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Machine learning (ML) has been widely applied to chemical property prediction, most prominently for the

energies and forces in molecules and materials. The strong interest in predicting energies in particular

has led to a ‘local energy’-based paradigm for modern atomistic ML models, which ensures size-

extensivity and a linear scaling of computational cost with system size. However, many electronic

properties (such as excitation energies or ionization energies) do not necessarily scale linearly with

system size and may even be spatially localized. Using size-extensive models in these cases can lead

to large errors. In this work, we explore different strategies for learning intensive and localized

properties, using HOMO energies in organic molecules as a representative test case. In particular, we

analyze the pooling functions that atomistic neural networks use to predict molecular properties, and

suggest an orbital weighted average (OWA) approach that enables the accurate prediction of orbital

energies and locations.
1. Introduction

Due to their great potential for accelerating materials discovery
and design, there has been signicant interest in machine
learning (ML) models that enable the fast and accurate
prediction of molecular and materials properties.1–5 Conse-
quently, a wide range of neural network (NN) and Kernel ML
methods have been developed and applied to systems ranging
from isolated molecules to complex amorphous solids.6–14

In this context, many state-of-the-art approaches exploit the
approximately local nature of chemical interactions. This is
achieved by representing chemical structures in terms of the
element of each atom and the types and positions of the atoms
in its immediate surrounding (the chemical environment).15–17

This is, e.g., commonly used when developing ML interatomic
potentials, where the total energy is then obtained as a sum of
local atomic contributions (see Fig. 1).

There are two distinct but related advantages to this
approach. On one hand, locality ensures that the computational
cost of the model asymptotically displays linear scaling with the
size of the system, allowing for instance the routine application
of ML potentials to systems with a thousand atoms or more. On
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the other hand, the summation of atomic contributions ensures
size-extensivity, which is oen desirable, if not a key require-
ment as in the case of interatomic potentials.

Simply put, size-extensivity means that predicted properties
(e.g. energies) scale linearly upon trivial extensions of the
system size, e.g. when describing ideal crystals in larger periodic
supercells or replicating non-interacting molecules. This allows
size-extensive ML models to be trained on small molecules or
simulation cells and later applied to large systems.1,16,18

However, size extensivity is not necessarily always a good
assumption. Indeed, many electronic properties like excitation
energies,19 orbital energies20 or ionization potentials21 are
intensive, meaning that they remain constant for such trivial
scalings of the system size. In this case summing over atomic
contributions therefore yields unphysical results, in particular
when extrapolating to systems that are larger than the ones
contained in the training set.

From an ML perspective, the summation of atomic contri-
butions is simply one of many possible pooling functions.22–24

For example, when taking the average instead of the sum,
predictions remain constant as the system size is scaled.18,25

Average pooling is therefore oen used as the default pooling
function for intensive properties. Unfortunately, average pool-
ing can still yield unphysical results, particularly when the
target property is localized and the system has low symmetry.

To illustrate this, consider a model trained on the ionization
energies (IEs) of isolated monomers of water (12.6 eV) and CO2

(13.8 eV). An average pooling model will correctly predict that
the IE remains constant for a non-interacting supersystem
consisting of two separated water molecules. However, for
Chem. Sci., 2023, 14, 4913–4922 | 4913
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Fig. 1 Schematic illustration of atomistic neural networks. In a conventional atomistic neural network (top), the representation of each atomic
environment is converted to a scalar output 3i. These outputs are aggregated to the target property using a pooling function. The (orbital)
weighted average models introduced herein ((O)WA) additionally predict the weight of each atom in the pooling function, using a second neural
network (bottom). This is beneficial in the depicted example case of water and CO2, where the target property (in this case an orbital energy) is
localized on a part of the system.
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a non-interacting supersystem consisting of one water and one
CO2 molecule, this model would predict that the IE is the
average of the corresponding water and CO2 values, which is
clearly incorrect. The problem here is that the model fails to
take into account that an ionization of this supersystem is
localized on the water molecule, since it has the lower IE.

While this is a somewhat articial example, many real
chemical systems also display ionizations, excitations or
orbitals that are spatially localized. Examples include disor-
dered, defected or doped solids,26,27 functionalized organic
molecules and polymers,28 as well as complex biomolecules like
DNA and RNA.29 This raises the question whether there are
more appropriate pooling functions for electronic properties
with a (potentially) localized nature.

In this contribution, we address this question by proposing
a series of pooling functions that are formally able to treat
localized (electronic) properties correctly. We then develop
a new dataset of organic molecules, which is purposefully
designed to contain both systems with localized and delocalized
highest occupied molecular orbitals (HOMOs). This allows us to
extensively benchmark the proposed pooling functions, and
analyze their ability to predict the location of the orbital, as well
as the energy. Finally, the most reliable methodology is applied
to predict the orbital energies of the general OE62 dataset,30

consisting of experimentally reported organic molecules with
large structural diversity.
4914 | Chem. Sci., 2023, 14, 4913–4922
2. Methods
2.1 Atomistic neural networks

The general structure of an atomistic NN is shown in Fig. 1.
Briey, the chemical environment of an atom i in a given system
with N atoms is represented by a vector or tensor ci. This
representation is passed through the NN to yield a scalar output
3i. In a nal step, the outputs of all atoms are combined to the
global target property P through a pooling function f(31,.,3N), to
be specied below.

Two classes of atomistic NNs are in common use. The orig-
inal approach of Behler and Parinello uses a predened set of
radial and angular basis functions to generate the representa-
tion of the chemical neighborhood within a xed cutoff radius
around each atom.15 Common choices for these predened
representations are the Atomic Symmetry Functions (ASFs) of
Behler and Parinello, and the Superposition of Atomic Positions
(SOAP) of Bartók and Csányi.31,32 More recently, Message-
Passing Neural Networks (MPNNs) have been proposed as an
alternative.33,34 These replace predened representations with
an end-to-end deep NN architecture that learns a data-driven
representation during training.

The current paper is focused on the nature of the pooling
function and not on the structural representation. For gener-
ality, we will therefore consider both approaches in the
following. Specically, the SOAP representation will be used as
© 2023 The Author(s). Published by the Royal Society of Chemistry
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implemented in Dscribe,35 using the universal length scale
hyperparameters dened in ref. 36. As a prototypical MPNN, the
SchNet architecture is used.16 For consistency, both SOAP and
SchNet models are implemented with the PyTorch based
SchNetPack library,37 using default hyperparameters unless
noted otherwise (see ESI† for details).
2.2 Pooling functions

In the following we focus on learning HOMO energies (EHOMO)
as a prototypical localized intensive property. While the
concepts we introduce below are generally applicable to all
intensive properties, the concrete shape of the pooling function
can vary depending on the target property. Any property-specic
aspects will be highlighted when necessary.

The twomost commonly used pooling functions in atomistic
NNs are sum and average pooling, dened as

fsumð31;.; 3NÞ ¼
XN
i¼1

3i; (1)

and

favgð31;.; 3NÞ ¼ 1

N

XN
i¼1

3i; (2)

respectively. As discussed above, both of these yield unphysical
results for localized intensive properties, however.

The simplest pooling function that potentially shows the
correct behavior for such localized properties is max pooling,
expressed as:

fmax(31,.,3N) = max({31,.,3N}) (3)

Note that here we are assuming that the target property is the
energy of the highest occupied molecular orbital (HOMO). In
other cases the min function would be appropriate, e.g. for the
IE or the lowest unoccupied molecular orbital (LUMO) energy.

While fmax may have the desired formal properties, it argu-
ably takes things too far since it ultimately makes the predicted
molecular or materials property a function of a single atomic
contribution. In real interacting systems, even fairly localized
orbitals will typically extend over several atoms, however. More
importantly, it would be desirable to have a pooling function
that is simultaneously adequate both for localized and delo-
calized properties. A simple way to achieve this is via somax
pooling:

fsoftmaxð31;.; 3NÞ ¼
XN
i¼1

expð3iÞPN
j¼1

exp
�
3j
�3i: (4)

In a fully symmetrical system where each atom has an
identical chemical environment this function behaves like
average pooling, whereas it behaves more like max pooling in
strongly unsymmetric cases like the above mentioned non-
interacting water-CO2 toy system.

More generally speaking, somax pooling is just one
example of a weighted average, with weights dened as
© 2023 The Author(s). Published by the Royal Society of Chemistry
expð3iÞPN
j¼1

expð3jÞ
. This assumes that both the target property and its

localization can be simultaneously predicted from the scalar
outputs 3i. As a more exible approach, the weights could also
be predicted by a second NN, as shown on the bottom of Fig. 1.
This leads to the general weighted average (WA) pooling:

fWA ¼
XN
i¼1

wi3i; (5)

Note that herein the somax function (see eqn (4)) is used to

normalize the outputs of the second NN, so that
PN
i
wi ¼ 1 (see

ESI†). This step rigorously enforces size-intensivity of the
resulting models.

From a physical perspective it is interesting to consider what
the ideal weights in WA pooling should be. For HOMO energy
prediction it stands to reason that they should be related to the
localization of the orbital. When the HOMO is expressed as
a linear combination of atomic orbitals (indexed with m, n), the
fraction li of the orbital that is localized on a given atom i can be
obtained as:38

li ¼

0
B@
P
m˛i

cm
2

P
n

cn2

1
CA; (6)

where cm are the orbital coefficients in the atomic basis and the
upper sum is restricted to all basis functions localized on atom
i. Based on this, we can dene an orbital coefficient based
pooling function:

fcoeffð31;.; 3NÞ ¼
XN
i¼1

li3i: (7)

Clearly, this function is of limited practical value for pre-
dicting orbital energies though. If the orbital coefficients were
known, so would be the corresponding energies. Nonetheless
we apply this coefficient pooling function below as a bench-
mark. In principle, it could also be applied with orbital coeffi-
cients from lower level methods, but this is beyond the scope of
the current work.

As a practically tractable and computationally efficient
approximation to fcoeff, we explore including li in the training
procedure of WA models. In the resulting Orbital Weighted
Average (OWA) approach, the loss function is augmented so that
the weights reproduce the orbital localization fractions li as
closely as possible:

L OWA ¼ 1

Ntrain

2
4aXNtrain

A¼1

 
EHOMO;A �

XNA

i¼1

wA;i3A;i

!2

þ b
XNtrain

A¼1

�
XNA

i¼1

ðlA;i � wA;iÞ2
3
5 (8)

Here, the loss is computed as an average over all Ntrain systems A
in the training set or batch. To clarify this, each of the previously
Chem. Sci., 2023, 14, 4913–4922 | 4915
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used variables is augmented with an additional index A in this
equation. The global parameters a and b determine the relative
contributions of orbital energies and localizations to the loss.
The latter are optimized for orbital energy prediction on
a separate validation set (see ESI†). In contrast, WA models are
trained on the same purely orbital energy based loss function as
the other models (see ESI†).

It should be noted that sum, average and max pooling have
previously been used in the literature, e.g. in ref. 24, while the
other approaches discussed herein are to the best of our
knowledge used for the rst time for molecular property
prediction. We also note that the simple pooling functions used
herein can in principle be replaced by separate neural network
components, which try to learn appropriate pooling behaviour
from data.39 In this case, correct scaling with system size is not
rigorously enforced, however.
2.3 LocalOrb dataset

Having established a series of pooling functions with desirable
formal properties, our next goal is to benchmark how accurately
the corresponding models can predict localized electronic
properties. As a challenging test case we set out to predict
HOMO energies in exible organic molecules, which span
a wide range of localization degrees. Specically, a set of
candidate molecules was generated by substituting 41 func-
tional groups40 at predened positions of alkane or alkene
backbones as illustrated in Fig. 2a. The chain length of these
backbones varies from two to eight carbon atoms (see ESI† for
a denition of all sidegroups and backbones, as well as further
details on the dataset). All molecules in this chemical space
were enumerated as SMILES strings, using the RDKit package.41

Duplicated SMILES were detected and removed from the data-
set, resulting in 21 081 unique 2D structures with amaximum of
11 rotatable bonds.
Fig. 2 LocalOrb dataset. (a) Illustration of the dataset construction princ
being decorated with one or two sidegroups. Note that only a repres
separated by at least three carbon atoms to avoid steric clashes. (b) Ex
showing the diversity of localized and delocalized orbitals. This is quanti

4916 | Chem. Sci., 2023, 14, 4913–4922
Initial 3D structures were generated from the SMILES strings
using the ETKDG method42 as implemented in RDKit. Based on
these geometries, the CREST43 package was used to explore the
conformational space of each molecule at the semi-empirical
GFN2-xTB level.44 Default values were used for all CREST
hyperparameters. Final geometries were obtained using the
efficient meta-GGA composite density functional theory (DFT)
method r2SCAN-3c45 as implemented in ORCA 5.0.2.46 To avoid
the well known delocalization errors of semi-local density
functionals, accurate orbital energies and coefficients were
nally obtained with the range-separated hybrid wB97X-D3 (ref.
47) functional and def2-TZVP48 basis set.

Note that the choice of saturated and conjugated backbones
and the wide range of electron withdrawing and donating
functional groups considered herein ensures a high diversity in
the localization of the HOMO for these molecules (see Fig. 2b).
This is further exacerbated by their high exibility, which leads
to an additional inuence of the specic conformer congura-
tions on orbital localization and energetics.49

For training and model evaluation, the 21 081 unique
molecules were separated into two categories: to generate the
training set, 4000 unique molecules were used. Aer the cor-
responding CREST runs, the lowest energy conformer and up to
ve further randomly selected conformers were used for DFT
renement, yielding 18 784 structures overall. To generate an
independent test set, 15 462 of the remaining unique molecules
were used. Here only the most stable conformer was rened
with DFT for each molecule. This choice was made to maximize
the chemical diversity in the test set, since we expect orbital
locality to be more strongly inuenced by the molecular struc-
ture than by the conformation.

2.4 Orbital localization index

As we are interested in the performance of the proposed pooling
functions for both localized and delocalized HOMOs, a metric
iple, with alkane and conjugated alkene backbones of different length
entative subset of the 41 sidegroups is shown. Substitution sites are
ample molecules from the LocalOrb dataset with HOMO isosurfaces
fied by the orbital localization index L, defined in the main text.

© 2023 The Author(s). Published by the Royal Society of Chemistry
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for orbital localization in a given molecule is needed. To this
end, we can use the orbital localization fractions li dened in
eqn (6). Specically, we dene the orbital localization index L as:

L ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
maxðfl1;.; lngÞ �minðfl1;.; lngÞ

p
: (9)

If the HOMO is fully localized on a single atom this yields L = 1,
whereas L = 0 if the HOMO is evenly distributed across all
atoms.

While this denition is admittedly somewhat arbitrary, the
metric matches our intuitive concept of localization and delo-
calization rather well, as shown in Fig. 2b. This also illustrates
that the LocalOrb dataset indeed covers a highly diverse range
of orbital distributions. Based on this we dene highly localized
orbitals as those with L $ 0.8 and highly delocalized ones as
those with L < 0.4.

3. Results
3.1 Pooling function performance

Fig. 3 collects learning curves for SchNet and SOAP based
models using the pooling functions dened above. Here,
subsets of the test set are shown, emphasizing molecules with
particularly delocalized (L < 0.4, 3867 systems) and localized (L
$ 0.8, 539 systems) orbitals. Learning curves for the full test are
shown in Fig. S5.† Directly at rst glance this already reveals
that localized orbitals are more challenging to predict, though
Fig. 3 Learning curves for HOMO energy prediction on LocalOrb. The ro
the SchNet and SOAP representations are shown for test set molecules
training set sizeNtrain. Error bars indicate standard deviations over five rand
in frame c nearly overlaps with the Avg curve.

© 2023 The Author(s). Published by the Royal Society of Chemistry
this may be related to the fact that they are less frequent in the
training set. Indeed, the performance for localized orbitals is
quite sensitive to the number of localized congurations in the
training set, as shown in Fig. S6.†

More importantly, the pooling functions are found to have
a substantial inuence on performance. In all cases, sum
pooling displays very large errors. This underscores the
importance of using properly intensive pooling functions when
predicting orbital energies that has previously been re-
ported.18,24 Among the intensive pooling functions the differ-
ences are more subtle but still signicant. Max pooling
performs worst for delocalized systems with somax being
a slight improvement. Meanwhile, the commonly used average
pooling tends to perform somewhat better than max and so-
max for delocalized systems but worse for localized ones. This is
basically in line with our expectations, since average and max
are by construction suited for highly delocalized and highly
localized orbitals, respectively. Though somax should in
principle represent a compromise between these extremes, it
performs quite similarly to max in our tests.

To improve further, we turn to the more sophisticated
weighted average approaches. As discussed in the Methods
section, coefficient pooling represents a benchmark method in
this context, as it incorporates exact information about orbital
localization. We nd that it indeed yields a signicant
improvement over average pooling and is among the best
ot mean squared errors (RMSEs) of atomistic neural networks based on
with particularly delocalized or localized orbitals, as a function of the
omly drawn training sets of the respective size. Note that theWA curve

Chem. Sci., 2023, 14, 4913–4922 | 4917

http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
https://doi.org/10.1039/d3sc00841j


Chemical Science Edge Article

O
pe

n 
A

cc
es

s 
A

rt
ic

le
. P

ub
lis

he
d 

on
 1

0 
A

pr
il 

20
23

. D
ow

nl
oa

de
d 

on
 2

/9
/2

02
6 

1:
07

:1
3 

PM
. 

 T
hi

s 
ar

tic
le

 is
 li

ce
ns

ed
 u

nd
er

 a
 C

re
at

iv
e 

C
om

m
on

s 
A

ttr
ib

ut
io

n 
3.

0 
U

np
or

te
d 

L
ic

en
ce

.
View Article Online
methods overall. Perhaps surprisingly, OWA pooling is even
better in some cases, although it is formally designed to
approximate coefficient pooling. To verify that the improved
performance of OWA and WA is not merely due to the larger
number of trainable parameters in the pooling function, addi-
tional SchNet results for average pooling models with increased
embedding dimensions are shown in the ESI.† This reveals that
simply increasing the capacity of the networks does not improve
the test performance in this case.

As noted above, the OWA model predicts orbital localization
with a second neural network, trained on the orbital fractions
used in coefficient pooling. Its superior performance is likely
due to the fact that both NNs in the model are trained using
a joint loss function that depends both on the orbital locations
and energies. Consequently, themodel can in principle improve
the predictive accuracy on energies by deviating from the
reference orbital localizations. This additional exibility is
missing in the case of coefficient pooling.

Nevertheless, the orbital fractions provide an important
inductive bias for the model. This is illustrated by the fact that
WA pooling (which lacks this information) performs somewhat
worse than both the OWA and coefficient pooling methods.
Overall, OWA is found to be at least as accurate as the coefficient
pooling benchmark and much more efficient from a computa-
tional perspective. It thus emerges as the pooling function of
choice for localized intensive properties.

While not being the main focus of this paper, it is also
interesting to compare the performance of the SchNet and SOAP
based models. Overall, the SchNet models are found to be
somewhat more accurate. This is in contrast to other bench-
marks, e.g. for atomization energies, where SOAP-based models
usually outperform SchNet (particularly for small training
sets).2 However, it should be emphasized that no hyper-
parameter optimization of the SOAP representation has been
performed herein and that there is no reason to believe that the
defaults we used are optimal for orbital energy prediction. A
more detailed comparison of SchNet and SOAP is beyond the
scope of this paper, however.

It is also notable that the spread among different pooling
functions is somewhat larger for SOAP than for SchNet. This is
likely due to the fact that the message passing mechanism in
SchNet gives some additional exibility to compensate inade-
quacies of the pooling functions. In particular, the scalar atomic
quantities that are passed to the pooling function are much less
local in SchNet than in SOAP. In other words, the message
passing scheme performs some preliminary pooling among
neighboring atoms. For conciseness we focus on the SchNet
models in the following.
3.2 Predicting orbital locations

An added benet of pooling functions like somax, WA and
OWA is that their weights can in principle be interpreted as
approximate orbital localization fractions li. This is particularly
pertinent for the OWA approach, where the weights should
approximate li by design. However, it is also interesting to
consider if methods like somax and WA implicitly learn to
4918 | Chem. Sci., 2023, 14, 4913–4922
predict orbital locations when training on orbital energies
alone.

To quantify this, Pearson correlation coefficients between
the learned weights and the DFT-based li-values were calculated
for all molecules in the test subsets used in Fig. 3. The corre-
sponding histograms are shown in Fig. 4a. This conrms that
OWA weights indeed represent excellent approximations to the
true li-values, with all correlations being close to 1. The WA
method also displays moderate to high correlations, in partic-
ular for localized states. In the delocalized case, the spread is
somewhat larger but nearly all correlations lie above 0.5. Finally,
the somax method shows the weakest correlations and is
particularly bad for the localized cases.

The high correlations between OWA weights and orbital
distributions are also shown in Fig. 4b, where the weights are
illustrated as semitransparent spheres forming phase-less
pseudoorbitals. The OWA NN is thus a bona de multi-
property network that can be used to predict orbital energies
and locations on the same footing, with potential applications
for organic semiconductors.50 The surprisingly good perfor-
mance of WA in predicting orbital locations (particularly for
localized orbitals) also underscores that li is the right physical
prior for the pooling function in this context. Even if they are
not included in the training, the model indirectly (and imper-
fectly) infers them from the orbital energies.
3.3 Application to organic semiconductors

So far we have focused on the intentionally articial LocalOrb
set, which allowed us to study particularly localized and delo-
calized orbitals in depth. To test whether these insights are
transferable to a real chemical application, we now turn to the
OE62 dataset.30 This set consists of >62 000 organic molecules
extracted from crystal structures reported in the Cambridge
Crystal Structure Database and was originally composed to
screen for potential organic semiconductors.

This dataset is signicantly more challenging than LocalOrb,
with more structural diversity, a broader size distribution and
more chemical elements. This is illustrated via a Kernel Prin-
cipal Component Analysis plot in Fig. 5a.36 Here, the LocalOrb
set can be seen to cover a subset of the space covered by the
OE62 set. Fig. 5b shows four representative molecules from
OE62 and the corresponding HOMOs. This conrms that
orbital localization is also an important aspect in real organic
molecules. Note that since the original OE62 dataset lacks
orbital coefficients, these were recomputed for this study (see
ESI†).

Because the OE62 dataset has previously been used to train
models for HOMO energy prediction, it also allows us to
compare the methodology presented herein with the recent
literature. To this end, SchNet models with average and OWA
pooling were trained on randomly drawn training sets of 32 000
molecules. For robust statistics, this process was repeated ten
times for each model and the performance was checked on an
unseen test set of 10 000 molecules (see Fig. 5c). This procedure
is analogous to the one used in ref. 51, with the best performing
model from that paper (using Kernel Ridge Regression and the
© 2023 The Author(s). Published by the Royal Society of Chemistry
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Fig. 4 Predicting Orbital Locations. (a) Pearson correlation coefficients R between DFT-based orbital localization fractions li and machine-
learned weights obtained with different pooling functions. The two panels show correlations for particularly delocalized and localized systems,
respectively. (b) Visual comparison of DFT orbitals and machine-learned pseudoorbitals obtained with the OWA approach. In the latter, learned
weights are visualized as semitransparent spheres.
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Many-Body Tensor Representation, MBTR53) also shown in
Fig. 5c. Both the average and OWA models signicantly
outperform this baseline (RMSE = 0.24 eV) with RMSEs of 0.18
and 0.15 eV, respectively. Here, the improved performance of
OWA is consistent with what we observed for the LocalOrb
dataset. We also compare with two more recent graph neural
network (GNN) based models from ref. 52, with RMSEs of 0.21
and 0.18 eV, respectively.
Fig. 5 Performance on the OE62 dataset. (a) SOAP-based Kernel princip
from the LocalOrb and OE62 datasets. This illustrates the significantly grea
HOMO isosurfaces showing different levels of localization. (c) RMSEs
previously reported models using Kernel Ridge Regression (KRR),51 and
used for training, and 10 000 molecules were used as a test set. Where s
training sets.

© 2023 The Author(s). Published by the Royal Society of Chemistry
This shows that the OWA model displays state-of-the-art
performance for HOMO energy prediction on OE62, while also
providing orbital localization information, which the other
models lack. Importantly, the benets of the physically moti-
vated OWA pooling function are not restricted to the articial
LocalOrb dataset, but also show up for the realistic and diverse
molecules in the OE62 set. As shown in the ESI,† OWA
outperforms average pooling across all molecule sizes in OE62,
with the biggest improvement for the largest molecules. Overall,
al component analysis plot showing 3000 randomly drawn molecules
ter structural diversity of OE62. (b) Examplemolecules fromOE62with
of SchNet models using average and OWA pooling compared with
Graph Neural Networks (GNNs).52 In all cases, 32 000 molecules were
hown, error bars reflect standard deviations over ten randomly drawn
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OWA can thus be recommended as a robust and physically
motivated pooling function for orbital energy prediction.

It should be noted that a series of other orbital energy
prediction models have been proposed in the literature, which
cannot directly be compared to these results. Most notably,
several models were developed to predict machine-learned
Hamiltonians, which yield both orbital energies and coeffi-
cients upon diagonalization.20,38,54 These oen focus on a range
of occupied and unoccupied orbitals at once, so that they
usually do not report HOMO prediction accuracies alone, even
when they are tested on OE62.20

ML Hamiltonians in many ways are the most physically
sound approach to predicting orbital energies and other
intensive electronic properties. However, they also represent
a signicant computational overhead compared to OWA. In
particular, their inference costs do not scale linearly with
system size, due to the required diagonalization step. To over-
come this, ref. 20 uses a constant-size ML Hamiltonian. Here,
the correct treatment of isolated supersystems is not guaran-
teed, however. In our view, pooling functions like OWA there-
fore ll an important niche, providing physically sound and
computationally efficient predictions of localized intensive
properties.

4. Conclusions

In this contribution, the role of the nal aggregation step in
predicting localized intensive properties with atomistic neural
networks was analyzed. Based on this analysis, a series of
physically motivated pooling functions was proposed. To test
these functions empirically, we generated the novel LocalOrb
dataset, consisting of organic molecules with highly diverse
orbital distributions. In this context, the OWA approach, which
relies on predicting orbital locations along with their energies
was found to be an optimal choice.

The physics-based approach proposed herein has two main
advantages over purely data-driven ones. Firstly, it is useful
whenever information about the localization of a property is of
interest. This is, e.g., the case when modelling organic semi-
conductors, where orbital locations are relevant for predicting
electronic couplings between molecules.55 Secondly, rigorously
enforcing correct scaling with system size is essential whenever
a ML model should be trained on small systems and applied to
larger ones, e.g. to molecular clusters, crystals or polymers.

More broadly, the current study shows that a physical anal-
ysis of the target property based on interesting edge cases like
non-interacting subsystems pays real dividends in chemical
machine learning. We expect that combining these insights
with recent advances in neural network architectures (e.g. the
NequIP,56 GemNet,57 or MACE58 models) can lead to further
improvement in predicting orbital or ionization energies for
complex systems.

Finally, the scope of localized intensive properties is in
principle much wider than orbital energies and the related
quantities discussed herein. For example, defect formation
energies, catalytic activities or drug binding affinities display
similar characteristics. In future work, we aim to generalize the
4920 | Chem. Sci., 2023, 14, 4913–4922
ndings of this study in these directions. In this context, it
should be emphasized that localization is a property specic
concept. Multi-property networks will thus require multiple
weight networks. Furthermore, physical reference values for
localization are not always as straightforward to dene.
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M. Ceriotti and G. Csányi, Gaussian process regression for
materials and molecules, Chem. Rev., 2021, 121, 10073–
10141.

3 N. Fedik, R. Zubatyuk, M. Kulichenko, N. Lubbers,
J. S. Smith, B. Nebgen, R. Messerly, Y. W. Li, A. I. Boldyrev,
K. Barros, et al., Extending machine learning beyond
interatomic potentials for predicting molecular properties,
Nat. Rev. Chem., 2022, 6, 653–672.

4 M. Staszak, K. Staszak, K. Wieszczycka, A. Bajek,
K. Roszkowski and B. Tylkowski, Machine learning in drug
design: Use of articial intelligence to explore the chemical
structure–biological activity relationship, Wiley Interdiscip.
Rev.: Comput. Mol. Sci., 2022, 12, e1568.

5 J. Margraf, Science-driven atomistic machine learning,
Angew. Chem., Int. Ed., 2023, e202219170.

6 P. Reiser, M. Neubert, A. Eberhard, L. Torresi, C. Zhou,
C. Shao, H. Metni, C. van Hoesel, H. Schopmans,
T. Sommer, et al., Graph neural networks for materials
science and chemistry, Commun. Mater., 2022, 3, 1–18.
© 2023 The Author(s). Published by the Royal Society of Chemistry

https://gitlab.mpcdf.mpg.de/kchen/localized-intensive-property-prediciton.git
https://gitlab.mpcdf.mpg.de/kchen/localized-intensive-property-prediciton.git
https://gitlab.mpcdf.mpg.de/kchen/localized-intensive-property-prediciton.git
http://creativecommons.org/licenses/by/3.0/
http://creativecommons.org/licenses/by/3.0/
https://doi.org/10.1039/d3sc00841j


Edge Article Chemical Science

O
pe

n 
A

cc
es

s 
A

rt
ic

le
. P

ub
lis

he
d 

on
 1

0 
A

pr
il 

20
23

. D
ow

nl
oa

de
d 

on
 2

/9
/2

02
6 

1:
07

:1
3 

PM
. 

 T
hi

s 
ar

tic
le

 is
 li

ce
ns

ed
 u

nd
er

 a
 C

re
at

iv
e 

C
om

m
on

s 
A

ttr
ib

ut
io

n 
3.

0 
U

np
or

te
d 

L
ic

en
ce

.
View Article Online
7 W. P. Walters and R. Barzilay, Applications of deep learning
in molecule generation and molecular property prediction,
Acc. Chem. Res., 2020, 54, 263–270.

8 P. Reiser, M. Konrad, A. Fediai, S. Léon, W. Wenzel and
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