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The modern technology for acetylene production is inevitably accompanied by the contamination of
carbon dioxide and moisture impurities. Metal-organic frameworks (MOFs), with rational configurations
of fluorine as the hydrogen-bonding acceptor (HBA), exhibit excellent affinities to capture acetylene
from the gas mixtures. Currently, most research studies feature anionic fluorine groups as structural
pillars (e.g., SiFg2~, TiFg2~, NbOFs27), whereas in situ insertion of fluorine into metal clusters is rather
challenging. Herein, we report a unique fluorine-bridged Fe-MOF, i.e., DNL-9(Fe), which is assembled by
mixed-valence Fe'Fe!" clusters and renewable organic ligands. The fluorine species in the coordination-

saturated structure offer superior C,H,-favored adsorption sites facilitated by hydrogen bonding, with
Received 5th December 2022

Accepted 2nd January 2023 a lower C,H, adsorption enthalpy than other reported HBA-MOFs, demonstrated by static/dynamic

adsorption tests and theoretical calculations. Importantly, DNL-9(Fe) shows exceptional hydrochemical
stability under aqueous, acidic, and basic conditions, and its intriguing performance for C,H,/CO,
separation was even maintained at a high relative humidity of 90%.
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Introduction

Acetylene (C,H,) is a vital building block for the synthesis of
various chemical commodities. Its modern production
methods, e.g., pyrolysis, partial combustion, or thermal
cracking of hydrocarbons, inevitably contaminate the product
gas with carbon dioxide (CO,) and moisture (H,0)."* These
impurities pose a challenge in producing high-purity C,H, in
isolation for end-users, given the similarities in kinetic diam-
eter (i.e., 3.3 A) and polarizability (i.e., 33.3 versus 29.1 x 10*
cm’3] between C,H, and CO,, along with the presence of vapor/
moisture via physisorption-based pressure swing adsorption
(PSA) and vacuum swing adsorption (VSA) processes.*”
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Metal-organic frameworks (MOFs) are promising sorbents
for C,H, separation owing to their tailorability in pores, surface
chemistry and building units.*** Particularly, the introduction
of fluorine (F) into the backbone of MOFs is found to effectively
enhance C,H, adsorption, boost C,H,/CO, separation proper-
ties and the resistance to moisture, with fluorine species serving
as the hydrogen bonding acceptor (HBA)."*** Two main strate-
gies are reported to achieve the aim: (i) employing anionic
fluorine groups, such as SiF¢>", TiF>~, FeF;>~ and NbOF;>", to
construct anion-pillared MOFs;***¢ (ii) utilizing fluorinated
organic linkers to form fluorine-containing MOFs like FMOF-1,
FMOFCu and MOFF-5."""" Although a few MOFs prepared by
the above approaches have shown promise for C,H,/CO, sepa-
ration, the fluorous reagents are relatively expensive. Also, most
anion-pillared MOFs reveal high adsorption enthalpies for
C,H,, e.g., over 35 k] mol ™!, which in turn, will cause an energy
penalty during desorption. Besides, it is also fairly difficult to
introduce highly coordinated fluorine moieties into MOFs, e.g.,
the fluorination of metal nodes (Scheme 1).2*> The high ligancy
of fluorine bonded with metal nodes as well as the hydrophobic
micro environment, however, may protect the sites from being
attacked by water molecules.™

We herein report a unique Fe-MOF, i.e., DNL-9(Fe) (Dalian
National Laboratory for Clean Energy, China), constructed from
Fe""Fe' clusters and biomass-derived 2,5-furandicarboxylic acid
(FDCA) linkers. This material possesses a high coordination
ligancy of bridged and terminal fluorine with metal nodes,

© 2023 The Author(s). Published by the Royal Society of Chemistry
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Scheme 1 Schematic showing state-of-art synthesis strategies for MOFs to achieve efficient C,H,/CO, separation. Gray, C; red, O; white: H;
green, F; yellow: Si/Ti/Ge; pink: B; else: metal or functional group atoms.

which is very rarely reported in MOFs.?**"** Hydrogen bonding
could then be steadily formed between the framework and C,H,
molecules, e.g., C-H:--F and C-H---Og (from furan rings), thus
enhancing C,H, capture. Consequently, these features endow
DNL-9(Fe) with great potential to separate C,H, from other gas
impurities under moist conditions in the current production
technology. The prominent C,H,/CO, performance of DNL-
9(Fe) was then confirmed by a plethora of static/dynamic
adsorption measurements and theoretical calculations.
Furthermore, our work also demonstrated the exceptional
hydrochemical stability of DNL-9(Fe) under aqueous, acidic,
and basic conditions, and its excellent C,H,/CO, separation
property was even maintained at a high relative humidity of
90%.

Results and discussion

To decode the fine structure of DNL-9(Fe), we obtained its
single-crystal (Fig. S11), and details of the crystallographic
information are given in Table S1.} Also, the following X-ray
fluorescence (XRF) measurement and elemental analysis
determined the chemical composition of the structure, with
calculated formula basically matching with that obtained from
the single crystal (Table S2}). Fig. 1a and b illustrate the
orthogonal structure of DNL-9(Fe) with a P2,2,2; space group,
in which the chain-linked metal molecules precisely pack in an
alternating helical pattern, and carboxylate groups of the FDCA
ligands bridge helical Feg(pu-F)sFg clusters to ultimately form
a chiral topology framework with pore channels running along
different axes (Fig. 1c). There are two sets of p-F and terminal F
linkers that connect each hexa-coordinated Fe atom, i.e., Fe-F-
Fe and Fe-F; distinct from oxygen linkages, this is seldom
explored in MOFs.>**"** The saturated Fe units were divided
into mixed-valence Fe''(u-O),0-(-F), and Fe™(p-0),0-(u-F)B-(u-
F)F, characters, due to the reducing environment arising from
the decomposition of N,N-dimethylformamide (DMF) (product
gases are analyzed in Fig. S21). As shown in Fig. 1d and e, the

© 2023 The Author(s). Published by the Royal Society of Chemistry

ordered structure of DNF-9(Fe) was observed by high resolution
transmission electron microscopy (HRTEM). The acquired
HRTEM image shows the visible microporous channels, with
the structure in agreement with the simulated model decoded
from the single crystal measurement. The zero-field Mossbauer
spectrum of the sample recorded at 298 K exhibits quadrupole
doublets, which could indicate the oxidation state of specific Fe
centers as well as the protonation state of the atom bridge
(Fig. 2a).>* The two distinct doublets are characteristics of
hyperfine parameters typical of high-spin Fe"" with isomer shift
6 = 1.252 mm s~ ' and quadrupole splitting |AEq| = 2.993 mm
s~', whereas the other two can be assigned to high-spin Fe™
with isomer shift 6 = 0.445 mm s~ " and quadrupole splitting
|AEq| = 0.612 mm s~ ". Furthermore, it also demonstrates that
Fel o' _p species, rather than normal oxo-bridged complexes,
e.g., Fe-O-Fe with 6 = 0.45-0.52 mm s~ and |AEq| = 1.27-1.80
mm s~ at 298 K, or hydroxo-bridged complexes, e.g., Fe-OH-Fe
with 6 = 0.45-0.52 mm s~ " and |AEq| = 0.25-0.56 mm s~ ' under
the same conditions, that were reported before, are coordinated
with iron atoms.*® As a result, the configuration of p-F influ-
ences the asymmetry of electron distribution, causing a large
quadrupole splitting.*® The presence of bridged and terminal
fluorine atoms is also verified in the solid state "°F Nuclear
Magnetic Resonance (*’F-NMR) analyses (Fig. S31).2”?® The
relative areas of the Mossbauer doublets further reveal the
existence of Fe" (33.31%) and Fe™™ (66.69%), consistent with the
single crystal data.

Fig. S47 shows the powder X-ray diffraction (PXRD) patterns
of DNL-9(Fe), indicating good purity and crystallinity. Fig. S5
presents the argon adsorption isotherm at 87 K, which suggests
a type I isotherm for a microporous structure with Brunauer-
Emmett-Teller (BET) area and micropore volume being 1135 m*
g ' and 0.38 cm® g ! for the guest-free MOF, respectively; the
average pore size of the solvent-free channels is around 5.5 A, in
line with the crystallographic value from the single-crystal
structure. Fig. S6 and Table S4f show that the adsorption of
N, at 77 K gives a bit smaller BET area (1113 m* g ') and
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(a) The structure of the fluorine coordination and the helical chain of DNL-9(Fe); (b) the framework viewed along the a-axis (balls indicate

cavities), (c) the structure of DNL-9(Fe) viewed along the (I) b-axis and (Il) c-axis; (d) low-dose motion-corrected high-resolution TEM (HRTEM)
image of DNL-9(Fe) denoised by using ABSF filtering; inset: the SAED pattern. (e) Enlarged HRTEM image (left) matched with the structural model

of DNL-9(Fe) viewing along the a-axis (right).

a slightly larger average pore size (5.8 A) for the MOF. Ther-
mogravimetric analysis (TGA) and differential scanning calo-
rimetry (DSC) profiles of DNL-9(Fe) verified its decent thermal
stability up to ca. 250 °C, with no phase transformation
confirmed by structure comparisons (Fig. S7at). The obvious
weight loss in 50-200 °C in the TGA curve is due to the
desorption of H,O molecules, as evidenced by the broad peak in
a similar temperature range in the mass spectra (Fig. S7b and
ct). SEM images reveal the layered morphology of the samples
(Fig. S81).

Fig. 2b and S14-S16%1 display C,H, and CO, single gas
adsorption isotherms at 288, 298 and 308 K over 0-1 bar, which
are well-fitted within the dual-site Langmuir-Freundlich (DSLF)
model. In the tests, DNL-9(Fe) adsorbs far more C,H, than CO,;
at 298 K and 1 bar, the adsorption capacity of C,H, reaches 5.42
mol kg™, twice as much of CO,, which is among the best results
reported.’*** The adsorption enthalpies (Fig. 2b) are 26.1-28.0
k] mol ™" for C,H, and 25.6-26.5 k] mol™" for CO,, both exhib-
iting a decrease with increasing gas loadings, indicating the
presence of preferential adsorption sites in MOFs. The ideal
adsorbed solution theory (IAST) selectivities were then calcu-
lated for equimolar C,H,/CO, mixtures (Fig. S17; fitting
parameters: Table S6t),** which grow from 1.06 to 2.68 (1 bar
and 288 K) with decreasing temperature and increasing

1474 | Chem. Sci, 2023, 14, 1472-1478

pressure. This is important because, in the narrow channels of
DNL-9(Fe), more adsorption of C,H,, either at lower tempera-
tures or higher pressures, will prohibit the coexisting adsorp-
tion of CO,, thus benefiting the selectivities.

Dispersion-corrected density functional theory (DFT-D3)
calculations were performed to gain molecular insights into
the gas adsorption behavior in DNL-9(Fe). Fig. 2c reveals the
preferential binding sites for C,H, and CO, in DNL-9(Fe),
facilitated by hydrogen bonding. C,H, has two such sites: the
primary one is formed through F---H¢ g, (F°~, terminal fluorine
atom binding with metal; HCZHf*, hydrogen atom from acety-
lene), with interaction distances of 2.40-2.52 A; the other one
stems from the interaction of Op--Hg m, (OF"’, O atom from
furan rings) with distances of 2.55 A (Fig. S20at). The second
site involves competitive adsorption, as O atoms from CO,
(Oco,’”) could also bind with H atoms from furan rings (Hg"),
forming hydrogen bonding of Hg---Oc¢o, with distances of 2.92—
3.20 A. In all, C,H, was found to have a lower static binding
energy with the framework than CO, (—31.78 vs. —28.56 K]
mol '), matching with the trend in adsorption enthalpies.

To verify the above theoretical findings in experiments, FT-IR
analysis was carried out; Fig. 2d presents the spectra of blank
DNL-9(Fe), and the samples adsorbed with C,H,, CO, or water.
The signals observed in the curves, e.g., v(=C-H) = 3226-3234

© 2023 The Author(s). Published by the Royal Society of Chemistry
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Fig.2 (a) °’Fe Mossbauer spectrum of DNL-9(Fe) at room temperature. Green and purple dash lines indicate fitted adsorption doublets assigned

to Fe''and Fe"!

, respectively. The hollow circles denote the measured spectrum and the red curve represents summed fitted spectra; (b) pure gas

adsorption isotherms and enthalpies (inset) of C,H, and CO, at 298 K; (c) the adsorption status of (I) CoH; and (1) CO, molecule in MOF via DFT-
D3 optimization; unit: A. Green, F; red, O; grey, C; yellow, Fe; white, H; (d) FT-IR spectra of DNL-9(Fe). Samples from bottom to top: blank MOF,
H,0-, CO,- and C,H,-adsorbed (1 bar, 298 K) MOF, referenced to the KBr pellet; (e) Raman spectra of DNL-9(Fe). Samples from bottom to top:

blank MOF, H,O-, CO,- and C;H,-adsorbed (1 bar, 298 K) MOF.

em ™! and ¥(C=0) = 2341-2359 cm™',** prove the presence of
C,H, and CO, adsorbed in MOFs. Compared to the reference
and CO, loaded sample, adsorption of C,H, led the bands of
v(C-0-C) to shift from 1229 to 1227 cm ™, driven by the inter-
actions between furans (Og) and C,H, via H-bonding of Og--
Hc,u,, as described in the above DFT findings. Raman spectra
(Fig. 2e) were also recorded, where signals for the adsorption of
gas molecules were clearly present. Besides, the peak seen at
479 cm™ " in the blank sample was attributed to the stretching of
Fe-F, rather than v(Fe-O) = 520-550 cm™ ', normally found in
other Fe-MOFs.** The peak moved to lower values of 477 and 475
cm ' with the adsorption of CO, and C,H,, which indicates that
the fluorine regions could preferentially trap C,H,, possibly
through the H-bonding of F,---H¢ y, as stated above. Similar
trends were also witnessed in the shifts of y(HC-CH) and 6(C-H)
bands (in furan rings), implying that C,H, had superior
competitive adsorption to CO,, via the interactions with the
ligands.

Meanwhile, Fig. 2d and e also suggest that the changes in the
profiles of FT-IR and Raman were generally weaker, upon con-
tacting the framework with water compared to C,H, and CO,.
Fig. S101 shows the water sorption isotherm of DNL-9(Fe) at 298
K, where the uptake was nominal with a relative pressure <0.2.
Afterwards, it increased gradually until close to saturation, with
the final uptake approaching 19 wt%. We also evaluated the
initial differential adsorption heat of H,O on DNL-9(Fe) to be ca.

© 2023 The Author(s). Published by the Royal Society of Chemistry

43.5 k] mol™*, which is lower than that of other FDCA-based
MOFs, e.g., MIL-160 (54 k] mol*),® and PCN-233 (62-77 kJ
mol").** DFT calculations further reveal that the dominant
water adsorption occurred in the cavity near the furan linker in
DNL-9(Fe), with the corresponding O}---Hy, distance of 2.02 A,
and a F, ---Hy, distance of 2.01 A (Fig. S20bt). This configura-
tion generated a binding strength of —47.5 kJ mol ', notably
smaller than that of MIL-160(Al) and PCN-233 (FeNi),** and
comparable to that of another famous fluorinated MOF, i.e.,
FMOF-1 (—46.0 k] mol™*).?® Importantly, we also exposed DNL-
9(Fe) to water, acidic/basic (pH = 2, 10) aqueous solutions, and
typical organic solvents (MeOH, EtOH, MeCN). Fig. S4 and S9f
show that the structural and adsorption properties of DNL-9(Fe)
almost remain the same, demonstrating the exceptional
hydrochemical stability of the material.

Next, experimental breakthrough tests were carried out to
examine the separation performance of DNL-9(Fe) in practical
scenarios, where equimolar C,H,/CO, mixtures were passed
through a homemade apparatus (Fig. S111) with a total flow rate
of 5 ml min~" under dry or wet (ca. 90% RH) conditions at 298 K
and 1 bar. An efficient separation was readily achieved in the dry
atmosphere (Fig. 3a), in which CO, first broke the column at
about 21 min, and after a long period of ca. 47 min, C,H, came
out, whilst under the humid condition, the breakthrough curves
only shifted a bit to earlier moments, resulting from the
competitive adsorption of water. The efficient separation of

Chem. Sci., 2023, 14, 14721478 | 1475
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C,H,/CO, could also be witnessed at higher temperatures under
consistent conditions, albeit also with left moves of break-
through points primarily due to lower gas uptakes at 308 K and
318 K (Fig. S131). C,H,/CO, breakthrough selectivity was then
calculated to be 2.48, which agrees with the IAST selectivities at
298 K and 1 bar. At extremely low pressures (i.e., below 0.05 bar),
the similar initial slopes of uptake for C,H, and CO, also
encourage us to study the adsorption kinetics for an efficient
separation in DNL-9(Fe) (Fig. S18 and S197). Table S8} shows
the calculated diffusion coefficients of C,H, (4.40 x 10~ ** m?
s ) and CO, (8.63 x 10~ "> m> s~ ') under the same conditions:
the much lower diffusion rate of C,H, than CO, at 0.005 bar is
due to the diffusion limitation rising from the intermolecular
H-bonding interaction between C,H, molecules and the
framework.

Fig. 3b and c show the cycling tests for the separation under
dry and wet conditions, where over 97% of C,H, capacities were
recovered in all cycles, when simply activating the adsorbent
under a dynamic vacuum at ca. 0.00001 bar (0.007 Torr, abso-
lute pressure) for 2 h at 298 K before each cycle. This is a gift
from the mild gas adsorption enthalpies because of the fluori-
nated and saturated framework. Upon five cycles, C,H,
adsorption capacities were up to 3.83-3.91 mol kg™, even with

1476 | Chem. Sci, 2023, 14, 1472-1478

the competitive adsorption of CO, and moisture. Again, Fig. S4
and S51 demonstrate that the MOF structure remained intact
after the cycling tests either under dry conditions or even at
a high relative humidity of 90%, with no obvious degradation in
the structural crystallinity and surface area. Fig. 3d compares
the adsorption capacity and enthalpy of C,H, of DNL-9(Fe) and
other state-of-art HBA-type anionic MOFs reported under the
same conditions. Also with a moderate C,H,/CO, selectivity
compared with other benchmark MOFs (Table S101), DNL-9(Fe)
presents a high C,H, capacity, and the lowest C,H, adsorption
enthalpy compared to other HBA-type MOFs.***3° The latter is
significant in real scenes, as it may mitigate the demands of the
equipment to withstand heating, and cut down energy
consumption for sorbent regeneration. Besides, Table S117
summarizes the C,H,/CO, separation performance of bench-
mark MOFs, including C,H, static adsorption and normalized
breakthrough capacity, as well as the separation time per weight
of adsorbent. Clearly, DNL-9(Fe) has above-average static and
normalized breakthrough capacity for C,H, among all MOFs,
and is superior to most HBA-containing MOFs. Overall, with the
above-mentioned intriguing separation performance, as well as
being prepared from cheap components (iron nodes and bio-
derived massive ligands) and convenient synthesis methods,

© 2023 The Author(s). Published by the Royal Society of Chemistry
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DNL-9(Fe) is a rather promising candidate sorbent for acetylene
purification in real-world applications.

Conclusions

In summary, we here reported a new fluorinated MOF, i.e., DNL-
9(Fe), serving as an HBA for efficient C,H,/CO, separation. This
material has bridged and terminal fluorine species directly
bonded with the metal. The static/dynamic adsorption tests
show that the MOF displays a prominent C,H,/CO, separation
performance either under dry conditions or at a high relative
humidity of 90%, as well as a low adsorption enthalpy with
a robust structure which is particularly beneficial for practical
applications, e.g., in the vacuum swing adsorption (VSA)
processes. DFT calculations suggest multiple C,H,-favored
adsorption sites with MOF-C,H, hydrogen-bonding interac-
tions in DNL-9(Fe), which is further proved by the FT-IR and
Raman measurements. All results manifest that DNL-9(Fe) is
very promising to be utilized as a sorbent for acetylene purifi-
cation in industry.
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