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of Chemistry We re-examine the problem of the dielectric response of highly polar liquids such as water in confinement
between two walls using simple two-variable density functional theory involving number and polarisation
densities. In the longitudinal polarisation case where a perturbing field is applied perpendicularly to the
walls, we show that the notion of the local dielectric constant, although ill-defined at a microscopic
level, makes sense when coarse-graining over the typical size of a particle is introduced. The approach
makes it possible to study the effective dielectric response of thin liquid films of various thicknesses in
connection with the recent experiments of Fumagalli et al., [Science, 2018, 360, 1339-1342], and to
discuss the notion of the interfacial dielectric constant. We argue that the observed properties as
a function of slab dimensions, in particular the very low dielectric constants of the order of 2-3
measured for thin slabs of ~1 nm thickness do not highlight any special properties of water but can be

recovered for a generic polar solvent having similar particle size and the same high dielectric constant.
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1 Introduction

The dielectric constant is a macroscopic concept that relates the
linear response of the polarisation vector to the Maxwell electric
field." The derivation of the dielectric constant of bulk fluids
from statistical mechanics principles has a long history starting
from the early studies of Debye, Onsager and Kirkwood,*>* with
major advances leading to its modern formulation in the
1970s.>® The extension to inhomogeneous liquids and the
necessary conditions to define a local, space-dependent
dielectric constant ¢(r) were given by Nienhuis and Deutch® and
re-examined thirty years later by Ballenegger and Hansen.® Such
a clear definition is crucial for the implicit solvent models used,
e.g., in biomolecular simulations to represent the aqueous
surrounding medium or for deriving effective electrostatic
interaction models based on space-dependent dielectric
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thicknesses in the one nanometer range due to packing effects.

constants.’ That question led to a number of early studies
trying to characterise ¢(r) in the vicinity of biomolecules or
membranes using molecular dynamics (MD) simulations.’*** In
2005, Ballenegger and Hansen presented the first MD simula-
tions of a model polar solvent in confinement between two
repulsive walls in order to define a local &(z) rigorously using
either linear response or a small perturbing electric field.** For
a perturbation perpendicular to the walls, they were led to
conclude that such ¢(z) is ill-defined and “is not a useful
quantity near the walls”. This pioneering work has initiated
a number of subsequent MD studies of water in confinement or
at interfaces using a realistic atomistic representation of both
the solvent and the confining surfaces.”* This interest was
revived recently by the experimental studies of Fumagalli et al.>*
who reported local capacitance measurements for water
confined between two atomically flat walls separated by various
distances down to 1 nanometer. Their experiments were inter-
preted as revealing “the presence of an interfacial layer with
vanishingly small polarisation”, that translates into an “anom-
alously low dielectric constant of confined water”. Historically,
the question of the nature of the hydration layer close to an
electrified interface goes back to the early theories of Helmholtz
and Stern and has plagued the theory of electric double layers
for electrolytes at charged interfaces.”* Already almost a century
ago, by analysing surface capacitance data, Stern demonstrated
that a thin interfacial layer exists at a solid-water interface with
a dielectric constant much reduced compared to that of bulk
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water.”> To our knowledge, there is no clear consensus yet on
the precise microscopic definition of this Stern layer and on the
value of the dielectric constant that should be attributed to it. A
proposed experimental reference for aqueous solutions under
ambient conditions is ¢ = 7 instead of ¢ = 80 for the bulk,* an
already small value in the absence of extreme confinement.

The dielectric properties of interfacial and confined water
have been the subject of many recent simulation studies,
including, e.g., ref. 18, 19 and 23-34. However, as already
stressed in the early work of ref. 13, the convergence of confined
water dielectric properties by MD simulations is very difficult to
achieve. Recent developments have been devoted to more effi-
cient methods to compute the dielectric constant®® or to
analytical theoretical approaches based on dielectric
continuum theory (DCT)* or a nonlocal field theoretical
approach.’ Different explanations have been proposed for the
observed reduction in the perpendicular dielectric constant of
confined water.”® These include a dielectrically ‘dead’ interfacial
water layer caused by orientational constraints imposed by the
interface,***** the disruption of the water hydrogen-bond
network at the interface,* a dielectric boundary effect,* and an
excluded volume effect."*”

Classical density functional theory (DFT) is a well-founded,
efficient theoretical approach to describe atomic and molecular
fluids at interfaces or in confinement; see, e.g., ref. 38-44. In
this article, we re-examine the problem of the dielectric
response of highly polar liquids such as water in confinement
between two walls using a two-variable density functional
theory, in terms of number and polarisation densities, that we
have derived and used previously for either a generic dipolar
fluid**® or for water.*”*® It is a simplified version of the full
molecular density functional theory (MDFT) formalism that
three of us have been developing for a number of years.**-** This
simplicity (combined with accuracy as will be seen) makes it
possible first to sort out the important physical variables,
secondly to derive analytical solutions and/or to provide
instantaneous numerical solutions that are exempted from the
statistical noise inherent to molecular simulations, for as many
physical situations as desired. We note that a connected DFT
approach was recently applied to the study of polarisation
fluctuations in confined water; the coupling of number and
polarisation densities was not considered explicitly, however,
with an abrupt number density profile introduced as input.*”
Our goal is three-fold: (1) to reproduce at a much simpler level
and to re-examine previous MD results concerning the defini-
tion of a local (ill-defined) longitudinal dielectric constant close
to a wall or in confinement and to extend this definition to that
of a (well-defined) locally coarse-grained dielectric constant. (2)
To contribute to the understanding of the experiments of
Fumagalli et al. and of the notion of an “anomalously low
dielectric constant” of water in confinement. (3) More generally
to provide a theoretical foundation for describing quantita-
tively, at a fully molecular level, surface-induced solvent struc-
tures, as a consequence of the coupling between solvent density
and solvent polarisation, in a form that can be incorporated into
commonly used mean field dielectric theories.
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The outline of the paper is as follows. Section 2 introduces
our two-variable, number and polarisation density free energy
functional. It is applied in Section 3 to the microscopic structure
and longitudinal dielectric response of a model Stockmayer
fluid, having the same bulk dielectric constant as water at
a similar density, in one-dimensional confinement between two
graphene-like surfaces. The response is studied as a function of
slab thickness from less than a nanometer to micrometers.
Section 4 extends the study to a dipolar representation of SPC/E
water and to the transverse response in addition to the longi-
tudinal one. Section 5 concludes.

2 Free-energy functional for a dipolar
liquid

Before discussing a more complete model of water later on, and
in order to distinguish generic dielectric properties from the
specific water properties emerging from its special H-bond
structure, we start with an ersatz of water, namely a Stockmayer
fluid composed of Lennard-Jones (LJ) particles embedding
a permanent dipole u, whose density and dielectric constant
at ambient temperature are similar to those of water. We
take the parameters from the early studies of Pollock and
Alder:® g = 3.024 A, ey = 1.87 k] mol ', u = 1.835 D, p =
0.0289 A or, in dimensionless units,
T* = kgT/ery = 1.35, p* = poyy® = 0.8, u* = \/u?/eyyory®

= 2. These parameters yield a dielectric constant ¢ = 80. They
also correspond to a state point considered by Ballenegger and
Hansen when studying the dielectric properties of the closely
related dipolar-soft-sphere model in confinement.”® As shown
in ref. 45-48 and 54, such a dipolar liquid subjected to an
external potential can be described accurately by a grand-
potential functional depending on the local number density n(r)
and local polarisation density P(r). This functional is deter-
mined by the chemical potential of the bulk fluid at density .
It can be decomposed into density and polarisation terms,
F = Jn + Fp, with the density term given by

Fuln] = kg T J dr [n(r)ln (@

ny

> —n(r) + no} + Jdrn(r) Vo(r)

_kBTT J dridryAn(ry)es(ri2)An(ra) + Fp[n(r)]

(1)

where An(r) = n(r) — n,. Vo(r) represents the external L] potential
exerted at point r. Fg[n(r)] is the so called bridge functional,
that we take here as a hard-sphere (HS) bridge functional based
on fundamental measure theory,>*” using the Kierlik-Rosin-
berg scalar version®®*® and a reference HS diameter defined
conventionally as dys = o1 + 0.298T%)/(1 + 0.3316T* +
0.0010487*).° The polarization part of the functional reads

Fpln, P| = kBT". drn(r) (m{ 77(2(r)

S oy 407 @0)

fjdrP(r) “Eo(r) — JdI']P(l'l ) Eexe(r1)
(2)
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with Q(r) = P(r)/un(r) and P(r) = |P(r)|. The first term represents
the ideal free energy for an ensemble of non-interacting dipoles
subjected to an external electric field; there % denotes the
Langevin function and 27 its inverse. Eo(r) is the external
electric field at point r. The excess electric field Eex(ri) is
defined using

Bualr) = 5 2 [drfes(ra)P(e)
+ep(r12) Bt (P(r2) F12) — P(r2))]  (3)

where t;, = ry,/r1,. In eqn (1) and (3), cs(r), ca(r), and cp(r)
represent the spherical and dipolar spherical-invariant projec-
tions of the angular-dependent direct correlation function of
the bulk liquid at density n,. These functions are inputs in the
theory and are obtained from a preliminary simulation of the
bulk fluid. See ref. 45 and 48 for their behaviour in direct and
Fourier space.

The equilibrium number density and polarisation density
are obtained by minimisation of the functional with respect to
both n(r) and P(r). Minimisation of %5 with respect to P(r) for
a given n(r) gives

P(r) = pn(r) 2(BulEo(r) + Eex(r)]) 4)

This accounts for dipolar saturation at high local electric
fields. It does so at a fully microscopic level compared to the
coarse-grained dipolar Poisson approach of Berthoumieux
et al.** For small external fields, the ideal free energy in eqn (2)
can be developed at the dominant order of polarisation

P(r)
agn(r)

i 1
Filln,P] = 3 Jdr (5)
where aq = w’/3kgT is the orientational polarizability of
a permanent dipole in a field. In that case, minimisation yields
a linear relation between P(r) and E,(r), with indeed a nonlocal
response function.

3 Confinement in a one-dimensional
slit pore

In order to mimic the experimental setup in ref. 20, as well as to
follow the simulation conditions of Ballenegger and Hansen,"
we consider a model of a one-dimensional slit pore composed of
2 graphene-like plates in the x—y-plane separated by a distance %
along z. As in ref. 13, the external potential V,(z) exerted by the
two walls results from the x-y integration of a 3D-Lennard-Jones
potential. It is of the 9-3 type, with parameters pertinent to
carbon-water interactions

4 | oy’ oy’ gy’ gy}

B 22 2| ©

Vo(z) 3w @—Q—
with o, = 3.9 A and &, = 2.6 k] mol*. An external electric field
Eo(z) is applied along the perpendicular z-direction. For such
a 1D-geometry, the polarisation field is so-called longitudinal
(i.e., aligned with the electric field in g-space), and the two direct
correlation functions ca(gq), cp(q) (zeroth- and second-order

© 2023 The Author(s). Published by the Royal Society of Chemistry
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Hankel transforms of c,(r) and c¢p(r), respectively) reduce in g-
space to a single longitudinal function c(q) = ca(g) + 2¢p(g).**
The two components of the functional 4 = %, + Zp of eqn
(1)-(3) can be written per surface area in the form

Fuln] = kBTjdz [n(z)ln (%j)> —n(z)+ no} + szn(z) Vo(z)
kaTT JdzldzzAn(zl)cs(zlz)An(zz) + F[n(z)]

77(2(2))

Fpln, P] = kyT J dzn(z) {ln (W

) + Q(Z)Z’I(Q(z))}

—J zP(2)Ey(z) — 6%101 JledZZCL(le)P(Zl)P:(ZZ)

(8)

¢s(z) and cy(z) are defined here as the inverse 1D Fourier
transforms of the 3D functions c¢s(q) and c;(q). They are plotted
in Fig. 1. It should be noted that both are of a short range and
vanish beyond r = 6 A. This might be surprising for the
polarisation-polarisation contribution ¢(z) since dipole-dipole
interactions are a priori long-range. It is a well-known fact,
however, that for a longitudinal polarisation field, the long-
range 1/r° part of the dipolar tensor disappears, and the
Maxwell field is rigorously defined using the local relation E(r) =
Eo(r) — 47P(r). In other words the dielectric displacement is
equal to the external field, D(r) = E(r).

For a small perturbing field Ey(z) and when n(z) is provided
independently through the minimisation of eqn (7) only (which
amounts to neglecting the n-P coupling appearing in the ideal
term of eqn (8)), the quadratic form of eqn (5) can be used,
turning the minimisation in P(z) into a linear algebra problem
that can be solved through matrix inversion. In this linear
regime, the nonlocal response can be written in terms of the
susceptibility xo(z1, 25)

Plar) = [dznla 2aakiz) )
with
hy(zy,z
Xo(z1,7) = n(z)a(z) + L2 ) a0)
Ny
0 <
g 2 4
Noa sl
< J
S -6 :
I :
-84
N e S
—10f . "t
0 2 4 6 8 10 12 14

z(A)

Fig. 1 One-dimensional direct correlation functions for the Stock-
mayer fluid model described in the text, entered in egn (7) and (8).
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where the longitudinal, inhomogeneous pair distribution
function hy(zy, z,) relates to the bulk direct correlation function
¢1(212) through an inhomogeneous Ornstein-Zernike (OZ) rela-
tion. See the ESIT for details. For a constant electric field Ey(z) =
E,, the integration of the second variable can be performed and
a local response function can be defined as

1

f(z)=4nP(z)/Ey =1 — e

(11)
where ¢ (z) stands for a local longitudinal dielectric constant
and formally

f(z1) = 4maan(z) (1 +J Zzwn(zz)) (12)

Variants of this formula can be readily found in the liter-
ature,” It explains how a local dielectric constant can be
defined even though the dielectric response function itself,
given by x, or &y, is intrinsically non-local.®® It is seen that the
inhomogeneous fluid density n(z) enters at two places; the first
one indicates that the local response function should be zero
where there is no particle, n(z;) = 0. The second one excludes
the nonlocal contribution to the polarisation response coming
from a region where the density is zero, n(z,) = 0. This
nonlocal cut-off effect on the polarisation response near the
boundaries was pointed out recently by Olivieri et al.* Among
several other worthy remarks, it is justified in the ESIT that,
since Ay (zq, 2,) is short-ranged, the influence of the walls is
expected to be short-ranged too, and the bulk values of f{z) and
¢, (z) should be reached after only a few particle diameters
from the walls.

From now on, we depart from this linear algebra formulation
that implies matrix inversion. The results presented next were
obtained numerically by the joint minimisation of the func-
tional with respect to n(z) and P(z) in the presence of a small and
constant external field E, = 0.1 V nm™'. We have written
a simple, dedicated Python code for that purpose. For dis-
cretisation of the fields over typically N = 1024 points, the
minimisation procedure is instantaneous on a laptop (less than
a second).

Following the simulations in ref. 13, we first consider
a relatively wide slit of width 2 = 50 A (16.5 oy;). We plot the
equilibrium density field n(z) as well as the response function
flz) in reduced units in Fig. 2. Both present strong structural
oscillations up to 6 oy from the walls. These two curves appear
very similar to the ones obtained by Ballenegger and Hansen"?
via MD - although their study was mainly focused on the less
polar case u* = 1.2, with the simulations for u* = 2 proving very
hard to converge. In Fig. 3-top, we plot the resulting inverse
dielectric constant 1/¢, (z) that presents oscillations that span
unphysical negative values up to ~60y; from the walls. This led
Ballenegger and Hansen to conclude that “e | (z) is not a useful
quantity near the walls”. Here we modulate this judgement by
recalling that standard electrostatics is by essence a coarse
grained theory, and that one should rather look at a coarse-
grained ¢ | (z) with a coarse-graining length of at least the size of
a particle (this approach was used in ref. 13 to smooth the

1M144 | Chem. Sci, 2023, 14, M41-M50
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Fig.2 Top: Reduced density n*(z) = n(z)a,;* for a slab of width h = 50
A (16.50 5). Bottom: Local response function f(z) = 4P(z)/Eo.

dipolar fluctuations). Here, this can be formalised by looking at
a coarse-grained polarisation field, defined for example using

P(z) = sz/w(}z — z/})P(zl) (13)

where the weight function w(z) is taken as a normalized
Gaussian function with standard deviation gp = Aoy, A of order
1. A coarse-grained dielectric constant ¢ , (z) can be defined from
P(z) exactly as in eqn (11). The inverse, coarse-grained, dielectric
constant 1/, (r) corresponding to A = 0.7 is plotted as a func-
tion of distance in Fig. 3-top together with the bare microscopic
results. This quantity now appears as a smooth curve that
remains strictly positive, so that &(r) itself is well defined and
well behaved; see Fig. 3-bottom. It presents two peaks at values
higher than those in the bulk close to the walls; the main
feature to be retained, however, is that the bulk value is reached
after a few particle diameters, at a distance where the micro-
scopic polarisation still presents microscopic oscillations (z ~
4-507;), and there are no long-range effects induced by the walls
on the local dielectric constant. We note that the coarse-grain-
ing length op should not be considered a fundamental quantity,
but rather an observation length scale. It might also be linked to
the resolution of the experiment that is realised. As soon as this
observation/resolution becomes comparable to the particle size,
1/ (2) and & (2) appear as locally well-defined, positive quan-
tities. As a rule of thumb, to keep a microscopic character in our
analysis, we choose op large enough to smooth the spurious
behaviour of 1/¢(z) (or f{z)), but small enough to have its overall
microscopic behaviour unchanged, in particular keeping
alimited penetration into the walls and an unaltered distance at
which the bulk value is reached. We find both conditions typi-
cally fulfilled for 0.6 = A = 1; A = 0.7 appears to be a good

© 2023 The Author(s). Published by the Royal Society of Chemistry
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zlo

300
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Fig. 3 Top: Local inverse dielectric constant 1/¢, (z) in a slab of width
h =50 A (blue curve) and its coarse-grained version 1/ | (z) obtained
through egn (13) with a coarse-graining length gp = 0.703 (violet
curve). Bottom: Coarse-grained dielectric constant ¢ | (z) whereas the
corresponding microscopic ¢ (2) is ill-defined.

compromise. The variation of the results of Fig. 3 with the
parameter A is illustrated in the ESLf Increasing A from 0.7 to 1
and beyond gives a more regular behaviour for & (z) but indeed
a more important smoothing of the boundaries. We argue in the
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00 05 10 15 20 25 30
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Fig. 4 Same as Fig. 2 for a slab of width h = 10 A.

© 2023 The Author(s). Published by the Royal Society of Chemistry

View Article Online

Chemical Science

ESIT that, for modelling purposes, the fundamental quantity to
consider is rather the coarse-grained response f(z) that is less
sensitive to the choice of A and can be modelled with two
inverted sigmoid-like curves, yielding smooth curves when
converted to &, (2).

In Fig. 4 and 5, we plot the results corresponding to a much
narrower slab with & = 10 A (~30y;). It can be seen that only two
solvent layers are allowed in-between the plates and that the
density n(z) and the polarisation density P(z) remain everywhere
far from their bulk values. The coarse-grained dielectric
constant ¢ (z) displayed in Fig. 5 has a nice and smooth hat
shape that reaches a maximum value around 10 in the middle of
the slab, again far below the bulk value.

From the above findings, one can state that the very long
range effect, up to a micrometer, observed for the measured ¢ |
as a function of slab thickness in ref. 20 cannot be attributed to
any long-range effect of the walls on the local dielectric constant
of the liquid. One should rather look at the effective dielectric
response of the whole slab to the applied potential difference.
For our slab model subjected to a constant external field (the so-
called dielectric box model in ref. 18) this can be measured by
relating the average polarisation in the slab to the field

_ 1 1 1
which yields according to eqn (11)

1 1 1
—-14 15
ORI K 9)

1 1 1
=- | dz= 16
ORI R 16)

0.0
—0.51
—1.0
—1.51
—2.01
—2.51
-3.0

€,(2)7?

32—\\//\ [

00 05 1.0 1.5 2.0 2.5 3.0 35
zlo

141
121
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£.(2)

N b OO

00 05 1.0 1.5 2.0 25 3.0 35
z/o

Fig. 5 Same as Fig. 3 for a slab of width h = 10 A.
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The second equality holds for the coarse-grained dielectric
constant instead of the microscopic one if the coarse-graining
length is such that P(0) = P(%) = 0. The microscopic expressions
14-15 remain the ones to be used in the following. Expressing
the total electrostatic energy of the device, which includes the
self-energy of the electric field between the plates, writing the
potential difference between them as

AD(h) = fr dzE(z) = fr dz;Eo

0 0 SL(Z) a7)

and equating this energy to 1/2 C(k)A¢(h)” yields the effective
capacitance

£, (h)
41th

C(h) = (18)
with g, (k) having the same definition as in eqn (15). Measuring
the average polarisation in the slab or the effective slab capac-
itance is thus equivalent. When the plate-to-plate distance # is
large enough as in Fig. 3, one can divide the device into three
regions, two interfacial regions of width #; and an intermediate
bulk region of width 4 — 2h; where ¢, (2) = epyi. In that case, the
choice of A; results in the definition of an effective dielectric
constant ¢; for the interfacial region through

hy
1 lJ d L

& - hi Jo “ei(z) (19)

and the resulting dielectric constant of the whole slab can be

written as
1 /’li 1 hi 1
El(l‘l) _228_1—’_ (1 _22) Ebulk (20)
or alternatively as
& ()= Coulk (21)

2h; [ epuik
1+— -1
" ( & )

Visual inspection of Fig. 3 leads to the choice #; = 6015 when
looking at the bare 1/e (z) or A; = 30;; when looking at the
coarse-grained curve 1/z  (z). Here we can define /; unambigu-
ously as the value at which we find that the approximation in
eqn (20) departs from the exact integral in eqn (15). This crite-
rion gives us ; = 9 A and ¢ = 5. The approximated formulae
(20) and (21) match completely the model of 3 capacitors in
series that was used in ref. 20 to interpret the experimental
results, except that here 4; and ¢; are not fitting parameters but
follow from a microscopic analysis. We note that the final
formulae proposed in the dielectric continuum theory approach
of Cox and Geissler*® or in the dividing surface model of Loche
et al.*”” amount in eqn (21) to reduce the interfacial width #; to
the depletion length where the fluid density is zero (roughly #; =
2 A by inspection of Fig. 3) and to fix accordingly & = 1.

The three separated capacitor picture expressed using eqn
(20) and (21) should not apply when % < 24;, i.e., below ~20 A. In
that case one has to resort merely to numerical integration in
eqn (15). For the & = 10 A case, illustrated in Fig. 4 and 5, the
numerical integral yields a slab-averaged dielectric constant of
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Fig. 6 Effective dielectric constant computed using cDFT for the
model Stockmayer fluid embedded in a slab of width h as a function of
h. The red solid curve corresponds to the asymptotic formula (21) with
the parameters determined in the text; it starts at h = h;. The red
dashed curve corresponds to the dielectric continuum theory of Cox
and Geissler*® or dividing surface model of Loche et al.?” with ¢ = 1 and
h;=9/5=1.8 A These curves can be compared with the experimental
results reported in ref. 20 for water in hano- to micrometric hBN slits.

&, = 2.3; this is a surprisingly small value compared to that of
the bulk, that is in line with the experimental findings for water.
In Fig. 6, we have plotted ¢, (k) computed over the range 0-10
nm, together with the asymptotic formula (21) starting from the
same microscopic/nanoscopic distances up to the micrometer
range. We use the same log-log representation as in ref. 20 for
direct comparison. Although our curves correspond to
a simplified water model embedded in a simplified slab (no H-
bonds and no electronic polarisation), the similarities with the
experimental results are striking. In particular we recover the
main feature pointed out by the experimental work: the effective
dielectric constant measured in slabs with a thickness in the 1
nm range is found to be around 2; this was quoted as an
“anomalously low dielectric constant of confined water”. Our
theoretical work makes it possible to bring some insight to the
interpretation of the experimental results. Indeed the long
range behaviour observed for ¢ , (#) has no mystery since, under
longitudinal conditions, the measure of the average polar-
isation or capacitance yields the integral of 1/¢ , (z) which, since
1/epuik < 1, gets its main contribution from the boundaries.
Very thick slabs are required for the bulk to contribute. This is
clear from the slow A;/h convergence appearing in eqn (21). It
should be noted that this asymptotic formula using the values #;
and ¢; derived above works extremely well even in the 7 =1 nm
range, i.e., down to separation distances & < 2k; where it should
not! We can only attribute this to continuity that allows the
extrapolation of the curve over a limited range below its validity.
Note also that since epyi/e; => 1, the results essentially depend
on the ratio Ay/¢; so that, on an empirical ground, other choices
of these parameters make it possible to reproduce the average
slab dielectric constant. In particular one can take & = 1 and #;
= 9/5 = 1.8 A, a value very close to the one suggested in the
dielectric continuum theory (DCT) of Cox and Geissler;* see
Fig. 6. There is in fact much more in their analysis than

© 2023 The Author(s). Published by the Royal Society of Chemistry
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considering this limit that amounts to modelling the solid-
liquid interface as a step-function. Their study points out the
importance, as well as the ambiguity, of locating the dielectric
boundaries and of properly defining the volume of the device,
which contains a molecular exclusion volume portion and one
filled by the liquid. Such ambiguity is present in our definition
of the device polarisation that involves its thickness / (eqn (14)).
We have taken as a natural microscopic definition of # the
distance between the center of the surface atoms of each plate,
so that the integrated Lennard-Jones potential can be defined as
in eqn (6). Other experimental choices for 4 are possible and the
measurement of the device thickness is also subject to experi-
mental uncertainties. The influence of this uncertainty is
illustrated in the ESI.f The observed trends are in clear agree-
ment with those in ref. 35. Although based on a simplified, step-
wise, molecular representation of the solid-liquid interface, the
DCT approach captures the essential balance between low and
high dielectric constant volumes.

Finally, our results show a structuration due to molecular
stacking for thicknesses in the 0.6-1.2 nm range, with two clear
peaks at 2 = 0.6 and 1 nm and damped oscillations beyond.
This is in agreement with the sub-nanometer oscillatory
behaviour observed by simulations by Jalali et al*® for SPC/E
water in tight confinement. The overall flattening of the curve
around a value of 2 seems reminiscent, within the error bars, of
the plateau detected experimentally in the 1 nm region.

4 Extension to SPC/E water

To get even closer to water, although still at a dipolar level, we
extend the previous theory by introducing in the functional the
parameters and the cg(z) and ¢ (z) direct correlation functions
corresponding to SPC/E water. We take the simple weighted
density approximation of ref. 52 and 63 for the bridge func-
tional. Since the symmetry of water is beyond that of a simple
dipole, at least a supplementary density-polarisation coupling
has to be introduced in the functional in the form*®

Fn, Pl = Fy[n]+ Fpln, P)+ Fopln, P (22)

with

kg T
Fwp[n, P = —BT JledZZCnL(ZD)An(Zl)P(ZZ) (23)

This introduces the fact that spontaneous polarisation exists
even in a slab with a zero applied field. The corresponding
polarisation profile is anti-symmetrical with respect to the two
walls and the integrated polarisation of the sample is zero, as it
should be. This spontaneous polarisation remains prominent
when a small to moderate external field is applied. See Fig. 7 for
a large slab with 2 = 50 A and also ref. 51 where molecular
density functional theory calculations were performed with
a molecular representation of the electrodes and a constant
voltage applied between the electrodes rather than an external
electric field.

On the other hand, the dielectric response f(z) = 47(P(z) —
Py(2))/E,, represented in Fig. 7, is perfectly symmetrical. It
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View Article Online

Chemical Science

—— Ep=0.5V/nm
0.6 — Eo=0
0.44

0.21

0.07
—0.21

P(z)/ny (Debye)

~0.41

_06 4

z(A)

0 10 20 30 40 50
z(A)

Fig.7 Top: Polarisation in a slab of width h = 50 A with and without an
applied external electric field. Spontaneous polarisation exists due to
the density/polarisation coupling of egn (23) which remains the
dominant contribution at the interfaces when a field is applied.
Bottom: The resulting response function f(z) = 4mw(P(z) — Po(2))/Eg
which appears perfectly symmetrical.

appears less oscillatory and reaches the bulk value more rapidly
than in the Stockmayer case in Fig. 3; this is a sign that the
damping of spatial correlations occurs more quickly in water
than in a purely dipolar liquid. In Fig. 8 this response is plotted
in terms of the ill-defined, local microscopic constant and of its
well-defined coarse-grained version.

We present in Fig. 9 the curve for £, (k) which is very similar
to the one obtained for the Stockmayer solvent, so that identical
conclusions can be drawn. No specific properties of water
emerge, beyond being a polar, molecular fluid with a high
dielectric constant. This result is consistent with the observa-
tion by MD simulations®® that confined polar liquids such as
methanol, acetonitrile and dichloromethane exhibit a dielectric
constant reduction similar to that of water. We further note that
in our results the dielectric constant reduction of confined
water is reproduced by considering exclusively the number and

polarisation  densities, without requiring orientational
constraints imposed by the interface on the water molecules.
We find an interfacial width 4 = 7.5 A and an associated

effective interfacial dielectric constant ¢; = 3.9, to be compared
to i; = 7.4 and ¢; = 2.1 determined experimentally by Fumagalli
et al.*® h; appears slightly smaller for SPC/E than for the purely
dipolar fluid since, as we mentioned, the spatial correlations in
water have a shorter range. Concordantly, we observe oscilla-
tions of €, (k) around the value of 2 in the 0.6-1 nm range with

Chem. Sci, 2023, 14, M41-M50 | 1M47
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Fig. 8 Top: (lll-defined) Microscopic perpendicular dielectric
constant for SPC/E water in a slab of width h = 50 A (in cyan) and its
coarse-grained version with a coarse-graining length op = 2 A (in
violet). Bottom: the same for the parallel dielectric constant when the
field is applied parallel to the plates (op = 1.5 A).
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Fig. 9 Effective dielectric constant for SPC/E water embedded in
a slab of width h as a function of h. The blue dots show the cDFT results
for &, (h) and the red solid curve corresponds to the asymptotic
formula (21) with the parameters determined in the text and down to h
= h;. The blue triangles and cyan solid curve are the same for g(h).

a first minimum at 1.8 around z = 0.75 nm and a second higher
minimum around ~z = 1 nm; this is in agreement with the
simulation results of ref. 30. Indeed, those oscillations are
dampened more quickly than in the Stockmayer case.

Finally, although we are not aware of any experimental
results to compare with, we take the opportunity here to study
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the transverse polarisation case, i.e., applying an external elec-
tric field in the transverse direction x parallel to the plates. All
the DFT formalism developed above remains valid if the
longitudinal direct correlation function c¢y(z) in eqn (8) is
replaced by the transverse one, cr(z), defined as the inverse, 1D
Fourier transform of ca(q) — ¢p(q)-*® The density-polarisation
coupling of eqn (23) vanishes in this case and one resorts to the
joint minimisation of the equivalent of the functional in eqn (7)
and (8) using cr(z). The response function to a constant field E,
is defined in this case using
f(2) = 4mP(2) Ey = ¢)(2) — 1 (24)
The picture is different from that in the longitudinal case
since the measure now concerns ¢ instead of 1/e. As seen in
Fig. 8 for a 50 A-slab, the resulting ¢(z) presents oscillations
close to the boundaries but remains everywhere positive and
well-defined. This simple fact was emphasised in the early
studies of Ballenegger and Hansen" and confirmed by subse-
quent MD studies using molecular solvents.'*'®'*>5” For a slab
of thickness 7, an effective dielectric constant can be defined as

g(h) = % J1 dze)(z) (25)

0

If the slab is thick enough to distinguish two interfacial
regions from an intermediate bulk buffer, as illustrated in
Fig. 8, the following simple formula pertinent to 3 capacitors in
parallel can be inferred by decomposing the integral

_ hi &
SH (/’l) = Epulk l:l — 2% (1 — Ebu1k>:|

1 hy
h_i J dzey(z)

0

(26)
with

& = (27)

Again ¢ is fixed by the choice of a reasonable £;. Using the
same unambiguous selection criterion as before (the minimal #;
that fulfils the asymptotic eqn (26)), we find ; = 10 A and & =
50, i.e., a much larger interfacial, effective value than in the
perpendicular case. Besides it can be seen in Fig. 9 that the bulk
value is reached for slabs of thickness # = 10 nm, thus much
narrower than ~500 nm necessary for the perpendicular
dielectric constant. As for the out-of-plan polarisation case,
a slight oscillatory behaviour of the in-plane dielectric constant
g)(h) is observed for thicknesses between 0.6 and 1 nm but we
do not detect the drastic drop by two orders of magnitude that
Hamid et al. found in their simulations around #z = 0.75 nm,
that they attribute to a freezing transition occurring under that
particular packing condition.*

Finally, let us mention that our DFT results are in overall
agreement with those of previous MD simulations.***¢1%19:2527.28
In particular Itoh and Sakuma'® computed the perpendicular
and parallel effective dielectric constants of three-dimensional
graphite/SPCE-water/graphite slabs of various sizes by MD
simulations. In spite of our different, simplified modelling of

© 2023 The Author(s). Published by the Royal Society of Chemistry
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water and of the surface-water interactions, the DFT results in
Fig. 8 are in quantitative agreement with theirs for the few slab
geometries that they explored.

5 Conclusions

In this work, we presented a simple two-variable, number/
polarisation density functional theory describing the micro-
scopic structure of polar fluids at interfaces or in confinement,
as well as their microscopic dielectric response to external
fields. For a given system geometry the numerical solution is
obtained instantaneously with a laptop and compares very well
with previous MD simulations of closely related systems.>*® It
provides locally coarse-grained quantities at a modest numer-
ical cost that can further nourish continuum Poisson-Boltz-
mann models. The approach made it possible to model thin
water films of various thicknesses and to mimic the experi-
mental setup in ref. 20. Our modelling is indeed incomplete and
neglects physical features such as the precise chemical nature
of the interface, its three-dimensional roughness, and the
electronic polarisability of both the solid surfaces and the
solvent. A main conclusion, however, is that finding very low
effective longitudinal dielectric constants of the order of 2-3 for
water in slabs of nanometer size through capacitance
measurements should not be a special property of water but is
true for any generic polar solvent having a high bulk dielectric
constant. Fig. 6 obtained for the Stockmayer solvent or Fig. 9 for
a dipolar representation of water present close similarities with
the experimental curve in ref. 20. A similar conclusion is
reached in ref. 35 which follows a purely macroscopic, electro-
statics route. On the other hand the definition of a local, space-
dependent longitudinal dielectric constant is found irrelevant
at a microscopic level close to the walls but can be inferred at
a molecular coarse-grained level with a smoothing length of the
order of the size of a solvent particle. This local dielectric
constant is shown to reach its bulk value after a short distance #;
from the slab walls, typically 10 A for water. This clearly defines
a short-range interfacial solvent region with an effectively low
dielectric constant ¢;. Since in the longitudinal polarisation case
the response concerns 1/¢ rather than directly ¢, incorporating
the intermediate bulk region with a 1/epyy contribution turns
rigorously to a three-capacitors-in-series model described by
formula (20). Since the 1/epyy is small, the low dielectric
constant interfacial regions dominate and it requires large slab
thicknesses for the bulk to contribute; this explains the very
slow increase of ¢ with slab thickness. Our theoretical approach
brings additional insight to this simple, phenomenological
capacitor model. (1) Although it should not apply to slab width
below 2h;, twice the interfacial thickness, it holds for shorter
distances down to &;. We take this as a continuity effect. (2) In
our microscopic analysis, the parameter %; can be defined
unambiguously from the microscopic structure and it also fixes
the value of the second parameter ¢;. Phenomenologically, since
the behaviour in eqn (20) depends essentially on the ratio A;/e;,
other choices of parameter couples are possible including the
extreme choice ¢ = 1 (see Fig. 6). (3) We observe an oscillatory
behaviour, leading to an effective flattening of the dielectric
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response around ¢, (k) = 2 for slabs below 1 nm, a saturation
effect that is reminiscent of the one detected experimentally. In
our case, we can relate this non-monotonic behaviour to the
interplay between the polarisation response and hard-sphere
packing when only one or two layers of solvent particles are
allowed in the slab.

We have also studied the complementary case of the trans-
verse response when the perturbing field is applied parallel to
the walls instead of perpendicular. In that case the microscopic
dielectric constant ¢)(z) is well-defined although it presents
some structural oscillations close to the walls; those are
smoothed out by coarse-graining over particle dimensions. A
three-capacitors-in-parallel model described by eqn (26) is
found to apply for slabs above 1 nm and the overall slab
capacitance is found to reach the bulk value for slab thickness
on the order of 10 nm, ie., much narrower than in the
perpendicular case. The inferred interfacial effective dielectric
constant is also much higher.

Finally, let us mention that water in confinement can be
described at a much more refined molecular density functional
theory level using the full MDFT formalism and its associated
MDFT software that includes not only the dipolar symmetry but
also all the higher multipolar symmetries and also makes it
possible to represent the surface-water interaction at a fully
atomistic, 3D level.** Such calculations are underway and will be
presented in a forthcoming publication.
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