri et al.19 Among
several other worthy remarks, it is justied in the ESI† that,
since hL(z1, z2) is short-ranged, the inuence of the walls is
expected to be short-ranged too, and the bulk values of f(z) and
3t(z) should be reached aer only a few particle diameters
from the walls.

From now on, we depart from this linear algebra formulation
that implies matrix inversion. The results presented next were
obtained numerically by the joint minimisation of the func-
tional with respect to n(z) and P(z) in the presence of a small and
constant external eld E0 = 0.1 V nm−1. We have written
a simple, dedicated Python code for that purpose. For dis-
cretisation of the elds over typically N = 1024 points, the
minimisation procedure is instantaneous on a laptop (less than
a second).

Following the simulations in ref. 13, we rst consider
a relatively wide slit of width h = 50 Å (16.5 sLJ). We plot the
equilibrium density eld n(z) as well as the response function
f(z) in reduced units in Fig. 2. Both present strong structural
oscillations up to 6 sLJ from the walls. These two curves appear
very similar to the ones obtained by Ballenegger and Hansen13

via MD – although their study was mainly focused on the less
polar case m*= 1.2, with the simulations for m*= 2 proving very
hard to converge. In Fig. 3-top, we plot the resulting inverse
dielectric constant 1/3t(z) that presents oscillations that span
unphysical negative values up to ∼6sLJ from the walls. This led
Ballenegger and Hansen to conclude that “3t(z) is not a useful
quantity near the walls”. Here we modulate this judgement by
recalling that standard electrostatics is by essence a coarse
grained theory, and that one should rather look at a coarse-
grained ~3t(z) with a coarse-graining length of at least the size of
a particle (this approach was used in ref. 13 to smooth the
11144 | Chem. Sci., 2023, 14, 11141–11150
dipolar uctuations). Here, this can be formalised by looking at
a coarse-grained polarisation eld, dened for example using

~PðzÞ ¼
ð
dz

0
w
���z� z

0��	P�z0	 (13)

where the weight function w(z) is taken as a normalized
Gaussian function with standard deviation sP = lsLJ, l of order
1. A coarse-grained dielectric constant ~3t(z) can be dened from
~P(z) exactly as in eqn (11). The inverse, coarse-grained, dielectric
constant 1/~3t(r) corresponding to l = 0.7 is plotted as a func-
tion of distance in Fig. 3-top together with the bare microscopic
results. This quantity now appears as a smooth curve that
remains strictly positive, so that ~3(r) itself is well dened and
well behaved; see Fig. 3-bottom. It presents two peaks at values
higher than those in the bulk close to the walls; the main
feature to be retained, however, is that the bulk value is reached
aer a few particle diameters, at a distance where the micro-
scopic polarisation still presents microscopic oscillations (z ∼
4–5sLJ), and there are no long-range effects induced by the walls
on the local dielectric constant. We note that the coarse-grain-
ing length sP should not be considered a fundamental quantity,
but rather an observation length scale. It might also be linked to
the resolution of the experiment that is realised. As soon as this
observation/resolution becomes comparable to the particle size,
1/~3t(z) and ~3t(z) appear as locally well-dened, positive quan-
tities. As a rule of thumb, to keep a microscopic character in our
analysis, we choose sP large enough to smooth the spurious
behaviour of 1/3(z) (or f(z)), but small enough to have its overall
microscopic behaviour unchanged, in particular keeping
a limited penetration into the walls and an unaltered distance at
which the bulk value is reached. We nd both conditions typi-
cally fullled for 0.6 # l # 1; l = 0.7 appears to be a good
© 2023 The Author(s). Published by the Royal Society of Chemistry
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Fig. 3 Top: Local inverse dielectric constant 1/3t(z) in a slab of width
h = 50 Å (blue curve) and its coarse-grained version 1/~3t(z) obtained
through eqn (13) with a coarse-graining length sP = 0.7sLJ (violet
curve). Bottom: Coarse-grained dielectric constant ~3t(z) whereas the
corresponding microscopic 3t(z) is ill-defined.
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compromise. The variation of the results of Fig. 3 with the
parameter l is illustrated in the ESI.† Increasing l from 0.7 to 1
and beyond gives a more regular behaviour for ~3t(z) but indeed
amore important smoothing of the boundaries. We argue in the
Fig. 4 Same as Fig. 2 for a slab of width h = 10 Å.

© 2023 The Author(s). Published by the Royal Society of Chemistry
ESI† that, for modelling purposes, the fundamental quantity to
consider is rather the coarse-grained response ~f (z) that is less
sensitive to the choice of l and can be modelled with two
inverted sigmoid-like curves, yielding smooth curves when
converted to ~3t(z).

In Fig. 4 and 5, we plot the results corresponding to a much
narrower slab with h = 10 Å (∼3sLJ). It can be seen that only two
solvent layers are allowed in-between the plates and that the
density n(z) and the polarisation density P(z) remain everywhere
far from their bulk values. The coarse-grained dielectric
constant ~3t(z) displayed in Fig. 5 has a nice and smooth hat
shape that reaches amaximum value around 10 in themiddle of
the slab, again far below the bulk value.

From the above ndings, one can state that the very long
range effect, up to a micrometer, observed for the measured 3t

as a function of slab thickness in ref. 20 cannot be attributed to
any long-range effect of the walls on the local dielectric constant
of the liquid. One should rather look at the effective dielectric
response of the whole slab to the applied potential difference.
For our slab model subjected to a constant external eld (the so-
called dielectric box model in ref. 18) this can be measured by
relating the average polarisation in the slab to the eld

PðhÞ ¼ 1

h

ðh
0

PðzÞ ¼ 1

4p

�
1� 1

3tðhÞ
�
E0 (14)

which yields according to eqn (11)

1

3tðhÞ ¼
1

h

ðh
0

dz
1

3tðzÞ (15)

1

3tðhÞx
1

h

ðh
0

dz
1

~3tðzÞ (16)
Fig. 5 Same as Fig. 3 for a slab of width h = 10 Å.
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Fig. 6 Effective dielectric constant computed using cDFT for the
model Stockmayer fluid embedded in a slab of width h as a function of
h. The red solid curve corresponds to the asymptotic formula (21) with
the parameters determined in the text; it starts at h = hi. The red
dashed curve corresponds to the dielectric continuum theory of Cox
and Geissler35 or dividing surfacemodel of Loche et al.27 with 3i = 1 and
hi = 9/5 = 1.8 Å. These curves can be compared with the experimental
results reported in ref. 20 for water in nano- to micrometric hBN slits.
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The second equality holds for the coarse-grained dielectric
constant instead of the microscopic one if the coarse-graining
length is such that ~P(0)= ~P(h)x 0. Themicroscopic expressions
14–15 remain the ones to be used in the following. Expressing
the total electrostatic energy of the device, which includes the
self-energy of the electric eld between the plates, writing the
potential difference between them as

DFðhÞ ¼ �
ðh
0

dzEðzÞ ¼ �
ðh
0

dz
1

3tðzÞE0 (17)

and equating this energy to 1/2 C(h)Df(h)2 yields the effective
capacitance

CðhÞ ¼ 3tðhÞ
4ph

(18)

with �3t(h) having the same denition as in eqn (15). Measuring
the average polarisation in the slab or the effective slab capac-
itance is thus equivalent. When the plate-to-plate distance h is
large enough as in Fig. 3, one can divide the device into three
regions, two interfacial regions of width hi and an intermediate
bulk region of width h− 2hi where 3t(z)x3bulk. In that case, the
choice of hi results in the denition of an effective dielectric
constant 3i for the interfacial region through

1

3i
¼ 1

hi

ðhi
0

dz
1

3tðzÞ (19)

and the resulting dielectric constant of the whole slab can be
written as

1

3tðhÞ ¼ 2
hi

h

1

3i
þ
�
1� 2

hi

h

�
1

3bulk
(20)

or alternatively as

3tðhÞx 3bulk

1þ 2hi

h

�
3bulk

3i
� 1

� (21)

Visual inspection of Fig. 3 leads to the choice hi x 6sLJ when
looking at the bare 1/3t(z) or hi x 3sLJ when looking at the
coarse-grained curve 1/~3t(z). Here we can dene hi unambigu-
ously as the value at which we nd that the approximation in
eqn (20) departs from the exact integral in eqn (15). This crite-
rion gives us hi x 9 Å and 3i x 5. The approximated formulae
(20) and (21) match completely the model of 3 capacitors in
series that was used in ref. 20 to interpret the experimental
results, except that here hi and 3i are not tting parameters but
follow from a microscopic analysis. We note that the nal
formulae proposed in the dielectric continuum theory approach
of Cox and Geissler35 or in the dividing surface model of Loche
et al.27 amount in eqn (21) to reduce the interfacial width hi to
the depletion length where the uid density is zero (roughly hi=
2 Å by inspection of Fig. 3) and to x accordingly 3i = 1.

The three separated capacitor picture expressed using eqn
(20) and (21) should not apply when h < 2hi, i.e., below∼20 Å. In
that case one has to resort merely to numerical integration in
eqn (15). For the h = 10 Å case, illustrated in Fig. 4 and 5, the
numerical integral yields a slab-averaged dielectric constant of
11146 | Chem. Sci., 2023, 14, 11141–11150
�3t = 2.3; this is a surprisingly small value compared to that of
the bulk, that is in line with the experimental ndings for water.
In Fig. 6, we have plotted �3t(h) computed over the range 0–10
nm, together with the asymptotic formula (21) starting from the
same microscopic/nanoscopic distances up to the micrometer
range. We use the same log–log representation as in ref. 20 for
direct comparison. Although our curves correspond to
a simplied water model embedded in a simplied slab (no H-
bonds and no electronic polarisation), the similarities with the
experimental results are striking. In particular we recover the
main feature pointed out by the experimental work: the effective
dielectric constant measured in slabs with a thickness in the 1
nm range is found to be around 2; this was quoted as an
“anomalously low dielectric constant of conned water”. Our
theoretical work makes it possible to bring some insight to the
interpretation of the experimental results. Indeed the long
range behaviour observed for �3t(h) has no mystery since, under
longitudinal conditions, the measure of the average polar-
isation or capacitance yields the integral of 1/3t(z) which, since
1/3bulk � 1, gets its main contribution from the boundaries.
Very thick slabs are required for the bulk to contribute. This is
clear from the slow hi/h convergence appearing in eqn (21). It
should be noted that this asymptotic formula using the values hi
and 3i derived above works extremely well even in the h = 1 nm
range, i.e., down to separation distances h < 2hi where it should
not! We can only attribute this to continuity that allows the
extrapolation of the curve over a limited range below its validity.
Note also that since 3bulk/3i [ 1, the results essentially depend
on the ratio hi/3i so that, on an empirical ground, other choices
of these parameters make it possible to reproduce the average
slab dielectric constant. In particular one can take 3i = 1 and hi
= 9/5 = 1.8 Å, a value very close to the one suggested in the
dielectric continuum theory (DCT) of Cox and Geissler;35 see
Fig. 6. There is in fact much more in their analysis than
© 2023 The Author(s). Published by the Royal Society of Chemistry
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Fig. 7 Top: Polarisation in a slab of width h= 50 Å with and without an
applied external electric field. Spontaneous polarisation exists due to
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considering this limit that amounts to modelling the solid–
liquid interface as a step-function. Their study points out the
importance, as well as the ambiguity, of locating the dielectric
boundaries and of properly dening the volume of the device,
which contains a molecular exclusion volume portion and one
lled by the liquid. Such ambiguity is present in our denition
of the device polarisation that involves its thickness h (eqn (14)).
We have taken as a natural microscopic denition of h the
distance between the center of the surface atoms of each plate,
so that the integrated Lennard-Jones potential can be dened as
in eqn (6). Other experimental choices for h are possible and the
measurement of the device thickness is also subject to experi-
mental uncertainties. The inuence of this uncertainty is
illustrated in the ESI.† The observed trends are in clear agree-
ment with those in ref. 35. Although based on a simplied, step-
wise, molecular representation of the solid–liquid interface, the
DCT approach captures the essential balance between low and
high dielectric constant volumes.

Finally, our results show a structuration due to molecular
stacking for thicknesses in the 0.6–1.2 nm range, with two clear
peaks at h = 0.6 and 1 nm and damped oscillations beyond.
This is in agreement with the sub-nanometer oscillatory
behaviour observed by simulations by Jalali et al.30 for SPC/E
water in tight connement. The overall attening of the curve
around a value of 2 seems reminiscent, within the error bars, of
the plateau detected experimentally in the 1 nm region.
the density/polarisation coupling of eqn (23) which remains the
dominant contribution at the interfaces when a field is applied.
Bottom: The resulting response function f(z) = 4p(P(z) − P0(z))/E0
which appears perfectly symmetrical.
4 Extension to SPC/E water

To get even closer to water, although still at a dipolar level, we
extend the previous theory by introducing in the functional the
parameters and the cS(z) and cL(z) direct correlation functions
corresponding to SPC/E water. We take the simple weighted
density approximation of ref. 52 and 63 for the bridge func-
tional. Since the symmetry of water is beyond that of a simple
dipole, at least a supplementary density-polarisation coupling
has to be introduced in the functional in the form48

F ½n;P� ¼ F n½n� þ F P½n;P� þ F nP½n;P� (22)

with

F nP½n;P� ¼ �kBT

m

ð
dz1dz2cnLðz12ÞDnðz1ÞPðz2Þ (23)

This introduces the fact that spontaneous polarisation exists
even in a slab with a zero applied eld. The corresponding
polarisation prole is anti-symmetrical with respect to the two
walls and the integrated polarisation of the sample is zero, as it
should be. This spontaneous polarisation remains prominent
when a small to moderate external eld is applied. See Fig. 7 for
a large slab with h = 50 Å and also ref. 51 where molecular
density functional theory calculations were performed with
a molecular representation of the electrodes and a constant
voltage applied between the electrodes rather than an external
electric eld.

On the other hand, the dielectric response f(z) = 4p(P(z) −
P0(z))/E0, represented in Fig. 7, is perfectly symmetrical. It
© 2023 The Author(s). Published by the Royal Society of Chemistry
appears less oscillatory and reaches the bulk value more rapidly
than in the Stockmayer case in Fig. 3; this is a sign that the
damping of spatial correlations occurs more quickly in water
than in a purely dipolar liquid. In Fig. 8 this response is plotted
in terms of the ill-dened, local microscopic constant and of its
well-dened coarse-grained version.

We present in Fig. 9 the curve for �3t(h) which is very similar
to the one obtained for the Stockmayer solvent, so that identical
conclusions can be drawn. No specic properties of water
emerge, beyond being a polar, molecular uid with a high
dielectric constant. This result is consistent with the observa-
tion by MD simulations28 that conned polar liquids such as
methanol, acetonitrile and dichloromethane exhibit a dielectric
constant reduction similar to that of water. We further note that
in our results the dielectric constant reduction of conned
water is reproduced by considering exclusively the number and
polarisation densities, without requiring orientational
constraints imposed by the interface on the water molecules.
We nd an interfacial width hi = 7.5 Å and an associated
effective interfacial dielectric constant 3i = 3.9, to be compared
to hi = 7.4 and 3i = 2.1 determined experimentally by Fumagalli
et al.20 hi appears slightly smaller for SPC/E than for the purely
dipolar uid since, as we mentioned, the spatial correlations in
water have a shorter range. Concordantly, we observe oscilla-
tions of �3t(h) around the value of 2 in the 0.6–1 nm range with
Chem. Sci., 2023, 14, 11141–11150 | 11147
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Fig. 8 Top: (III-defined) Microscopic perpendicular dielectric
constant for SPC/E water in a slab of width h = 50 Å (in cyan) and its
coarse-grained version with a coarse-graining length sP = 2 Å (in
violet). Bottom: the same for the parallel dielectric constant when the
field is applied parallel to the plates (sP = 1.5 Å).

Fig. 9 Effective dielectric constant for SPC/E water embedded in
a slab of width h as a function of h. The blue dots show the cDFT results
for �3t(h) and the red solid curve corresponds to the asymptotic
formula (21) with the parameters determined in the text and down to h
= hi. The blue triangles and cyan solid curve are the same for �3‖(h).
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a rst minimum at 1.8 around h= 0.75 nm and a second higher
minimum around h = 1 nm; this is in agreement with the
simulation results of ref. 30. Indeed, those oscillations are
dampened more quickly than in the Stockmayer case.

Finally, although we are not aware of any experimental
results to compare with, we take the opportunity here to study
11148 | Chem. Sci., 2023, 14, 11141–11150
the transverse polarisation case, i.e., applying an external elec-
tric eld in the transverse direction x parallel to the plates. All
the DFT formalism developed above remains valid if the
longitudinal direct correlation function cL(z) in eqn (8) is
replaced by the transverse one, cT(z), dened as the inverse, 1D
Fourier transform of cD(q) − cD(q).48 The density-polarisation
coupling of eqn (23) vanishes in this case and one resorts to the
joint minimisation of the equivalent of the functional in eqn (7)
and (8) using cT(z). The response function to a constant eld E0
is dened in this case using

f(z) = 4pP(z)/E0 = 3‖(z) − 1 (24)

The picture is different from that in the longitudinal case
since the measure now concerns 3 instead of 1/3. As seen in
Fig. 8 for a 50 Å-slab, the resulting 3‖(z) presents oscillations
close to the boundaries but remains everywhere positive and
well-dened. This simple fact was emphasised in the early
studies of Ballenegger and Hansen13 and conrmed by subse-
quent MD studies using molecular solvents.14,18,19,25–27 For a slab
of thickness h, an effective dielectric constant can be dened as

3kðhÞ ¼ 1

h

ðh
0

dz3kðzÞ (25)

If the slab is thick enough to distinguish two interfacial
regions from an intermediate bulk buffer, as illustrated in
Fig. 8, the following simple formula pertinent to 3 capacitors in
parallel can be inferred by decomposing the integral

3kðhÞ ¼ 3bulk

�
1� 2

hi

h

�
1� 3i

3bulk

��
(26)

with

3i ¼ 1

hi

ðhi
0

dz3kðzÞ (27)

Again 3i is xed by the choice of a reasonable hi. Using the
same unambiguous selection criterion as before (the minimal hi
that fulls the asymptotic eqn (26)), we nd hi = 10 Å and 3i x
50, i.e., a much larger interfacial, effective value than in the
perpendicular case. Besides it can be seen in Fig. 9 that the bulk
value is reached for slabs of thickness h x 10 nm, thus much
narrower than ∼500 nm necessary for the perpendicular
dielectric constant. As for the out-of-plan polarisation case,
a slight oscillatory behaviour of the in-plane dielectric constant
�3‖(h) is observed for thicknesses between 0.6 and 1 nm but we
do not detect the drastic drop by two orders of magnitude that
Hamid et al. found in their simulations around h = 0.75 nm,
that they attribute to a freezing transition occurring under that
particular packing condition.31

Finally, let us mention that our DFT results are in overall
agreement with those of previous MD simulations.14,16,18,19,25,27,28

In particular Itoh and Sakuma16 computed the perpendicular
and parallel effective dielectric constants of three-dimensional
graphite/SPCE-water/graphite slabs of various sizes by MD
simulations. In spite of our different, simplied modelling of
© 2023 The Author(s). Published by the Royal Society of Chemistry

http://creativecommons.org/licenses/by-nc/3.0/
http://creativecommons.org/licenses/by-nc/3.0/
https://doi.org/10.1039/d3sc01267k


Edge Article Chemical Science

O
pe

n 
A

cc
es

s 
A

rt
ic

le
. P

ub
lis

he
d 

on
 0

8 
Se

pt
em

be
r 

20
23

. D
ow

nl
oa

de
d 

on
 1

/1
5/

20
26

 2
:2

3:
15

 P
M

. 
 T

hi
s 

ar
tic

le
 is

 li
ce

ns
ed

 u
nd

er
 a

 C
re

at
iv

e 
C

om
m

on
s 

A
ttr

ib
ut

io
n-

N
on

C
om

m
er

ci
al

 3
.0

 U
np

or
te

d 
L

ic
en

ce
.

View Article Online
water and of the surface–water interactions, the DFT results in
Fig. 8 are in quantitative agreement with theirs for the few slab
geometries that they explored.

5 Conclusions

In this work, we presented a simple two-variable, number/
polarisation density functional theory describing the micro-
scopic structure of polar uids at interfaces or in connement,
as well as their microscopic dielectric response to external
elds. For a given system geometry the numerical solution is
obtained instantaneously with a laptop and compares very well
with previous MD simulations of closely related systems.9,19 It
provides locally coarse-grained quantities at a modest numer-
ical cost that can further nourish continuum Poisson-Boltz-
mann models. The approach made it possible to model thin
water lms of various thicknesses and to mimic the experi-
mental setup in ref. 20. Ourmodelling is indeed incomplete and
neglects physical features such as the precise chemical nature
of the interface, its three-dimensional roughness, and the
electronic polarisability of both the solid surfaces and the
solvent. A main conclusion, however, is that nding very low
effective longitudinal dielectric constants of the order of 2–3 for
water in slabs of nanometer size through capacitance
measurements should not be a special property of water but is
true for any generic polar solvent having a high bulk dielectric
constant. Fig. 6 obtained for the Stockmayer solvent or Fig. 9 for
a dipolar representation of water present close similarities with
the experimental curve in ref. 20. A similar conclusion is
reached in ref. 35 which follows a purely macroscopic, electro-
statics route. On the other hand the denition of a local, space-
dependent longitudinal dielectric constant is found irrelevant
at a microscopic level close to the walls but can be inferred at
a molecular coarse-grained level with a smoothing length of the
order of the size of a solvent particle. This local dielectric
constant is shown to reach its bulk value aer a short distance hi
from the slab walls, typically 10 Å for water. This clearly denes
a short-range interfacial solvent region with an effectively low
dielectric constant 3i. Since in the longitudinal polarisation case
the response concerns 1/3 rather than directly 3, incorporating
the intermediate bulk region with a 1/3bulk contribution turns
rigorously to a three-capacitors-in-series model described by
formula (20). Since the 1/3bulk is small, the low dielectric
constant interfacial regions dominate and it requires large slab
thicknesses for the bulk to contribute; this explains the very
slow increase of 3 with slab thickness. Our theoretical approach
brings additional insight to this simple, phenomenological
capacitor model. (1) Although it should not apply to slab width
below 2hi, twice the interfacial thickness, it holds for shorter
distances down to hi. We take this as a continuity effect. (2) In
our microscopic analysis, the parameter hi can be dened
unambiguously from the microscopic structure and it also xes
the value of the second parameter 3i. Phenomenologically, since
the behaviour in eqn (20) depends essentially on the ratio hi/3i,
other choices of parameter couples are possible including the
extreme choice 3i = 1 (see Fig. 6). (3) We observe an oscillatory
behaviour, leading to an effective attening of the dielectric
© 2023 The Author(s). Published by the Royal Society of Chemistry
response around �3t(h) = 2 for slabs below 1 nm, a saturation
effect that is reminiscent of the one detected experimentally. In
our case, we can relate this non-monotonic behaviour to the
interplay between the polarisation response and hard-sphere
packing when only one or two layers of solvent particles are
allowed in the slab.

We have also studied the complementary case of the trans-
verse response when the perturbing eld is applied parallel to
the walls instead of perpendicular. In that case the microscopic
dielectric constant 3‖(z) is well-dened although it presents
some structural oscillations close to the walls; those are
smoothed out by coarse-graining over particle dimensions. A
three-capacitors-in-parallel model described by eqn (26) is
found to apply for slabs above 1 nm and the overall slab
capacitance is found to reach the bulk value for slab thickness
on the order of 10 nm, i.e., much narrower than in the
perpendicular case. The inferred interfacial effective dielectric
constant is also much higher.

Finally, let us mention that water in connement can be
described at a much more rened molecular density functional
theory level using the full MDFT formalism and its associated
MDFT soware that includes not only the dipolar symmetry but
also all the higher multipolar symmetries and also makes it
possible to represent the surface–water interaction at a fully
atomistic, 3D level.51 Such calculations are underway and will be
presented in a forthcoming publication.
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