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of Chemistry Metal-free radiosensitizers, particularly iodine, have shown promise in enhancing radiotherapy due to their
suitable X-ray absorption capacities and negligible biotoxicities. However, conventional iodine compounds
have very short circulating half-lives and are not retained in tumors very well, which significantly limits their
applications. Covalent organic frameworks (COFs) are highly biocompatible crystalline organic porous
materials that are flourishing in nanomedicine but have not been developed for radiosensitization

applications. Herein, we report the room-temperature synthesis of an iodide-containing cationic COF by
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Introduction

More than half of the cancer patients are subjected to
radiotherapy at some timepoint during disease progression;
this technique uses high-energy X-rays to damage cancer cells,
and is one of the most cost-effective cancer treatment options.*
However, the dose and efficacy of radiotherapy are limited by
normal tissue toxicity.> Radiosensitizers concentrate radiation
energy within cancerous tissue or destroy tumor resistance to
X-rays, which can improve the efficacy of radiotherapy without
increasing the radiation dose, and potentially enhance the
radiotherapeutic window, particularly for malignancies with
high risks of regional recurrence, such as gastrointestinal
cancers.” Despite extensive (pre)clinical data that demonstrate
the radiosensitizing properties of chemotherapeutic drugs, the
intolerable side effects of chemotherapy are clinically limiting
its applications.*®

Nanoparticles containing high-Z elements, such as Au
nanoparticles,”** Bi(m) chalcogenides,"”** and metal-organic
frameworks (MOFs),’*?° have recently been wused as
radiosensitizers. While these inorganic nanomaterials provide
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metal-free COFs as radiotherapy sensitizers.

large X-ray absorption cross-sections that amplify the radiation
energy deposited in tumor tissue and improve radiobiological
effects, their biosafety has been questioned.** Hence, there is an
urgent need to develop metal-free radiosensitizers that are
highly biocompatible; in this regard, iodine compounds are
noteworthy candidates.*** For example, iopromide and iohexol
have high X-ray absorption capacities but are suitable
for computed tomography (CT) imaging rather than
radiosensitization due to poor vessel-wall penetration,
extremely short circulatory half-lives, and low tumor retention.

Covalent organic frameworks (COFs), which are crystalline
porous polymeric materials with well-defined chemical
structures,>° have attracted extensive research interest in the
tumor nanomedicine field, and have been used in drug
delivery,*-*® phototherapy,’’~*¢ and immunotherapy*->* because
they are versatile and biocompatible. Recently, AgI@COF-TpBpy
was used as a delivery vehicle for radioiodine in brachytherapy,
showing a long tumor retention time and effective cancer cell
killing performance;** however, to our knowledge, the potential
of a metal-free COF itself as a radiosensitizer in radiotherapy
has not been exploited.>***

In this contribution, we reported a cationic COF with iodide
counterions prepared by a three-component in situ reaction.”
The generated TDI-COF can be a tumor radiosensitizer to
enhance colorectal cancer radiotherapy (Fig. 1). The good X-ray
absorption capacity of TDI-COF allowed it to promote radiation-
induced DNA damage and lipid peroxidation, and induce
ferroptosis that inhibits cell proliferation and tumor growth. To
our knowledge, this study is not only the first example of metal-
free COFs for radiotherapy, but also highlights their great
potential as radiotherapy radiosensitizers.

© 2023 The Author(s). Published by the Royal Society of Chemistry
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Fig.1 Synthesis of an iodide-containing and iminium-linked TDI-COF
as a radiosensitizer for improving radiotherapy efficacy via iodide-
promoted X-ray deposition.

Results and discussion

TDI-COF, which is linked through iminium moieties,*® was
prepared by the one-pot in situ reaction of 1,3,5-
tris(4-aminophenyl)benzene  (TPB), iodomethane, and
2,5-dimethoxyterephthalaldehyde (DMTP) in acetonitrile with
acetic acid at 25 °C for 4 days (Fig. 2A). The formation of a model
compound of N-benzylidene-N-methylbenzenaminium iodide
in acetonitrile solution implied the rationality of the
polymerization reaction (Fig. S1A, ESIt). Inductively coupled
plasma-mass spectrometry (ICP-MS) and elemental analysis
revealed that TDI-COF contains 36.7 4 1.3 wt% iodine, which is
consistent with the C,3HgoNgOg(CH3l)5 5 composition and is
very close to the theoretical C,;gHgoNgOg(CH3l)s formula
(Fig. S1B, ESIY).

The crystal structure of TDI-COF was determined by powder
X-ray diffractometry (PXRD) in combination with
computational simulations using the Forcite module in BIOVIA
Materials Studio 2018 to build an initial model,**-** followed by
density functional based tight binding (DFTB+) calculations to
optimize the conformation of the 2D layer and the stacking
mode (Fig. 2B).*>** The structure of TDI-COF was built with the
heb topology in space group P3 (No. 143) and was further
refined from the PXRD pattern by Pawley refinement (Fig. 2C).
The layers are stacked in an eclipsed AA mode (Table S1, ESI{),
with cell parameters a = b = 37.45 A, ¢ = 3.46 A, & = 8 = 90°,
and y = 120°, and good agreement factors (R, = 3.47% and
Ryp = 4.77%). In contrast, the simulated diffraction pattern of
the staggered AB-stacking model deviates from the
experimental data for the (100), (110), (200), and (001) peaks,
eliminating the AB-stacking structure (Table S2, ESI).

© 2023 The Author(s). Published by the Royal Society of Chemistry
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Fig. 2 Synthesis and characterization of TDI-COF. (A) Gram-scale
synthesis of TDI-COF. (B) Top and side views of the crystal structure of
TDI-COF. (C) Experimental (black dots), Pawley-refined (red), and
simulated (blue and green) PXRD patterns and difference plot (gray).
(D) N, adsorption—desorption isotherm. Inset: cumulative pore
volume profile (yellow) and pore size distribution (green). (E) *C
CP-MAS NMR spectrum and deconvolution. (F) SEM and HAADF-STEM
images and elemental maps. (G) CT images and the corresponding
attenuation plots.

Furthermore, its permanent porosity was determined by the
N, adsorption-desorption isotherm acquired at 77 K; the
distinct step observed at P/P, = 0.18-0.26 is the result of
mesopore filling and is consistent with a type IV isotherm
(Fig. 2D). The Brunauer-Emmett-Teller (BET) surface area was
determined to be Sgpr = 721 m* g~ * with a total pore volume of
0.42 cm® g ', The pore size distribution of TDI-COF calculated
by nonlocal density functional theory revealed cylindrical pores
that are 2.73 nm in diameter,” in good agreement with its
simulated crystal structure, and micropores with a diameter of
1.48 nm that may be associated with local bonding defects and
disorder stacking structures.®®®” Notably, the cumulative pore
volume profile of TDI-COF indicated that the contribution of
the 2.73 nm mesopore is greater than that of the 1.48 nm
micropore, indicating the predominance of the mesopore and
the satisfactory structural integrity of TDI-COF (Fig. 2D).

The chemical structure of TDI-COF was clearly identified by
comparison with the unmethylated imine-linked TPB-DMTP-
COF produced from TPB and DMTP (Fig. S1C and D, ESI}).*
The iminium C of TDI-COF was observed at 154.4 ppm in its **C
cross-polarization-magic angle spinning nuclear magnetic
resonance (CP-MAS NMR) spectrum, fully confirming the
formation of an iminium linkage (Fig. 2E). The nonexistent
imine C (149.4 ppm) and very weak aldehyde C (188.9 ppm)

Chem. Sci., 2023, 14, 3642-3651 | 3643
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characteristic peaks are again indicative of a high-yield iminium
formation (Fig. S1E, ESI{). The methyl C signal was
deconvoluted into two peaks with nearly identical intensities
that respectively correspond to N'CH; (56.5 ppm) and OCHj;
(58.2 ppm). The formation of the iminium linkage was further
supported by Fourier-transform infrared spectroscopy, with
a characteristic C=N" stretching vibration at 1645 cm ' and
negligible peaks of the residual CHO and C=N at 1682 and
1617 cm ', respectively (Fig. S1F, ESI{).*> Furthermore, the
high-resolution N 1s X-ray photoelectron spectroscopy (XPS)
profile showed a symmetrical peak at 401.2 eV that further
evidenced the formation of a C=N" moiety (Fig. S1G, ESI{). In
addition, two XPS peaks associated with I" are located at 619.3
and 630.8 eV, with a well-separated 11.5 eV spin-orbit
component, and no impurity peaks associated with 10;~, C-I
bonds, or polyiodide species (e.g., I;~ and I5~) were detected,
confirming that the only form of iodine present is I" (Fig. S1H,
ESIT).”%"* Consistent with this, the characteristic stretching
vibration bands of the polyiodide species were also not detected
in the Raman spectrum of TDI-COF (Fig. S1I, ESIf).”
Thermogravimetric analysis showed that TDI-COF is thermally
stable up to approximately 280 °C, demonstrating the absence
of I, species in the pores (Fig. S1J, ESI}).

Transmission electron microscopy (TEM) and scanning
electron microscopy (SEM) images revealed that TDI-COF
possesses a uniform nanospherical morphology with a particle
size of 243 + 13 nm (Fig. S1K and L, ESI}). High-resolution TEM
images revealed rough nanoparticles composed of small flakes,
with well-defined lattice fringes (Fig. S1M, ESIf). The fast
Fourier transform of the selected area showed a twofold
symmetric pattern with the expected repeat distance of 0.34 nm,
which is consistent with the m-m stacking distance calculated
from the simulated AA-stacking structure (Fig. SIN, ESIT). In
addition, selected area electron diffraction patterns showed
a diffraction ring that was indexed to the (001) plane, revealing
the acceptable crystallinity and the polycrystalline nature of
TDI-COF (Fig. S10, ESIf). High-angle annular dark-field
scanning transmission electron microscopy (HAADF-STEM)
and element maps indicated that C, O, I, and N are uniformly
distributed in the nanoparticles (Fig. 2F). Moreover, time-
dependent dynamic light scattering, zeta potential analysis,
and PXRD measurements showed that TDI-COF has good
dispersibility and chemical stability in phosphate-buffered
saline (PBS), RPMI-1640 medium, and fetal bovine serum
(Fig. S2, ESIY).

The high iodide content endows TDI-COF with an effective
X-ray absorption capacity that was assessed by CT, which
revealed a good linear relationship between the CT value and
the TDI-COF iodide concentration in PBS. The obtained specific
CT value of 7.69 & 0.19 HU mM " (I equiv.) is clearly higher
than those of iopromide (5.97 4+ 0.06 HU mM ') and iohexol
(6.15 + 0.04 HU mM '), which are clinical CT contrast media,
and significantly higher than that of UiO-66(Hf), a Hf-based
MOF with a CT value of 3.75 £ 0.05 HU mM " (Hf equiv.)
(Fig. 2G).™*™

Due to its nanoscale size and electropositive framework,
TDI-COF enters tumor cells through energy-dependent
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pinocytosis (Fig. S3A, ESIT).”® Iodide ions attached to the
TDI-COF crystalline framework exhibit better membrane
permeability than iodinated CT contrast agents and free iodide
ions (Fig. S3B, ESIt). This is because the cellular uptake of
TDI-COF is independent of ion transporters” and to some
extent bypasses the homeostatic regulation of anions. Notably,
TDI-COF was observed to increase X-ray deposition in tumor
cells, thereby enhancing cellular damage. Specifically, HCT-116
colorectal cancer cells treated with TDI-COF and subsequently
exposed to X-rays exhibited significantly altered morphologies
(Fig. 3A), including swelling, enlarged and vacuolated nuclei,
and increased lipid droplet numbers, consistent with previous
reports.”®®® Cell viability assays further revealed that cell
damage depended on the TDI-COF concentration and X-ray
dose (Fig. 3B). In clonogenic assays, TDI-COF consistently
showed improved radiotherapy performance, suppressing both
the number and size of the formed cell colonies more
significantly than X-ray exposure alone (Fig. 3C). Moreover,
TDI-COF pretreatment and subsequent 4 Gy X-ray radiation
almost completely inhibited the ability of HCT-116 cells to
form multicellular spheres under 3D-culture conditions,
demonstrating the potentiating effect of TDI-COF as a
radiosensitizer toward X-ray-induced cell damage (Fig. 3D).
Notably, TDI-COF affected cells negligibly in the absence of
X-rays, highlighting its high biosafety.

The cell death mechanism induced by TDI-COF-enhanced
radiotherapy was next explored. As a highly sensitive and
specific biomarker for early-stage DNA double-strand
breakage,® YH2AX, the Ser139-phosphorylated product of H2A
histone family member X, is more highly expressed in HCT-116
cells co-treated with TDI-COF and X-rays than in HCT-116 cells
treated with X-rays alone, from which we reasoned that TDI-COF
could increase DNA damage caused by radiotherapy (Fig. 3E).
Liperfluo and 2/,7"-dichlorodihydrofluorescein diacetate (DCFH-
DA) staining revealed that the TDI-COF treatment respectively
increased the levels of intracellular lipid peroxides and reactive
oxygen species (ROS) upon X-ray radiation, especially under
high-dose conditions, indicative of redox dyshomeostasis
(Fig. 3F and S4A, ESIf).**® In addition, we also examined
ferroptosis-related protein expression given the close
relationship between lipid peroxidation and ferroptosis
(Fig. 3G).*** As a result, radiotherapy led to a decreased
glutathione peroxidase 4 (GPX4) level, consistent with the
central regulatory defense mechanism against cell
ferroptosis,®**®” which was further exacerbated by TDI-COF.
Interestingly, co-treatment with TDI-COF and X-rays also
slightly decreased the expression of solute carrier family 7
member 11 (SLC7A11), which regulated ferroptosis by
translocating extracellular cystine into cells.®® GPX4 and
SLC7A11 downregulation are both contributing factors for
ferroptosis. Radiotherapy negligibly affected the level of acyl-
coenzyme A synthetase long-chain family member 4 (ACSL4).*
The intracellular level of glutathione (GSH), a major
antioxidant, decreased consistently with increasing X-ray dose
and was further downregulated by TDI-COF treatment (Fig. 3H).
Levels of malondialdehyde, a lipid-peroxide breakdown product
and a biochemical marker of ferroptosis,” were significantly

© 2023 The Author(s). Published by the Royal Society of Chemistry
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Fig. 3 Ferroptosis-related radiotherapy of HCT-116 cells pretreated with TDI-COF (0-0.25 mg mL™) for 4 h and exposed to X-ray radiation
(0-8 Gy). (A) Confocal laser scanning microscopy images showing cellular morphological changes and increased lipid droplet numbers.
(B) CCK-8 cell viability assay. (C) Clonogenic assay. (D) Multicellular tumor spheroid formation assay. (E) Confocal laser scanning microscopy
images following yH2AX immunofluorescence staining. (F) Flow cytometric analysis of intracellular lipid peroxides. (G) Western blots of
ferroptosis-related proteins. (H) Intracellular GSH levels. Data are presented as means + SDs (n = 3) and compared by two-way analysis of
variance (ANOVA) followed by Bonferroni's multiple comparison test. **p < 0.01; ns, no significance (p > 0.05).

higher after radiotherapy (Fig. S4B, ESIt). As expected, TDI-COF
treatment alone did not alter GSH and malondialdehyde levels.
Furthermore, TDI-COF-enhanced radiotherapy failed to activate
caspase 3 under the same conditions, suggesting that an
apoptotic mechanism is not involved in cell death (Fig. S4C,
ESIY). The ferroptosis mechanism was further evidenced in cell
rescue experiments (Fig. S4D and E, ESIt). Glutathione ethyl
ester (a cell-permeable reducing agent), N-acetylcysteine (a GSH
biosynthesis raw material), ferrostatin-1 (a ferroptosis
inhibitor), and deferoxamine mesylate (an iron chelator) were
able to restore cell viability after TDI-COF-enhanced
radiotherapy, irrespective of the X-ray dose (4 or 8 Gy), whereas
Z-VAD-FMK (an apoptosis inhibitor), necrostatin-1s (a
necroptosis inhibitor), or 3-methyladenine (an autophagy
inhibitor) did not, which fully supports a ferroptosis
mechanism.**

In addition to colorectal cancer, TDI-COF also enhanced
radiotherapy for breast cancer (Fig. S5A and B, ESIf), even at
very low X-ray doses (e.g., 2 Gy). Experiments have shown that
MCF-7 cell death involves ferroptosis (but other cell death
mechanisms cannot be completely excluded) and is closely
associated with oxidative stress caused by DNA damage and
GSH depletion (Fig. S5C-G, ESIt).

The tumor retention time of radiosensitizers is critical for
enhancing X-ray deposition at the tumor sites.”” The tumor
retention with a half-life of approximately 4 h after intratumoral
injection of TDI-COF into HCT-116 tumor-bearing nude mice
was significantly higher than that of iopromide (<2 h), which
may be related to the enhanced permeability and retention
(EPR) effect (Fig. S6A, ESIt).”* TDI-COF was primarily excreted
through urine 72 h after the injection (Fig. S6B, ESIt), with an
excretion rate of 64.9 + 10.4%, which was comparable to that of

© 2023 The Author(s). Published by the Royal Society of Chemistry

iopromide (78.6 £ 13.4%) but obviously higher than that of
UiO-66(Hf) (30.2 + 15.4%). As a result, TDI-COF has acceptable
intratumoral retention and low residue in vivo, resulting in
minimum potential toxicity while assuring the effectiveness of
tumor radiotherapy.

Encouraged by the remarkable efficacy of TDI-COF, its good
in vitro biocompatibility and in vivo long tumor retention, we
next examined its efficacy in in vivo radiotherapy (Fig. 4A).
Tumors injected intratumorally with TDI-COF and exposed to
low doses of X-rays were almost completely suppressed after 16
days, while tumors treated with X-rays alone showed only
slightly lower growth rates (Fig. 4B-D). Tumors pathologically
analyzed following treatment exhibited trends consistent with
the tumor growth curves (Fig. 4E). Hematoxylin-eosin (H&E)
staining revealed that a high percentage of cells in the group
treated with TDI-COF and exposed to X-rays exhibited
ferroptosis- and necrosis-like damage characterized by
karyorrhexis, = karyopyknosis, and ruptured plasma
membranes.”* Immunohistochemical staining showed that the
level of Ki67, a proliferative and prognostic marker,” was
consistently significantly lower in the group receiving
TDI-COF-enhanced radiotherapy than in the group receiving
radiotherapy alone. In addition, the almost no weight
loss observed during radiotherapy suggests that TDI-COF is
biosafe (Fig. 4F). Histological analysis of H&E stains of the
major organs obtained at the treatment endpoint showed that
there was no obvious abnormality of pathological observation,
further supporting the biocompatibility of TDI-COF (Fig. S7,
ESIT). In brief, these preliminary results underscore the in vivo
effectiveness and biocompatibility of the TDI-COF
radiosensitizer.

Chem. Sci., 2023, 14, 3642-3651 | 3645
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Fig. 4 TDI-COF-enhanced radiotherapy in HCT-116 tumor-bearing
nude mice. (A) Therapeutic schedule. (B) Tumor growth curves. (C)
Weights of tumor tissue obtained by dissection. (D) Photographic images
of the obtained tumors at the treatment endpoint. (E) Representative H&E
and Ki67 staining images of the tumor tissue sampled at the treatment
endpoint. (F) Body weight curves. Data are presented as means & SDs (n =
6) and compared by two-way ANOVA followed by Tukey's post hoc test
(B, F) and one-way ANOVA followed by Tukey's post hoc test (D). ****p <
0.0001; ***p < 0.001; **p < 0.01; *p < 0.05; ns, no significance (p > 0.05).

Conclusions

In conclusion, we synthesized an iodide-containing and
iminium-linked COF by a three-component one-pot in situ
reaction at room temperature. The generated TDI-COF
significantly improved X-ray deposition in colorectal cancer
cells, effectively sensitized low-dose  X-ray-induced
radiotherapy, triggered ferroptotic cell death by damaging
DNA and promoting lipid peroxidation, and displayed potent in
vitro and in vivo antitumor activities as a consequence. Although
further laboratorial and preclinical experiments including
targeted delivery, catabolic pathways, and genotoxicity are
necessary, our study demonstrated that metal-free COFs can be
potential sensitizers for enhancing radiotherapy and possibly
provide a new method for developing COF-based oncotherapies.
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