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A catalytic asymmetric a-C(sp®)—H functionalization of alkyl silanes with benzosultams was realized by
merging photoredox and chiral Lewis acid catalysis. The key to success was the choice of photocatalyst
with an appropriate redox potential and non-nucleophilic solvent, providing a novel entry to chiral

organosilanes containing two adjacent tri-
diastereo- and enantioselectivity (up to 99% ee, 94 : 6 dr) under mild reaction conditions. Based on the
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Introduction

The direct enantioselective functionalization of C(sp®)-H is
demonstrated to be an elegant, atom- and step-economic
protocol to synthesize complex chiral molecules.' Thanks to
the successive discovery of photocatalysts*” in the past two
decades, visible-light-promoted photocatalysis has emerged as
a novel and powerful strategy for the purpose of formidable
C(sp®)-H activation regardless of the high bond dissociation
energy,®** which is complementary or even superior to that of
the traditional transition metal-catalyzed C(sp*)-H insertion or
using an extra quantitative oxidant. In this context, several
groups have accomplished photocatalytic asymmetric C(sp®)-H
functionalization of tertiary amines,"*¢ ethers,'”** sulfides,'®"
hydrocarbons and their derivatives,”**” providing full and
varied heteroatom-containing optically active compounds.
Organosilanes fulfill a plethora of roles in synthetic chem-
istry, and have potential applications in drug discovery due to
the unique physicochemical characteristics of silicon.”*?** We
conceived that the direct photocatalytic asymmetric a-C(sp®)-H
functionalization of silanes would offer straightforward access
to chiral silicon-containing compounds. To the best of our
knowledge, organic silanes have served as sought-after alkyl
radical precursors in photoredox reactions by exploiting the
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triggered simultaneous or stepwise electron transfer/proton transfer process was proposed to rationalize
the favored C(sp®)—H functionalization rather than desilylation.

adequately lower oxidation potential than the parent arising

from the higher 6-n or o interactions.*' Generally, the silanes

undergo single electron transfer (SET) oxidation to form a-silyl

cation radicals A, which are followed by C-Si bond or C-H bond
a) Two cleavage modes with alkyl silanes as radical precursors
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 Construction of adjacent tri- and tetra-substituted stereocenters

Scheme 1 Photoinduced asymmetric radical reactions with alkyl
silanes as radical precursors.

© 2023 The Author(s). Published by the Royal Society of Chemistry


http://crossmark.crossref.org/dialog/?doi=10.1039/d3sc00919j&domain=pdf&date_stamp=2023-04-29
http://orcid.org/0000-0003-3490-4182
http://orcid.org/0000-0001-8723-6793
http://orcid.org/0000-0003-4507-0478
https://doi.org/10.1039/d3sc00919j
http://creativecommons.org/licenses/by-nc/3.0/
http://creativecommons.org/licenses/by-nc/3.0/
https://doi.org/10.1039/d3sc00919j
https://pubs.rsc.org/en/journals/journal/SC
https://pubs.rsc.org/en/journals/journal/SC?issueid=SC014017

Open Access Article. Published on 04 April 2023. Downloaded on 10/21/2025 12:44:05 AM.

Thisarticleislicensed under a Creative Commons Attribution-NonCommercial 3.0 Unported Licence.

(cc)

Edge Article

silyl radical species C (Scheme 1a).*” The former producing non-
silicon-containing products has been well developed in a variety
of photoinduced enantioselective transformations (Scheme
1b);>*** by contrast, the latter has not been explored for the
synthesis of chiral silicon-containing substances. The mecha-
nistic studies reported by Mariano*****” and others***° revealed
that the generation of desilylation and silicon-containing
products greatly depended on the photoreaction solvent, and
the competitive desilylation dominants by means of a nucleo-
phile-assisted C-Si bond cleavage with the solvent acting as
the nucleophile. For example, Melchiorre and co-workers
elegantly established the enantioselective B-alkylation of enals
with alkyl silanes through MeCN-assisted C-Si bond fragmen-
tation.***" Herein, we reported the first visible-light-induced
chemo-, diastereo- and enantioselective o-C(sp*)-H functional-
ization of silanes with benzosultams under the Ir(m)/N,N-
dioxide-Ni(u) synergetic catalysis to produce enantioenriched
silicon-containing compounds (Scheme 1c); the desilylation
was suppressed via the ingenious choice of a suitable photo-
catalyst and non-nucleophilic solvent.

Results and discussion

At the beginning of this study, we selected the model reaction of
benzosultam 1a and benzyltrimethylsilane 2a in CHCl;. A

Table 1 Optimization of the reaction conditions®
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variety of photocatalysts were investigated under the irradiation
of blue LEDs (20 W) at room temperature with a Lz-RaPr,/
Ni(OTf), complex as the chiral Lewis acid catalyst (Table 1,
entries 1-3, see the ESIt for details). No reaction occurred by
using photocatalyst Ru-1 (Table 1, entry 1). Delightedly, the
reaction proceeded smoothly to afford the desired product 3a in
69% yield, 63%/15% ee and 66 : 34 dr along with the formation
of a trace amount of desilylation product 3a’ in the presence of
Ir-1 (Table 1, entry 2). Nevertheless, the 3a’ obtained instead was
catalyzed by Acr-1, which has a high exited state reduction
potential (Ereq (*Acr'/Acr®) = +2.19 V vs. SCE in CH;CN) (Table
1, entry 3).°° The screening of chiral N,N-dioxide ligands®**!
showed that the sterically bulky L;-RaPr,Ad derived from 2,6-
diisopropyl-4-adamantyl aniline promoted this reaction to give
3a in 75% yield, 86:14 dr with 94% ee (Table 1, entry 4).
Increasing the dosage of 1a to 1.2 equiv. improved the yield to
94% with maintained diastereo- and enantioselectivity (Table 1,
entry 5). The addition of a 4 A molecular sieve (MS) raised the
enantioselectivity slightly (95% ee, Table 1, entry 6). The solvent
had an important influence on the chemoselectivity of this
reaction. On switching CHCI; to nucleophilic solvents, such as
CH;0H, CH;CN and THF, 3a’ was obtained without observation
of 3a (Table 1, entries 7-9), and the lower yield of 3a’ in THF was
due to the competing a-C(sp*)-H functionalization of THF with
1a (Table 1, entry 9). Similarly, the reaction between toluene and

\\//O photocatalyst (1 mol%) s
N,N'-dioxide/Ni(OTf), (1:1, 10 mol%) “NH “NH

+ ©ATMS
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CF; o
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|
N~ PFe FoNer,
Ru-1: Ru(bpz);3(PFg),

Eeq ("RU'/RU') = +1.45 V
Eoy (RU"/*Ru'") = -0.26 V

Ir-1: [Ir[dF(CF 3)ppyl,(bpy)IPFe
Ereq (IM/IF") = +1.32 V
Eox IV = -1.00 v

N,, solvent (0.1 M)
20 W blue LEDs, 6 h, rt

Eqeq (*Acr*/Acr™) = +2.19 V

clo,

! Lg-RaPry: R = 2,6-Pr,CoHs
i Ls-RaPr,Ad: R = 2,6-iPrp-4-
H adamantyl-CgH,

Acr-1: Mes-Acr-Me-CIO4

Entry Photocatalyst Ligand Solvent Yield of 3a” (%) ee of 3a” (%) dr (3a)° Yield of 32" (%) ee of 32" (%)
1 Ru-1 L;-RaPr, CHCl, 0 — — 0 —

2 Ir-1 L;-RaPr, CHCl; 69 63/15 66:34 Trace n. d.
3¢ Acr-1 L;-RaPr, CHCl, 0 — — 95 17

4 Ir-1 L;-RaPr,Ad CHCl; 75 94/47 86:14 Trace n. d.
5¢ Ir-1 L;-RaPr,Ad CHCl; 94 93/43 86:14 Trace n. d.
6/ Ir-1 L;-RaPr,Ad CHCl, 95 95/43 86:14 Trace n. d.
7¢ Ir-1 L;-RaPr,Ad CH,O0H 0 — — 98 7

8¢ Ir-1 L;-RaPr,Ad CH,CN 0 — — 99 36
9¢ Ir-1 L;-RaPr,Ad THF 0 — — 11 n. d.
10° Ir-1 L;-RaPr,Ad Toluene 23 92/35 85:15 75 47
11%¢ Ir-1 L;-RaPr,Ad CHCl, 0 — — 0 —
12¢ — L;-RaPr,Ad CHCl, 0 — — 0 —
13%" Ir-1 — CHCl, 48 — 52:48 0 —

“ Unless otherwise noted, all the reactions were performed with a photocatalyst (1 mol%), Ni(OTf), (10 mol%), ligand (10 mol%), 1a (0.10 mmol) and
2a (0.10 mmol) in solvent (1.0 mL) at room temperature under the irradiation of 20 W blue LEDs for 6 h. ? Yield of the isolated product. ¢ The ee and

dr values were determined by UPCC analysis. ¢ Acr-1 (2 mol%). € 1a (0.12 mmol).” With 4 A MS (20 mg), 0.5 h. & Without light. ” In the absence of

a L;-RaPr,Ad/Ni(n) complex. n. d. = not determined.
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1a dominated with toluene as the solvent (Table 1, entry 10).
Other reaction parameters were also examined, including
a central metal salt, catalytic loading and so on, but no better
result was achieved (see the ESIt for details). Additionally,
control experiments were carried out to understand the synergic
catalysis. No reaction occurred without light or a photocatalyst,
proving the photochemical nature (Table 1, entries 11 and 12).
Ir-1 could mediate this reaction itself, but afforded 3a with 48%
yield and 52:48 dr, implying that the Lj;-RaPr,Ad/Ni(OTf),
complex played a significant role in enhancing the reactivity
and diastereoselectivity (Table 1, entry 13).

With the optimized reaction conditions in hand (Table 1,
entry 6), the substrate scope was then evaluated. As shown in
Scheme 2, on changing the benzyl ester of benzosultams to

o Ir-1 (1 mol%)

N

L3-RaPr,Ad/Ni(OTf), (1:1, 10 mol%)
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a methyl ester (1b) and ethyl ester (1c), the corresponding
products 3b®* (96% ee, 83 : 17 dr) and 3¢ (90% ee, 86 : 14 dr) were
obtained smoothly. With respect to the substituents on the
phenyl group, the reaction of 1f-1i bearing an electron-
withdrawing group afforded 3f-3i with excellent enantiose-
lectivities (96-99% ee), which was superior to that of electron-
rich ones (3d-3e, 84-88% ee). An imine containing fused
naphthyl motif was also tolerated but provided 3j in only 30%
yield, 82% ee and 80 : 20 dr. Next, we turned our attention to the
scope of silanes. Various substituted benzyl trimethylsilanes
were applicable in this synergistic catalytic system to afford the
o-C(sp®)-H functionalization products 3k-3s. Both the electrical
properties and position of the substituents have obvious effects
on this reaction. The silanes bearing electron-donating groups

o
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Scheme 2 The substrate scope. Reaction conditions: Ir-1 (1 mol%), Ni(OTf)»/Ls-RaPr,Ad (1 : 1, 10 mol%), 1 (0.12 mmol), 2 (0.10 mmol), and 4 A MS
(20 mq) in CHCls (1.0 mL) at rt under the irradiation of 20 W blue LEDs for the indicated time. Yield of the isolated product, and the dr value was
determined by *H NMR spectroscopy and ee value was analyzed by UPCC with a chiral column. ?[Ir[dF(CF3)ppyla(dtbbpy)IPFg (1 mol%) instead.

PThe data of desilylation product 3t are given in parenthesis.
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at the para-position of the phenyl group exhibited lower reac-
tivity and stereoselectivity. For example, salines containing
halo-substituents at the para-position, gave 3n-3p with 86-93%
yield and 96% ee, while para-methyl and para-methoxyl benzyl
substituted 31-3m were obtained in 21-63% yield with lower
enantioselectivity (87-93% ee). If the electron-withdrawing
groups were located at the ortho- or meta-positions, decreased
reactivity and stereoselectivity were observed (3q-3s, 46-68%
yield, 83-89% ee, and 78 :22-83 : 17 dr). Noteworthily, regiose-
lective secondary C(sp®)-H functionalization adjacent to the
silicon atom took place to afford 3k-31 solely without observa-
tion of the primary C(sp’)-H bond fragmentation.
Trimethyl(naphthalen-2-ylmethyl)silane reacted with 1a to
deliver 3t in 51% yield and 94% ee with 83:17 dr, and the
desilylation product 3t was also isolated in 41% yield with 47%
ee. Benzyltriethylsilane (BnTES), benzylic dimethyl tert-
butylsilane (BnTBS), BnSiMe,CH,Cl and BnSiMe,H were also
suitable substrates, successfully generating 3u-3x with 56-68%
yield, 80-96% ee and 73:27-92: 8 dr. It was worth mentioning
that no Si-H bond cleavage product through a silyl radical
intermediate was observed.*

a) The Stern-Volmer quenching study of Ir-1 with 1a or 2a
Stern-Volmer plot
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Scheme 3 The mechanistic studies.
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To get insight into the reaction process, a series of mecha-
nistic studies were conducted. The reaction was completely
inhibited with the addition of 2,2,6,6-tetramethylpiperidine-1-
oxyl (see the ESIf for details). The Stern-Volmer fluorescence
quenching experiments unambiguously showed that 1a
quenched Ir-1 effectively, but 2a has no obvious quenching
effect (Scheme 3a). Moreover, 1a underwent homocoupling to
give the product 4a with 26% yield in the presence of Ir-1 (0.5
equiv.), while no reaction of 2a occurred (Scheme 3b). The
observation was consistent with the redox potential between Ir-
1 and 1a or 2a (Scheme 3b). The electron paramagnetic reso-
nance (EPR) measurement was also performed with 5,5-
dimethyl-1-pyrroline N-oxide (DMPO) as a trapping agent. It
witnessed the formation of the persistent radical 6 (g = 2.0066,
AN = 12.91 G, and AH = 10.40 G) through EPR simulation
(Scheme 3c),** which was further conformed based on the
detection of 6 by using the high resolution mass spectrum
(HRMS) (Scheme 3c). These results strongly indicated that Ir-1
underwent oxidative quenching to trigger the generation of
a radical anion 1a’~ from imine. In addition, deuterated
experiments revealed that the proton source of the N-H bond in

! ¢) The EPR and HRMS measurements
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o
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3a came from 1a (see the ESI} for details), and a primary kinetic
isotope effect (KIE) of about 1.7 and 1.47 for the competitive and
parallel experiments revealed that the C(sp®)-H bond cleavage
may be involved in the rate-limiting step (Scheme 3d). Next, the
pathway of C(sp*)-H bond cleavage of alkyl silane was clarified:
direct hydrogen atom transfer (HAT), electron transfer (ET)/
proton transfer (PT) sequence or multisite proton-coupled
electron transfer (MS-PCET)*® (see the ESI{ for details)?
Firstly, the photocatalysts Ir-1 and Ir-2 possessed the same
triplet state energy (60.1 kcal mol~");*® however, the latter could
not facilitate this reaction (Scheme 3e), and the result was
consistent with the observation of the formation of 3x rather
than the Si-H bond cleavage product,® which might exclude the
direct HAT between 2a and triplet state 1a that was formed
through energy transfer. Secondly, the reactions between 1a and
THF or toluene proceeded smoothly (Table 1, entries 9 and 10)
although the oxidation potentials of THF (>+2.4 V vs. SCE in
CH;CN) and toluene (+2.26 V vs. SCE in CH3;CN) are much
higher than that of the Ir-1 (Eq(Ir'V"™) = +1.69 V vs. SCE in
CH;CN). Moreover, Ir-3 could mediate this reaction to give 3a
with 32% yield (Scheme 3e), but the potential was also mis-
matched between Ir-3 (Ereq (¥Ir'™/Ir'™) = +0.75 V, Eqy (Ir™V/Ir'™) =
+1.49 Vvs. SCE in CH;CN) and 2a (E,, (2a"*/2a) = +1.55 Vvs. SCE
in CH3CN, see the ESI} for details). Thus, a SET reduction of
imine followed by the MS-PCET mechanism was surmised.
However, 3a’ was obtained exclusively in nucleophilic solvents
(Table 1, entries 7-9), indicating the existence of radical cation
2a"* generated through SET oxidation of 2a by Ir-1(IV), which
meant that the stepwise ET/PT may be also involved. In addi-
tion, the quantum yield was found to be 0.23, suggesting that
a radical chain propagation in this reaction may not be the
predominant process.

According to above experimental results, the catalytic cycle
was proposed as shown in Fig. 1. The Lj;-RaPr,Ad/Ni(OTf),
complex coordinated with 1a to form the intermediate I, which
underwent SET reduction with the photocatalyst [Ir'"'] under
visible-light illumination and afforded the radical anion II;

Ni(OTf), + L3-RaPr,Ad

hv
[Ir'"] —_— [Ir'”]

SET oxidative quenching cycle MS-PCET

vy
path a
\\ //
H HH

“[Nl 1 V]
homocoupllng 2 TMS? Ph%éms

path b

’—O
BnO I

Fig. 1 The proposed catalytic cycle.
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accordingly, [Ir'™] went through oxidative quenching to form the
[1r'V] species. The following C-H bond cleavage of 2a through
MS-PCET involving electron transfer to [Ir'] (oxidant) and
proton transfer to II (base)” regenerated [Ir""] and produced
a radical-radical pair III (path a). Alternatively, IIIl was formed
through a stepwise process, namely, SET between 2a and [Ir""]
took place to afford the radical cation IV, followed by proton
transfer to II (path b). Subsequently, III underwent stereo-
controlled radical coupling to provide 3a. Additionally, an
unproductive homocoupling of II proceeded to yield the
byproduct 4a.

Conclusions

In summary, a bimetallic synergetic photocatalytic chemo-,
diastereo- and enantioselective a-C(sp®)-H functionalization of
alkyl silanes with benzosultams was discovered. Diverse exper-
imental evidence revealed that the Ir(m) photocatalyst under-
went an oxidative quenching cycle to facilitate SET reduction of
benzosultam and afforded a radical anion. It triggered the
following MS-PCET or stepwise ET/PT of alkyl silanes and
radical coupling. This protocol provided a rapid and facile
access to chiral organosilanes containing two adjacent tri- and
tetra-substituted stereocenters with good to excellent yield and
stereoselectivities. The extension of this methodology to
synthesize chiral silanes is underway in our laboratory.
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